首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The glyoxylate cycle enzyme, isocitrate lyase (EC 4.1.3.1) was purified from cotyledons of Citrullus vulgaris (watermelon). The final preparation, which had been 97-fold purified with a specific activity of 16.1 units/mg protein in a yield of 36%, was homogeneous by gel- and immunoelectrophoretic criteria. The tetrameric enzyme had: a molecular weight of 277 000, a sedimentation coefficient of 12.4 s, and a Km for Ds-isocitrate equal to 0.25 mM. Isocitrate lyase from this source is not a glycoprotein as shown by total carbohydrate content after precipitation by trichloroacetic acid of the purified enzyme. Reduction of the enzyme with thiols increased activity and maximal activity was obtained with at least 5 mM dithiothreitol. EDTA partially substituted for thiol in freshly isolated enzyme. Watermelon isocitrate lyase was also protected against thermal denaturation at 60° for at least 1 hr by 5 mM Mg2+ plus 5 mM oxalate. Oxalate was a competitive inhibitor with respect to isocitrate (Ki: 1.5 μM, pH 7.5, 30°).  相似文献   

2.
Density-labeling with 10 millimolar K15NO3/70% 2H2O has been used to investigate isocitrate lyase synthesis during greening of sunflower (Helianthus annuus L.) cotyledons when the glyoxysomal enzyme activities sharply decline and the transition in cotyledonary microbody function occurs. A density shift of 0.0054 (kilograms per liter) was obtained for the profile of isocitrate lyase activity in the CsCl gradient with respect to the 1H2O control. Quantitative evaluation of the density-labeling data indicates that about 50% of the isocitrate lyase activity present towards the end of the transition stage in microbody function is due to enzyme molecules newly synthesized during this stage.  相似文献   

3.
(i) The activity of purified NAD-specific isocitrate dehydrogenase from bovine heart was stimulated by free Ca2+ in the presence of ADP and subsaturating levels of magnesium isocitrate, but not in absence of ADP. However, Ca2+ was not absolutely required for ADP activation. This was particularly apparent when free Mg2+ was kept low (0.0024–0.020 mm) and the substrate magnesium dl-isocitrate ranged from 0.07–0.25 mm. When kinetic constants were determined at pH 7.4 under these conditions and in the absence of ethylene glycol bis(β-aminoethyl ether) N,N′-tetraacetate, Ca2+ had little or no effect on Km (app) for ADP; the stimulation of rate by Ca2+ was mainly due to increased V (app). With subsaturating ADP, there was an interdependence in the interaction of the enzyme with substrate and Ca2+. Thus, with ADP constant (0.30 mm) the values of Km (app) for magnesium dl-isocitrate declined from 0.35 mm at zero Ca2+ to 0.19 mm with saturating Ca2+ without affecting V; Km (app) for free Ca2+ declined with increasing magnesium isocitrate to a limiting Km of 0.3 μm. (ii) Ethylene glycol bis(β-aminoethyl ether)-N,N′-tetraacetate, frequently used as a calcium buffer, inhibited enzyme activity with and without ADP. (iii) The enzyme was not inhibited by the calmodulin inhibitors trifluoperazine and chlorpromazine. Inhibition by lanthanide ions of the isocitrate dehydrogenase was competitive with magnesium isocitrate and not with respect to Ca2+. The values of Kis (1.8 to 3.1 μm) for La3+, Yb3+, Gd3+, Eu3+, Tb3+, and Er3+ were about two orders of magnitude smaller than Km for magnesium dl-isocitrate.  相似文献   

4.
Isocitrate lyase was partially purified from germinating spores of the fern Anemia phyllitidis. The enzyme requires Mg2+ and thiol compounds for maximal activity and has a pH optimum between 6.5 and 7.5. The Km of the enzyme for threo-Δs-isocitrate is 0.5 mM. Succinate inhibits the enzyme non-competitively (Ki. 1.8 mM). The increase of isocitrate lyase activity is closely correlated with the induction of the germination process. The fall of enzyme activity during germination is associated with the decline in triglyceride reserves.  相似文献   

5.
Tentoxin at 10–1000 μM causes a marked species-selective stimulation of coupling factor 1 Ca2+-dependent ATPase activity (Ka 6.3 · 103 M?1). This effect decreases the Km for ATP to about 0.3 mM and increases V 2.75-fold. Above 1.6 μM tentoxin the rate of coupled electron transport was reduced to basal without uncoupling.  相似文献   

