首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Th17 play a central role in autoimmune inflammatory responses. Th1 are also necessary for autoimmune disease development. The interplay of Th1 signals and how they coordinate with Th17 during inflammatory disease pathogenesis are incompletely understood. In this study, by adding Stat4 deficiency to Stat6/T-bet double knockout, we further dissected the role of Stat4 in Th1 development and colitis induction. We showed that in the absence of the strong Th2 mediator Stat6, neither Stat4 nor T-bet is required for IFN-γ production and Th1 development. However, addition of Stat4 deficiency abolished colitis induced by Stat6/T-bet double-knockout cells, despite Th1 and Th17 responses. The failure of colitis induction by Stat4/Stat6/T-bet triple-knockout cells is largely due to elevated Foxp3(+) regulatory T cell (Treg) development. These results highlight the critical role of Stat4 Th1 signals in autoimmune responses in suppressing Foxp3(+) Treg responses and altering the balance between Th17 and Tregs to favor autoimmune disease.  相似文献   

2.
It is well-recognized that Stat6 plays a critical role in Th2 cell differentiation and the induction of allergic inflammation. We have previously shown that Stat5a is also required for Th2 cell differentiation and allergic airway inflammation. However, it is the relative importance and redundancy of Stat6 and Stat5a in Th2 cell differentiation and allergic airway inflammation are unknown. In this study we addressed these issues by comparing Stat5a-deficient (Stat5a(-/-)) mice, Stat6(-/-) mice, and Stat5a- and Stat6 double-deficient (Stat5a(-/-) Stat6(-/-)) mice on the same genetic background. Th2 cell differentiation was severely decreased in Stat6(-/-)CD4+ T cells, but Stat6-independent Th2 cell differentiation was still significantly observed in Stat6(-/-)CD4+ T cells. However, even in the Th2-polarizing condition (IL-4 plus anti-IFN-gamma mAb), no Th2 cells developed in Stat5a(-/-)Stat6(-/-) CD4+ T cells. Moreover, Ag-induced eosinophil and lymphocyte recruitment in the airways was severely decreased in Stat5a(-/-)Stat6(-/-) mice compared with that in Stat6(-/-) mice. These results indicate that Stat5a plays an indispensable role in Stat6-independent Th2 cell differentiation and subsequent Th2 cell-mediated allergic airway inflammation.  相似文献   

3.
Human autoimmune diseases are characterized by systemic T cell dysfunction, resulting in chronically activated Th1 and Th17 cells that are inadequately suppressed by regulatory T cells (Tregs). IL-6, which is overexpressed in tissue and serum of patients with autoimmune diseases, inhibits human Treg function. We sought to determine the mechanism for the antitolerogenic properties of IL-6 by examining the signaling pathways downstream of IL-6R in primary human T cells. Inhibition of Stat3 signaling in MLCs containing IL-6 restores Treg-mediated suppression, demonstrating that IL-6-mediated loss of Treg suppression requires phosphorylation of Stat3. Cultures in which either effector T cells (Teffs) or Tregs were pretreated with Stat3 inhibitors indicate that phosphorylated (p)Stat3 is required in both T cell populations for IL-6-mediated reversal of Treg function. IL-21, which signals preferentially through pStat3, also reverses Treg suppression, in contrast to IL-27 and IFN-γ, which signal preferentially through Stat1 and do not inhibit Treg function. Interestingly, both Teffs and Tregs respond to IL-6 stimulation through strong Stat3 phosphorylation with minimal MAPK/Erk activation and moderate Stat1 phosphorylation. Finally, Teffs stimulated strongly through the TCR are also resistant to suppression by Tregs and show concurrent Stat3 phosphorylation. In these cultures, inhibition of pStat3 restores functional suppression by Tregs. Taken together, our findings suggest that an early dominance of Stat3 signaling, prior to subsequent T cell activation, is required for the loss of functional Treg suppression and that kinase-specific inhibitors may hold therapeutic promise in the treatment of autoimmune and chronic inflammatory diseases.  相似文献   

