首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Post-mating reproductive isolating mechanisms may be among the earliest reproductive barriers to emerge among incipient species. Trinidadian guppy, Poecilia reticulata, populations in the Caroni and Oropouche drainages in Northern Trinidad exhibit marked genetic divergence and provide an ideal system in which to search for these barriers. We inseminated virgin females with equal amounts of sperm from two males, a 'native' male from the female's own population and a 'foreign' male from the other drainage. Artificial insemination ensured that mating order and mate choice did not affect the outcome. Paternities were assigned to the resulting broods using microsatellite markers. As predicted, sperm from native males had precedence over foreign sperm. Moreover, this effect was symmetrical for both drainages. In contrast, we detected no native sperm precedence in controls, in which females received sperm from the same and another population within the same drainage. Our results show that gametic isolation can arise between geographically proximate, though genetically divergent, populations of a single species and highlight the potential role of this process in speciation.  相似文献   

2.
3.
Large brains are thought to result from selection for cognitive benefits, but how enhanced cognition leads to increased fitness remains poorly understood. One explanation is that increased cognitive ability results in improved monitoring and assessment of predator threats. Here, we use male and female guppies (Poecilia reticulata), artificially selected for large and small brain size, to provide an experimental evaluation of this hypothesis. We examined their behavioural response as singletons, pairs or shoals of four towards a model predator. Large-brained females, but not males, spent less time performing predator inspections, an inherently risky behaviour. Video analysis revealed that large-brained females were further away from the model predator when in pairs but that they habituated quickly towards the model when in shoals of four. Males stayed further away from the predator model than females but again we found no brain size effect in males. We conclude that differences in brain size affect the female predator response. Large-brained females might be able to assess risk better or need less sensory information to reach an accurate conclusion. Our results provide experimental support for the general idea that predation pressure is likely to be important for the evolution of brain size in prey species.  相似文献   

4.
Guppies (Poecilia reticulata) are widely used as a model species in mate choice studies. Although native to South America, guppies have been introduced to natural water bodies in disparate regions of the globe. Here, for the first time, we examine guppies from one such introduced population in Japan where males have evolved a predominantly blue color pattern. Previous studies of wild-type guppies have shown blue to play a relatively minor role in the mate choice decisions of females compared to other traits, such as orange, and the importance of blue is not universally supported by all studies. The Japanese population therefore presents an ideal opportunity to re-examine the potential significance of blue as a mate choice cue in guppies. Mate choice experiments, in which female Japan blue guppies were given a choice between pairs of males that differed in their area of blue coloration but were matched for other traits, revealed that females prefer males with proportionately larger amounts of blue in their color patterns. We discuss possible factors, including sexual and ecological selection, which may have led to the evolution of unusually large areas of blue at the expense of other colors in Japan blue guppies. However, further studies are needed to distinguish between these scenarios.  相似文献   

5.
6.
Rarely are the evolutionary origins of mate preferences known, but, recently, the preference of female guppies (Poecilia reticulata) for males with carotenoid-based sexual coloration has been linked to a sensory bias that may have originally evolved for detecting carotenoid-rich fruits. If carotenoids enhance the immune systems of these fishes, as has been suggested for other species, this could explain the origin of the attraction to orange fruits as well as the maintenance of the female preference for orange males. We used the classic immunological technique of tissue grafting to assay a component of the immune response of guppies raised on two different dietary levels of carotenoids. Individual scales were transplanted between pairs of unrelated fishes, creating reciprocal allografts. Transplanted scales were scored on a six-point rejection scale every day for 10 days. Five days later, the same pairs of fishes received a second set of allografts and were scored again. Compared with low-carotenoid-diet males, high-carotenoid-diet males mounted a significantly stronger rejection response to the second allograft but not to the first allograft. High-carotenoid-diet females, however, showed no improvement in graft rejection compared with low-carotenoid-diet females. To our knowledge, this is the first experimental evidence for sex-specific effects of carotenoid consumption on the immune system of a species with carotenoid-based sexual coloration. These results are consistent with the hypothesis that the mate preference for carotenoid coloration is maintained by the benefits to females of choosing healthy mates, but they cast doubt on the idea that the benefits of carotenoid consumption, per se, could account for the origin of the preference. The sex-specificity of carotenoid effects on allograft rejection in guppies provides indirect support for the general hypothesis that males pay an immunological cost for sexual ornamentation.  相似文献   