6.
Changes in levels of isocitrate lyase, malate synthase, and catalase have been investigated during germination of flax (Linum usitatissimum L.) in the presence and absence of itaconate. Germination was accompanied by a rapid increase in these enzymes during the first 3 days. The presence of 38 millimolar itaconate inhibited the incidence of seed germination and the growth of embryo axes as well as the appearance of isocitrate lyase but did not alter the levels of malate synthase, catalase, or NADP+-isocitrate dehydrogenase. The specific activity for the latter enzyme was constant throughout germination. Oxalate or succinate, each at 38 millimolar, had no effect upon germination of flax seeds. Itaconate did not inhibit the activities of malate synthase, catalase, or NADP+-isocitrate dehydrogenase in vitro but was a potent noncompetitive inhibitor of isocitrate lyase (Ki:17 micromolar at 30 C, pH 7.6). Itaconate (at 38 millimolar) did not alter the appearance of malate synthase but reduced the incidence of germination, onset of germination, and growth of the embryo axis as well as the specific activity of isocitrate lyase in seedlings of Zea mays, Vigna glabra, Glycine hispida, Vigna sinensis, Trigonella foenumgraecum, Lens culinaris, and Medicago sativa. The incidence and onset of germination of wheat seeds were unaltered by the same concentration of itaconate but seedlings did not contain isocitrate lyase or malate synthase. The data suggest that itaconate may be isocitrate lyase-directed in inhibiting the germination of fatty seeds.  相似文献   

7.
Bradyrhizobium japonicum, the nitrogen-fixing symbiotic partner of soybean, was grown on various carbon substrates and assayed for the presence of the glyoxylate cycle enzymes, isocitrate lyase and malate synthase. The highest levels of isocitrate lyase [165–170 nmol min–1 (mg protein)–1] were found in cells grown on acetate or β-hydroxybutyrate, intermediate activity was found after growth on pyruvate or galactose, and very little activity was found in cells grown on arabinose, malate, or glycerol. Malate synthase activity was present in arabinose- and malate-grown cultures and increased by only 50–80% when cells were grown on acetate. B. japonicum bacteroids, harvested at four different nodule ages, showed very little isocitrate lyase activity, implying that a complete glyoxylate cycle is not functional during symbiosis. The apparent K m of isocitrate lyase for d,l-isocitrate was fourfold higher than that of isocitrate dehydrogenase (61.5 and 15.5 μM, respectively) in desalted crude extracts from acetate-grown B. japonicum. When isocitrate lyase was induced, neither the V max nor the d,l-isocitrate K m of isocitrate dehydrogenase changed, implying that isocitrate dehydrogenase is not inhibited by covalent modification to facilitate operation of the glyoxylate cycle in B. japonicum. Received: 10 October 1997 / Accepted: 16 January 1998  相似文献   

8.
The glyoxysomal enzymes isocitrate lyase and catalase have been isolated from etiolated cucumber (Cucumis sativus) cotyledons. The enzymes co-purified through polyethyleneimine precipitation and (NH4)2SO4 precipitation, and were resolved by gel filtration on Sepharose 6B followed by chromatography on diethylaminoethyl-cellulose (isocitrate lyase) or hydroxylapatite (catalase). Purity of the isolated enzymes was assessed by sodium dodecyl sulfate-polyacrylamide electrophoresis, isoelectric focusing, and immunoelectrophoresis. Antibodies raised to both enzymes in rabbits and in tumor-bearing mice were shown to be monospecific by immunoelectrophoresis against total homogenate protein. Isocitrate lyase and catalase represent about 0.56% and 0.1%, respectively, of total extractable cotyledonary protein. Both enzymes appear to be present in a single form. Molecular weights of the native enzymes and its subunits are 225,000 and 54,500 for catalase, and 325,000 and 63,500 for isocitrate lyase. The pH optimum for isocitrate lyase is about 6.75 in morpholinopropane sulfonic acid buffer, but varies significantly with buffer used. The Km for d-isocitrate is 39 micromolar. A double antibody technique (rabbit anti-isocitrate lyase followed by 125I-labeled goat anti-rabbit immunoglobulin G) has been used to visualize isocitrate lyase subunit protein on sodium dodecyl sulfate-polyacrylamide with high specificity and sensitivity.  相似文献   