4.
In previous studies, we have shown that Th2 cell differentiation is diminished but Th1 cell differentiation is increased in Stat5a-deficient (Stat5a(-/-)) CD4(+) T cells. In the present study, we clarified the molecular mechanisms of Stat5a-mediated Th cell differentiation. We found that enhanced Th1 cell differentiation and the resultant IFN-gamma production played a dominant inhibitory role in the down-regulation of IL-4-induced Th2 cell differentiation of Stat5a(-/-) CD4(+) T cells. We also found that IL-12-induced Stat4 phosphorylation and Th1 cell differentiation were augmented in Stat5a(-/-) CD4(+) T cells. Importantly, the expression of suppressor of cytokine signaling (SOCS)3, a potent inhibitor of IL-12-induced Stat4 activation, was decreased in Stat5a(-/-) CD4(+) T cells. Moreover, a reporter assay showed that a constitutively active form of Stat5a but not Stat6 activated the SOCS3 promoter. Furthermore, chromatin immunoprecipitation assays revealed that Stat5a binds to the SOCS3 promoter in CD4(+) T cells. Finally, the retrovirus-mediated expression of SOCS3 restored the impaired Th cell differentiation of Stat5a(-/-) CD4(+) T cells. These results suggest that Stat5a forces the Th1/Th2 balance toward a Th2-type by preventing IL-12-induced Th1 cell differentiation through the induction of SOCS3.  相似文献   

5.
6.
7.
8.
9.
10.
Stat4 activation is involved in differentiation of type 1 helper (Th1) T cells. Although Stat4 is activated by interleukin (IL)-12 in both human and murine T cells, Stat4 is activated by interferon (IFN)-alpha only in human, but not murine, CD4(+) T cells. This species-specific difference in cytokine activation of Stat4 underlies critical differences in Th1 development in response to cytokines and is important to the interpretation of murine models of immunopathogenesis. Here, we sought to determine the mechanism of Stat4 recruitment and activation by the human IFN-alpha receptor. Analysis of phosphopeptide binding analysis suggests that Stat4 does not interact directly with tyrosine-phosphorylated amino acid residues within the cytoplasmic domains of either of the subunits of the IFN-alpha receptor complex. Expression of murine Stat4 in the Stat1-deficient U3A and the Stat2-deficient U6A cell lines shows that IFN-alpha-induced Stat4 phosphorylation requires the presence of activated Stat2 but not Stat1. Thus, in contrast to the direct recruitment of Stat4 by the IL-12 receptor, Stat4 activation by the human IFN-alpha receptor occurs through indirect recruitment by intermediates involving Stat2.  相似文献   

11.
Stat6-dependent and -independent pathways for IL-4 production   总被引:10,自引:0,他引:10  
Stat6 has been shown to have a crucial role in the IL-4-dependent differentiation of Th2 cells. In this report, we explore whether in vitro Th2 differentiation driven by altered costimulatory signals or Ag dose is Stat6 dependent. We find that blocking B7-1 signaling in vitro promotes the differentiation of IL-4-secreting Th2 cells in wild-type but not Stat6-deficient T cell cultures. Additionally, stimulation with peptide Ag doses that normally result in the production of Th2 cells in vitro fails to do so in cultures of Stat6-deficient cells. We also demonstrate that Stat6 is required for the in vitro differentiation of CD8+ T cells into IL-4-secreting cytotoxic T cell type 2 cells. However, IL-4 expression is not absolutely dependent on Stat6. We demonstrate that populations of T cells that do not require IL-4 for their development, such as NK T cells, are still competent to secrete IL-4 in the absence of Stat6. These results demonstrate that Stat6 is required for the differentiation program leading to the generation of Th2 and cytotoxic T cell type 2 cells but not for IL-4 expression in cells that do not undergo differentiation in response to IL-4.  相似文献   