7.
A three‐dimensional analysis of startle behaviours of guppies Poecilia reticulata, in dyads or alone, from two populations that show distinct differences in shoaling behaviour was performed. During the first few seconds after a startling stimulus, changes in behaviour, which could be critical if an individual is to survive a predatory attack, and the interactions between pairs of P. reticulata were examined. The enhanced social interactions immediately after the stimulus, as a proxy for shoaling behaviour, and their dissipation were quantified. Social (individuals tested in dyads) v. asocial (tested alone) responses to the startling stimulus were also compared. The three‐dimensional reconstruction, from a two‐camera, high‐frame‐rate tracking system allowed for the tracking of the individuals' speed and speed recovery and, for P. reticulata in dyads, interindividual distance and orientation. For the dyads from the high‐predation population, the closer the individuals were to each other, the more likely they were to be parallel, but no correlation was found for the low‐predation P. reticulata. The startle response of P. reticulata comprised the following sequence: freezing, darting and skittering and recovery to pre‐stimulus swimming behaviour. Upon repeated encounters with the stimulus, a reduced shoaling and startle response was observed, although the rate of reduction was faster in P. reticulata from the high‐predation population than those from the low‐predation population. The results are discussed in light of what is known about the anti‐predator behaviour of this species.  相似文献   

8.
Predators are widely assumed to create selection that shapes the evolution of prey escape abilities. However, this assumption is difficult to test directly due to the challenge of recording both predation and its evolutionary consequences in the wild. We examined these events by studying natural and experimental populations of Trinidadian guppies, Poecilia reticulata, which occur in distinct high-predation and low-predation environments within streams. Importantly, in the last two decades several populations of guppies have been experimentally introduced from one type of predatory environment into the other, allowing measurements of the consequences of change. We used this system to test two hypotheses: First, that changes in predatory environments create phenotypic selection favoring changes in escape ability of guppies, and second, that this selection can result in rapid evolution. For the first test we compared escape ability of wild caught guppies from high- versus low-predation environments by measuring survival rates during staged encounters with a major predator, the pike cichlid Crenicichla alta. We used guppies from three streams, comparing two within-stream pairs of natural populations and three within-stream pairs of an introduced population versus its natural source population. In every comparison, guppies from the high-predation population showed higher survival. These multiple, parallel divergences in guppy survival phenotype suggest that predatory environment does create selection of escape ability. We tested our second hypothesis by rearing guppies in common garden conditions in the laboratory, then repeating the earlier experiments using the F2 generation. As before, each comparison resulted in higher survival of guppies descended from the high-predation populations, demonstrating that population differences in escape ability have a genetic basis. These results also show that escape ability can evolve very rapidly in nature, that is, within 26-36 generations in the introduced populations. Interestingly, we found rapid evolutionary loss of escape ability in populations introduced into low-predation environments, suggesting that steep fitness trade-offs may influence the evolution of escape traits.  相似文献   