9.
Fumarase (EC 4.2.1.2) catalyzes reversible interconversion of malate and fumarate. It is usually associated with the tricarboxylic acid cycle in mitochondria, although the cytosolic form has also been detected. We investigated the expression of two fumarase genes and activities of the mitochondrial and cytosolic isoforms of fumarase in maize (Zea mays) scutellum during germination. Both isoforms were purified to electrophoretic homogeneity. The cytosolic form had low optimum pH (6.5) and high affinity to malate (Km 5 μM) when compared with the mitochondrial form (optimum pH 7.0, Km 50 μM). The cytosolic form was strongly activated by Mg2+ and even more by Mn2+, whereas the mitochondrial form was moderately activated by Mg2+ and Mn2+ was less effective. The highest fumarase activity in scutellum and a high expression of the gene encoding the cytosolic form were observed during the maximal activity of the glyoxylate cycle. In leaves, the localization of fumarase is only mitochondrial and only one fumarase gene is expressed. It is concluded that the function of cytosolic fumarase in maize scutellum can be related to metabolism of succinate formed in the glyoxylate cycle.  相似文献   

10.
Changes in the levels of isocitrate lyase, malate synthase, catalase, fumarase, and NADP+-isocitrate dehydrogenase have been investigated during larval development of the free-living soil nematode Caenorhabditis elegans in the presence and absence of Escherichia coli. The specific activities of isocitrate lyase, malate synthase, and catalase are maximal at the time of egg hatching and, thereafter, decline during larval development when larvae feed on E. coli, whereas in the absence of E. coli specific activities of the same enzymes increase for 12 hr and subsequently remain constant. There is, however, no change in specific activity of fumarase or NADP+-isocitrate dehydrogenase during the same developmental period, in either case. Cycloheximide at 100 μM arrests the decline of isocitrate lyase during development of feeding larvae but has no effect upon the appearance of isocitrate lyase during starvation. The latter is true also for 15 mM itaconate. There is inactivation of isocitrate lyase in crude extracts of frozen worms in comparison to that in analogous extracts prepared from freshly harvested nematodes.  相似文献   

11.
Isocitrate dehydrogenase (IDH) catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate with NAD(P) as a cofactor in the tricarboxylic acid cycle. As a housekeeping protein in Helicobacter pylori, IDH was considered as a possible candidate for serological diagnostics and detection. Here, we identified a new icd gene encoding IDH from H. pylori strain SS1. The recombinant H. pylori isocitrate dehydrogenase (HpIDH) was cloned, expressed, and purified in E. coli system. The enzymatic characterization of HpIDH demonstrates its activity with k cat of 87 s?1, K m of 124 μM and k cat/K m of 7 × 105 M?1s?1 toward isocitrate, k cat of 80 s?1, K m of 176 μM and k cat/K m of 4.5 × 105 M?1s?1 toward NADP. The optimum pH of the enzyme activity is around 9.0, and the optimum temperature is around 50 °C. This current work is expected to help better understand the features of HpIDH and provide useful information for H. pylori serological diagnostics and detection.  相似文献   

12.
(1) The effects of calmodulin binding on the rates of Ca2+-dependent phosphorylation and dephosphorylation of the red-cell Ca2+ pump, have been tested in membranes stripped of endogenous calmodulin or recombined with purified calmodulin. (2) In Mg2+-containing media, phosphorylation and dephosphorylation rates are accelerated by a large factor (at 0°C), but the steady-state level of phosphoenzyme is unaffected by calmodulin binding (at 0°C and 37°C). In Mg2+-free media, slower rates of phosphoenzyme formation and hydrolysis are observed, but both rates and the steady-state phosphoenzyme level are raised following calmodulin binding. (3) At 37°C and 0°C, the rate of (Ca2+ + Mg2+)-ATPase activity is stimulated maximally by 6–7-fold, following calmodulin binding. At 37°C the apparent Ca2+ affinity for sustaining ATP hydrolysis is raised at least 20-fold, Km(Ca) ? 10 μM (—calmodulin) and Km(Ca) < 0.5 μM (+ calmodulin), but at 0°C the apparent Ca2+ affinity is very high in calmodulin-stripped membranes and little or no effect of calmodulin is observed (Km(Ca) ? 3–4 · 10-8 M). (Ca2+ + Mg2+)-ATPase activity in calmodulin activated membranes and at saturating ATP levels, is sharply inhibited by addition of calcium in the range 50–2000 μM. (4) A systematic study of the effects of the nucleotide species MgATP, CaATP and free ATP on (Ca2+ + Mg2+)-ATPase activity in calmodulin-activated membranes reveals: (a) In the 1–10 μmolar concentration range MgATP, CaATP and free ATP appear to sustain (Ca2+ + Mg2+)-ATPase activity equally effectively. (b) In the range 100–2000 μM, MgATP accelerates ATP hydrolysis (Km(MgATP) ? 360 μM), and CaATP is an inhibitor (Ki(CaATP) ? 165 μM), probably competing with MgATP fo the regulatory site. (5) The results suggest that calmodulin binding alters the conformational state of the Ca2+- pump active site, producing a high (Ca2+ + Mg2+)-ATPase activity, high Ca2+ affinity and regulation of activity by MgATP.  相似文献   