12.
13.
14.
The outcome of an immune response relies on the competitive capacities acquired through differentiation of CD4(+) T cells into Th1 or Th2 effector cells. Because Stat4 and Stat6 proteins are implicated in the Th1 vs Th2 generation and maintenance, respectively, we compare in this study the kinetics of Stat4(-/-) and Stat6(-/-) CD4(+) T cells during competitive bone marrow reconstitution and lymphopenia-driven proliferation. After bone marrow transplantation, both populations reconstitute the peripheral T cell pools equally well. After transfer into lymphopenic hosts, wild-type and Stat6(-/-) CD4(+) T cells show a proliferation advantage, which is early associated with the expression of an active phospho-Stat4 and the down-regulation of Stat6. Despite these differences, Stat4- and Stat6-deficient T cells reach similar steady state numbers. However, when both Stat4(-/-) and Stat6(-/-) CD4(+) T cells are coinjected into the same hosts, the Stat6(-/-) cells become dominant and out-compete Stat4(-/-) cells. These findings suggest that cell activation, through the Stat4 pathway and the down-regulation of Stat6, confers to pro-Th1 T cells a slight proliferation advantage that in a competitive situation has major late repercussions, because it modifies the final homeostatic equilibrium of the populations and favors the establishment of Th1 CD4(+) T cell dominance.  相似文献   

15.

Aims

Extensive evidence suggests inflammatory components participate in the pathogenic processes of acute coronary syndromes (ACS). In this study, we aimed to elucidate the role and mechanism underlying the imbalance of Th17 and Treg cell peripheral populations in the pathogenesis of ACS.

Methods and Results

Using a flow cytometric analysis, we observed a significantly increased frequency of Th17 cells and a concurrently decreased CD4+CD25+Foxp3+ Treg cells in patients with ACS. To elucidate the mechanism of Th17/Treg imbalance in ACS, 22 inflammatory cytokines were measured using multiplexed immunobead-based assays. Of six elevated cytokines in ACS patients, only IL-6 was positively correlated with a higher Th17 cell level (r = 0.39, P<0.01). Relying on IL-6 stimulating and neutralizing studies, we demonstrated a direct role for IL-6 in sera from ACS patients with an increased frequency of Th17 cells. IL-6 induces the differentiation of Th17 cells from naïve CD4+ T cells through STAT3 activation and RORγt induction. However, we observed that high levels of TGF-β1 inhibited IL-6-dependent Th17 cell differentiation, indicating a complex interplay between the two cytokines in the control of Th17 and Treg cell populations.

Conclusions

Our results demonstrate the role of IL-6-STAT3 signaling in ACS through increased Th17 cell differentiation. These findings indicate that IL-6 neutralizing strategies could present novel therapeutic avenues in the treatment of ACS.  相似文献   

16.
CD4+ T cells differentiate into subsets that promote immunity or minimize damage to the host. T helper 17 cells (Th17) are effector cells that function in inflammatory responses. T regulatory cells (Tregs) maintain tolerance and prevent autoimmunity by secreting immunosuppressive cytokines and expressing check point receptors. While the functions of Th17 and Treg cells are different, both cell fate trajectories require T cell receptor (TCR) and TGF-β receptor (TGF-βR) signals, and Th17 polarization requires an additional IL-6 receptor (IL-6R) signal. Utilizing high-resolution phosphoproteomics, we identified that both synergistic and additive interactions between TCR, TGF-βR, and IL-6R shape kinase signaling networks to differentially regulate key pathways during the early phase of Treg versus Th17 induction. Quantitative biochemical analysis revealed that CD4+ T cells integrate receptor signals via SMAD3, which is a mediator of TGF-βR signaling. Treg induction potentiates the formation of the canonical SMAD3/4 trimer to activate a negative feedback loop through kinases PKA and CSK to suppress TCR signaling, phosphatidylinositol metabolism, and mTOR signaling. IL-6R signaling activates STAT3 to bind SMAD3 and block formation of the SMAD3/4 trimer during the early phase of Th17 induction, which leads to elevated TCR and PI3K signaling. These data provide a biochemical mechanism by which CD4+ T cells integrate TCR, TGF-β, and IL-6 signals via generation of alternate SMAD3 complexes that control the development of early signaling networks to potentiate the choice of Treg versus Th17 cell fate.  相似文献   