9.
10.
Sexual selection is thought to be opposed by natural selection such that ornamental traits express a balance between these two antagonistic influences. Phenotypic variation among populations may indicate local shifts in this balance, or that different stable ‘solutions’ are possible, but testing these alternatives presents a major challenge. In the guppy (Poecilia reticulata), a small freshwater fish with male-limited ornamental coloration, these issues can be addressed by transplanting fish among sites of varying predation pressure, thus effectively manipulating the strength and nature of natural selection. Here, we contrast the evolutionary outcome of two such introductions conducted in the Trinidadian El Cedro and Aripo Rivers. We use sophisticated colour appraisal methods that account for full spectrum colour variation and which incorporate the very latest visual sensitivity data for guppies and their predators. Our data indicate that ornamentation evolved along different trajectories: whereas Aripo males evolved more numerous and/or larger orange, black and iridescent markings, El Cedro males only evolved more extensive and brighter iridescence. Examination of the El Cedro experiment also revealed little or no ornamental evolution at the control site over 29 years, which contrasts markedly with the rapid (approx. 2–3 years) changes reported for introduction populations. Finally, whole colour-pattern analysis suggested that the greatest visual difference between El Cedro introduction and control fish would be perceived by the two most salient viewers: guppies and the putatively dangerous predator Crenicichla alta. We discuss whether and how these evolutionary trajectories may result from founder effects, population-specific mate preferences and/or sensory drive.  相似文献   

11.
Populations of the guppy, Poecilia reficulata , in N. Trinidad exhibit marked population differentiation in allozyme frequencies. Here we investigate six further populations electrophoretically at 25 enzyme-coding loci to examine patterns in geographical structuring, genotypic distributions and genetic diversity. With one exception, possibly related to an experimental introduction, populations divided broadly (dendrogram of Nei's mean genetic identity, Ī) in accordance with proposed ancestral colonization. Most populations were in Hardy Weinberg equilibrium, though some significant deficits in heterozygotes were detected. Incorporating information from published data, markedly hjgher levels of genetic diversity (mean observed heterozygosity, o) were recorded in lowland [o= 0.0382 ± k0406 ( s.e .), n = 9] compared with upstream populations [o= 0.0112 ± 00034 (S.E.), n = 9]. Patterns are discussed in relation to historical and present-day evolutionary forces.  相似文献   

12.
The study of post-reproductive lifespan has been of interest primarily with regard to the extended post-menopausal lifespan seen in humans. This unusual feature of human demography has been hypothesized to have evolved because of the “grandmother” effect, or the contributions that post-reproductive females make to the fitness of their children and grandchildren. While some correlative analyses of human populations support this hypothesis, few formal, experimental studies have addressed the evolution of post-reproductive lifespan. As part of an ongoing study of life history evolution in guppies, we compared lifespans of individual guppies derived from populations that differ in their extrinsic mortality rates. Some of these populations co-occur with predators that increase mortality rate, whereas other nearby populations above barrier waterfalls are relatively free from predation. Theory predicts that such differences in extrinsic mortality will select for differences in the age at maturity, allocation of resources to reproduction, and patterns of senescence, including reproductive declines. As part of our evaluation of these predictions, we quantified differences among populations in post-reproductive lifespan. We present here the first formal, comparative study of the evolution of post-reproductive lifespan as a component of the evolution of the entire life history.

Guppies that evolved with predators and that experienced high extrinsic mortality mature at an earlier age but also have longer lifespans. We divided the lifespan into three non-overlapping components: birth to age at first reproduction, age at first reproduction to age at last reproduction (reproductive lifespan), and age at last reproduction to age at death (post-reproductive lifespan). Guppies from high-predation environments live longer because they have a longer reproductive lifespan, which is the component of the life history that can make a direct contribution to individual fitness. We found no differences among populations in post-reproductive lifespan, which is as predicted since there can be no contribution of this segment of the life history to an individual's fitness.

Prior work on the evolution of post-reproductive lifespan has been dominated by speculation and correlative analyses. We show here that this component of the life history is accessible to formal study as part of experiments that quantify the different segments of an individual's life history. Populations of guppies subject to different mortality pressures from predation evolved differences in total lifespan, but not in post-reproductive lifespan. Rather than showing the direct effects of selection characterizing other life-history traits, post-reproductive lifespan in these fish appears to be a random add-on at the end of the life history. These findings support the hypothesis that differences in lifespan evolving in response to selection are confined to the reproductive lifespan, or those segments of the life history that make a direct contribution to fitness. We also show, for the first time, that fish can have reproductive senescence and extended post-reproductive lifespans despite the general observation that they are capable of producing new primary oocytes throughout their lives.