13.
The enzymes of the glyoxylate cycle, isocitrate lyase (EC.4.1.3.1) and malate synthase (EC.4.1.3.2), were measured in cell-free extracts from the cyanobacterium Anacystis nidulans Drouet during photoautotrophic growth in medium aerated with ordinary air (0.03% CO2). Isocitrate lyase had an average specific activity of 112 nmoles·min?1·mg protein?1 whereas malate synthase had an average specific activity of 12.5 nmoles·min?1·mg protein?1. Unpurified isocitrate lyase showed classical Michaelis kinetics with a Km of 8 mM. Isocitrate lyase activity was strongly inhibited by numerous cellular metabolites at 10 mM concentration. The previously reported low specific activity for isocitrate lyase may be due to metabolite inhibition caused by growth in high CO2 concentrations. The activities reported for isocitrate lyase and malate synthase suggest the operation of the glyoxylate cycle in Anacystis nidulans under CO2-limiting growth conditions.  相似文献   

14.
Two soluble hexokinases and a particulate hexokinase have been separated and partially purified from spinach leaves. One of the soluble hexokinases showed a high affinity for glucose (Km = 63 μM) which was far greater than that for fructose (Km = 9.1 mM). However, with saturating fructose the activity was twice that with saturating glucose. The particulate hexokinase showed kinetic properties similar to those of this soluble hexokinase. The second soluble hexokinase was distinct in that it was much more active with fructose than with glucose at all concentrations tested, although the Km values for these hexoses (210 μM and 71 μM respectively) were similar. The activity of this hexokinase was stimulated by the monovalent cations K+ and NH4+.  相似文献   

15.
《BBA》1986,849(1):121-130
The binding of 3′-O-(1-naphthoyl)adenosinetriphosphate (1-naphthoyl-ATP), ATP and ADP to TF1 and to the isolated α and β subunits was investigated by measuring changes of intrinsic protein fluorescence and of fluorescence anisotropy of 1-naphthoyl-ATP upon binding. The following results were obtained. (1) The isolated α and β subunits bind 1 mol 1-naphthoyl-ATP with a dissociation constant (KD(1-naphthoyl-ATP)) of 4.6 μM and 1.9 μM, respectively. (2) The KD(ATP) for α and β subunits is 8 μM and 11 μM, respectively. (3) The KD(ADP) for α and β subunits is 38 μM μM and 7 μM, respectively. (4) TF1 binds 2 mol 1-naphthoyl-ATP per mol enzyme with KD = 170 nM. (5) The rate constant for 1-naphthoyl-ATP binding to α and β subunit is more than 5 · 104 M−1s−1. (6) The rate constant for 1-naphthoyl-ATP binding to TF1 is 6.6 · 103 M−1 · s−1 (monophasic reaction); the rate constant for its dissociation in the presence of ATP is biphasic with a fast first phase (kA−1 = 3 · 10−3s−1) and a slower second phase (kA−2 < 0.2 · 10−3s−1). From the appearance of a second peak in the fluorescence emission spectrum of 1-naphthoyl-ATP upon binding it is concluded that the binding sites in TF1 are located in an environment more hydrophobic than the binding sites on isolated α and β subunits. The differences in kinetic and thermodynamic parameters for ligand binding to isolated versus integrated α and β subunits, respectively, are explained by interactions between these subunits in the enzyme complex.  相似文献   

16.
Isocitrate lyase (threo-ds-isocitrate glyoxylate-lyase, EC 4.1.3.1) was purified from cotyledons of Lupinus seedlings. The final preparation showed two bands after polyacrylamide-gel electrophoresis. The optimum pH using phosphate, Tris or imidazole buffer was at pH 7.5; with triethanolamine (TRA) it was at pH 7. The enzyme required Mg2+ for maximal activity, and N-ethylmaleimide (NEM) inactivated the enzyme. Activity was increased by incubation with the reducing agents, glutathione (GSH), acetylcysteine (acetylcys), dithionite (Na2S2O4), thioglycolate (TG) or 1,4-dithioerythritol (DTE). Na2S2O4 and DTE were the most active among the tested substances and DTE prevented much of the inactivation by NEM. The apparent Km value for isocitrate was ca 1 mM in phosphate buffer at pH 6.8 or 7.5 but was substantially lower (0.1–0.2 mM) using Tris, TRA or imidazole buffers. Glyoxylate, oxalate and malonate were competitive inhibitors of the enzyme. Synthase activity of the enzyme (i.e. formation of isocitrate from succinate and glyoxylate) was demonstrated. The Km values for glyoxylate and succinate were 0.05 and 0.2 mM, respectively. The addition of glyoxylate to the culture medium in which Lupinus seeds germinate resulted in a reduced development of isocitrate lyase activity during germination.  相似文献   