17.
The in vivo function of Th cell subsets is largely dependent on the ability of differentiated CD4+ T cells to be recruited to specific sites and secrete restricted sets of cytokines. In this paper we demonstrate that Th1 and Th2 cells secrete discrete patterns of chemokines, small m.w. cytokines that function as chemoattractants in inflammatory reactions. Th2 cells secrete macrophage-derived chemokine and T cell activation gene 3, and acquisition of this pattern of expression is dependent on Stat6. In contrast, Th1 cells secrete lymphotactin and RANTES, though unlike IFN-gamma, expression of these chemokines is independent of Stat4. We further show that supernatants from activated Th2 cells preferentially induce the chemotaxis of Th2 over Th1 cells, corresponding with Stat6-dependent expression of CCR4 and CCR8 in Th2 cells. These data provide the basis for restricted and direct T cell-mediated cellular recruitment to sites of inflammation.  相似文献   

18.
IL-4, primarily produced by T cells, mast cells, and basophiles, is a cytokine which has pleiotropic effects on the immune system. IL-4 induces T cells to differentiate to Th2 cells and activated B lymphocytes to proliferate and to synthesize IgE and IgG1. IL-4 is particularly important for the development and perpetuation of asthma and allergy. Stat6 is the protein activated by signal transduction through the IL-4R, and studies with knockout mice demonstrate that Stat6 is critical for a number of IL-4-mediated functions including Th2 development and production of IgE. In the present study, novel IL-4- and Stat6-regulated genes were discovered by using Stat6(-/-) mice and Affymetrix oligonucleotide arrays. Genes regulated by IL-4 were identified by comparing the gene expression profile of the wild-type T cells induced to polarize to the Th2 direction (CD3/CD28 activation + IL-4) to gene expression profile of the cells induced to proliferate (CD3/CD28 activation alone). Stat6-regulated genes were identified by comparing the cells isolated from the wild-type and Stat6(-/-) mice; in this experiment the cells were induced to differentiate to the Th2 direction (CD3/CD28 activation + IL-4). Our study demonstrates that a number a novel genes are regulated by IL-4 through Stat6-dependent and -independent pathways. Moreover, elucidation of kinetics of gene expression at early stages of cell differentiation reveals several genes regulated rapidly during the process, suggesting their importance for the differentiation process.  相似文献   

19.
20.
IL-4 plays a critical role in the differentiation of TCR-stimulated naive CD4 T cells to the Th2 phenotype. In response to IL-4, the IL-4R activates a set of phosphotyrosine binding domain-containing proteins, including insulin receptor substrate 1/2, Shc, and IL-4R interacting protein, as well as Stat6. Stat6 has been shown to be required for Th2 differentiation. To determine the roles of the phosphotyrosine binding adaptors in Th2 differentiation, we prepared a retrovirus containing a mutant of the human (h)IL-4R alpha-chain, Y497F, which is unable to recruit these adaptors. The mutant hIL-4Ralpha, as well as the wild-type (WT) hIL-4Ralpha, was introduced into naive CD4 T cells. Upon hIL-4 stimulation, Y497F worked as well as the WT hIL-4Ralpha in driving Th2 differentiation, as measured by Gata3 up-regulation and IL-4 production. Furthermore, IL-4-driven cell expansion was also normal in the cells infected with Y497F, although cells infected with Y497F were not capable of phosphorylating insulin receptor substrate 2. These results suggest that the signal pathway mediated by Y497 is dispensable for both IL-4-driven Th2 differentiation and cell expansion. Both WT and Y497F hIL-4Ralpha lose the ability to drive Th2 differentiation and cell expansion in Stat6-knockout CD4 T cells. A constitutively activated form of Stat6 introduced into CD4 T cells resulted in both Th2 differentiation and enhanced cell expansion. Thus, activated Stat6 is necessary and sufficient to mediate both IL-4-driven Th2 differentiation and cell expansion in CD4 T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号