  相似文献   

13.
Gyrodactylids are ubiquitous fish parasites and yet, with the notable exception of Gyrodactylus salaris, few studies have reported the effect of these parasites on host survival in natural populations. Here, we assess the impact of the parasite load of gyrodactylids (G. turnbulli and G. bullatarudis) on the survival and migration of guppies (Poecilia reticulata) in their natural habitat of the Aripo River in Trinidad. The recapture rate of males declined by 19% with every additional parasite, a remarkably high figure given that the parasite load in this study ranged from zero to 20 worms. In addition, with an increased number of parasites, males were more prone to be recovered downstream. In contrast, no effect of parasitism was observed in females. The mean parasite load sharply declined after a series of flushing events during heavy seasonal downpours. The parasite load varied significantly between fish depending on their location in the river, and the size of the fish explained variation in parasite load between individuals. The present study indicates that tropical gyrodactylid parasites can play an important role in the ecology of natural fish populations, causing intense bouts of natural selection in guppies during heavy rains in the wet season.  相似文献   

14.
15.
Convergent evolution represents one of the best lines of evidence for adaptation, but few cases of phenotypic convergence are understood at the genetic level. Guppies inhabiting the Northern Mountain Range of Trinidad provide a classic example of phenotypic convergent evolution, where adaptation to low or high predation environments has been found for a variety of traits. A major advantage of this system is the possibility of long‐term experimental studies in nature, including transplantation from high to low predation sites. We used genome scans of guppies from three natural high and low predation populations and from two experimentally established populations and their sources to examine whether phenotypic convergent evolution leaves footprints at the genome level. We used population‐genetic modelling approaches to reconstruct the demographic history and migration among sampled populations. Naturally colonized low predation populations had signatures of increased effective population size since colonization, while introduction populations had signatures of decreased effective population size. Only a small number of regions across the genome had signatures of selection in all natural populations. However, the two experimental populations shared many genomic regions under apparent selection, more than expected by chance. This overlap coupled with a population decrease since introduction provides evidence for convergent selection occurring in the two introduced populations. The lack of genetic convergence in the natural populations suggests that convergent evolution is lacking in these populations or that the effects of selection become difficult to detect after a long‐time period.  相似文献   

16.
Understanding how animal personality (consistent between‐individual behavioural differences) arises has become a central topic in behavioural sciences. This endeavour is complicated by the fact that not only the mean behaviour of individuals (behavioural type) but also the strength of their reaction to environmental change (behavioural plasticity) varies consistently. Personality and cognitive abilities are linked, and we suggest that behavioural plasticity could also be explained by differences in brain size (a proxy for cognitive abilities), since accurate decisions are likely essential to make behavioural plasticity beneficial. We test this idea in guppies (Poecilia reticulata), artificially selected for large and small brain size, which show clear cognitive differences between selection lines. To test whether those lines differed in behavioural plasticity, we reared them in groups in structurally enriched environments and then placed adults individually into empty tanks, where we presented them daily with visual predator cues and monitored their behaviour for 20 days with video‐aided motion tracking. We found that individuals differed consistently in activity and risk‐taking, as well as in behavioural plasticity. In activity, only the large‐brained lines demonstrated habituation (increased activity) to the new environment, whereas in risk‐taking, we found sensitization (decreased risk‐taking) in both brain size lines. We conclude that brain size, potentially via increasing cognitive abilities, may increase behavioural plasticity, which in turn can improve habituation to novel environments. However, the effects seem to be behaviour‐specific. Our results suggest that brain size likely explains some of the variation in behavioural plasticity found at the intraspecific level.  相似文献   