17.
A Δ13-15-ketoprostaglandin reductase has been isolated from human placenta and purified 800-fold. The enzyme utilizes NADH as a cofactor but not NADPH. It reduces the 13,14 double bond in 15-ketoprostaglandin E1, E2 and F. The KM apparent for NADH is 54.8 μM and the KM apparent for 15-ketoprostaglanding E2 is 7.0 μM. The partially purified enzyme contains no 15-hydroxyprostaglandin dehydrogenase activity.  相似文献   

18.
The ionic dependence and kinetics of the uptake of l-tyrosine into isolated rat brain synaptosomes has been investigated. l-Tyrosine has been found to enter the synaptosomes through three different transport systems showing distinct ionic requirements and kinetic characteristics. The one with the lowest affinity for tyrosine (Km 0.6 mM) showed a strong Na+ dependence. This system seems to provide the nerve cell with a safety mechanism that ensures the supply of tyrosine even in the presence of high levels of competing amino acids. The second one (Km 50 μM) does not appear to exhibit any strong ionic requirements and features most of the characteristics of the l-system for large neutral amino acids. Finally, the third shows the most interesting ionic dependence. Its activity increases at very low Na+ external concentrations, but this increase is prevented by the removal of divalent cations, Ca2+ and Mg2+. This ionic behaviour, along with the affinity constant of this system (Km 6 μM) (within the range of tyrosine extraneural concentrations), suggests that it is an initial regulatory step in the synthesis of catecholamines.  相似文献   

19.
Mycobacterium tuberculosis requires the enzyme isocitrate lyase (ICL) for growth and virulence in vivo. The demonstration that M. tuberculosis also requires ICL for survival during nutrient starvation and has a role during steady state growth in a glycerol limited chemostat indicates a function for this enzyme which extends beyond fat metabolism. As isocitrate lyase is a potential drug target elucidating the role of this enzyme is of importance; however, the role of isocitrate lyase has never been investigated at the level of in vivo fluxes. Here we show that deletion of one of the two icl genes impairs the replication of Mycobacterium bovis BCG at slow growth rate in a carbon limited chemostat. In order to further understand the role of isocitrate lyase in the central metabolism of mycobacteria the effect of growth rate on the in vivo fluxes was studied for the first time using 13C-metabolic flux analysis (MFA). Tracer experiments were performed with steady state chemostat cultures of BCG or M. tuberculosis supplied with 13C labeled glycerol or sodium bicarbonate. Through measurements of the 13C isotopomer labeling patterns in protein-derived amino acids and enzymatic activity assays we have identified the activity of a novel pathway for pyruvate dissimilation. We named this the GAS pathway because it utilizes the Glyoxylate shunt and Anapleurotic reactions for oxidation of pyruvate, and Succinyl CoA synthetase for the generation of succinyl CoA combined with a very low flux through the succinate – oxaloacetate segment of the tricarboxylic acid cycle. We confirm that M. tuberculosis can fix carbon from CO2 into biomass. As the human host is abundant in CO2 this finding requires further investigation in vivo as CO2 fixation may provide a point of vulnerability that could be targeted with novel drugs. This study also provides a platform for further studies into the metabolism of M. tuberculosis using 13C-MFA.  相似文献   

20.
The largest forms of isocitrate lyase from Caenorhabditis elegans and Ascaris suum of 543,000 and 549,000 daltons, respectively, can be purified from three- to five-fold in excellent yield by pelleting from extracts at 160,000g for 4 hr. Isocitrate lyase in the pellet is much more stable toward proteolysis. Itaconate which both inhibits isocitrate lyase and suppresses the level of this enzyme in bacteria inhibits the partially purified isocitrate lyase from both C. elegans and A. suum. The inhibition is noncompetitive with respect to ds-isocitrate at one itaconate concentration. The Ki values at 30 C, pH 7.7, are 19 and 7.3 μM for the enzyme from C. elegans and A. suum, respectively. Itaconate inhibits the growth of C. elegans in random axenic as well as monoxenic cultures. At a concentration of 10 mM, itaconate is more effective in the inhibition of random axenic cultures than is oxalate, maleate, or succinate. At 60 mM itaconate, reproduction of C. elegans larvae is completely abolished.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号