17.
J.-G. J. Godin 《Oecologia》1995,103(2):224-229
In the guppy (Poecilia reticulata), males have two alternative mating tactics. Individual males may either display to a receptive female prior to attempting to copulate with her or attempt to quickly sneakcopulate with a female without first displaying to her or without a prior receptive response from her. In this study, I experimentally investigated the effects of simulated local increases in the risk of predation (in the form of a cichlid fish predator model in situ) on the mating tactics used by free-ranging male guppies in two typical macrohabitats (riffle and pool) of a Trinidadian river. Focal male guppies displayed to females significantly less often on average, and conversely attempted sneak copulations more often, in the presence of the predator model than in its absence; this pattern was similar for both habitats. These fish therefore performed a lower proportion of sigmoid displays and increased their sneaky mating attempts when the apparent risk of predation had increased locally. This predator-mediated response is consistent with a trade-off between mating success and risk of mortality due to predation. The results are the first to confirm risk-sensitive mating behaviour in free-ranging male guppies within a population, and demonstrate the potential importance of predators in influencing the relative use of alternative mating tactics in this species on a microgeographical scale in the wild.  相似文献   

18.
Despite the important effects of diet and parasite infectionon male reproductive behavior, few studies have simultaneouslyaddressed their influence on intrasexual selection (male–malecompetition). We examined the synergistic effects of 2 naturallyvarying environmental factors, lifetime food intake and infection,with the monogenean parasite Gyrodactylus turnbulli on the matingtactics and foraging behavior of male guppies (Poecilia reticulata).We allowed fish to interact directly with each other duringobservations and found that unparasitized males won more intermalecontests, courted females more frequently, and received positiveresponses to courtship displays more frequently than males thathad been infected. Infected males devoted more time to foragingand less time to courtship and competition than uninfected males,suggesting that they were energetically limited and could notincrease reproductive effort despite their reduced expectedlifespan. This interpretation was supported by the observationthat greater food intake ameliorated the negative effects ofparasite infection on courtship effort. Our results have bearingon how natural variation in food availability and parasite prevalenceinfluence geographic variation in reproductive behavior.  相似文献   

19.
Poeciliid fish, freshwater fish with internal fertilization, are known for the diversity of structures on the male intromittent organ, the gonopodium. Prominent among these, in some species, is a pair of claws at its tip. We conducted a manipulative study of these claws in the guppy, Poecilia reticulata, to determine if these aid in transferring sperm to resistant females. We compared the sperm transfer rates of clawed versus surgically declawed males attempting to mate with either receptive or unreceptive (i.e. resistant) females. Our analyses demonstrate that the gonopodial claws function to increase sperm transfer to unreceptive females during uncooperative matings but not during receptive matings. Up to threefold more sperm were transferred to unreceptive females by clawed than declawed males. These data suggest that the claw is a sexually antagonistic trait, functioning to aid in transferring sperm to resistant females, and implicate sexual conflict as a selective force in the diversification of the gonopodium in the Poeciliidae.  相似文献   

20.
Male guppies (Poecilia reticulata) exhibit extreme phenotypic and genetic variability for several traits that are important to male fitness, and several lines of evidence suggest that resource level affects phenotypic expression of these traits in nature. We tested the hypothesis that genetic variation for male secondary sex traits could be maintained by genotype-specific effects of variable resource levels (genotype-environment interaction). To do this, we measured genetic variation and covariation under two environmental conditions--relatively low and relatively high food availability. We found high levels of genetic variation for most traits, but we only found a significant G x E interaction across food levels for one trait (body size) for one population. The across-environment correlations for size were large and positive, indicating that the reaction norms for size did not cross. We also found that male colour pattern elements had nearly an order of magnitude more genetic variation than did male size. Heritability estimates indicated that Y-linked genes are responsible for some of the genetic variation in male size and colour traits. We discuss implications of these results for theories of the maintenance of genetic variation in male secondary sexual traits in guppies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号