首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Dispersal mechanism, species height, sexual system, and wood density are potential drivers of the spatial distribution pattern of tropical tree populations. These traits are usually conserved among closely related species, thus populations of these species should have more similar spatial distribution patterns than populations of phylogenetically distant species. Additionally, variation in the abiotic and biotic environment might result in distinct spatial distribution patterns of local populations of the same species. We employed variation partitioning to determine the degree to which traits, shared evolutionary history, site characteristics, and their joint effects govern the degree of overdispersion or aggregation of tree populations at different spatial scales within fourteen 1‐ha plots of the Atlantic Rainforest in southeastern Brazil. We quantified the degree of overdispersion or aggregation with a new standardized index err(r) based on standardized effect sizes of the pair correlation function. Variation in err(r) was mostly explained by phylogenetic relationships among species (70–95%, depending on spatial scale), indicating that traits not included in our analysis are important drivers of the spatial distribution pattern. Site characteristics explained a smaller part of the variation, indicating context‐dependence. Finally, the traits studied here provided the smallest explanation of the variation, suggesting a minor role of seed dispersal. Residual variation in err(r) ranged from 5–29%, indicating that stochasticity and/or variables not included in the models (e.g. direct measures of post‐dispersal processes) also influence the spatial distribution pattern of the populations. Our results suggest that many ecological processes act in concert at the study site and that their importance changes with spatial scale. Additionally, the relative importance of these processes differs from that previously described for other tropical forests. Determining why a given ecological process is more important in some tropical tree communities than in others are promising venues for further research.  相似文献   

2.
王志韬  任珩  辛存林 《生态学报》2023,43(10):4121-4129
植物空间分布格局是物种自身生物学特性与环境因素共同作用的结果,非生殖株丛空间分布格局能够揭示物种无性繁殖与种群扩张过程对异质生境的生态学适应机制。利用基于完全随机、泊松聚块和嵌套双聚块模型的点格局方法和群落学调查,分析了沙鞭(Psammochloa villosa)种群非生殖株丛空间分布格局,探讨了空间格局对降水梯度的响应和适应过程。结果表明:(1)聚集分布是沙鞭种群非生殖株丛的主要类型。在89 mm/a、107.8 mm/a、117.4 mm/a、186 mm/a、191.1 mm/a、363 mm/a降水梯度上聚集尺度分别为3—126 cm、9—200 cm、9—129 cm、6—77 cm、2—95 cm、2—96 cm;(2)基于完全随机模型的空间分布格局对降水的响应规律显著,整体表现为随干旱程度加剧,沙鞭种群非生殖株丛聚集尺度从2—96 cm下降至6—77 cm;(3)在107.8 mm/a、117.4 mm/a、191.1 mm/a、363 mm/a降水梯度上,基于泊松聚块模型的空间分布格局分别在15—19 cm、2—6 cm、2—4 cm、9—25 cm尺度正向偏离泊松聚...  相似文献   

3.
海南岛霸王岭热带低地雨林树木的空间格局   总被引:1,自引:1,他引:1       下载免费PDF全文
树木空间格局及其形成过程是物种共存及生物多样性维持机制研究的一个重要方面。该文以海南岛两个1 hm 2的典型热带低地雨林老龄林森林动态样地为基础, 通过4个点格局模型(均质Poisson过程、异质Poisson过程、均质Thomas过程和异质Thomas过程)模拟扩散限制和生境异质性作用对树木空间分布格局的影响, 并分析不同空间尺度下(< 2 m, 2-5 m, 5-10 m, 10-15 m, 15-20 m和20-25 m)不同作用的相对重要性。结果表明: 热带低地雨林的所有树木总体上呈现聚集分布的空间格局, 随着尺度的增大, 聚集强度逐渐减小。树种在模拟空间分布格局最优模型中的比例由高到低分别是: 均质Thomas过程, 均质Poisson过程、异质Thomas过程和异质Poisson过程。扩散限制作用是形成热带低地雨林树木空间分布格局最重要的生态过程, 其次是完全随机作用以及生境异质性和扩散限制的联合作用, 而生境异质性的作用最小。不同空间尺度上模拟各树种空间分布格局的最优模型比例差异显著, 扩散限制作用能够在多数空间尺度上模拟多个树种的空间分布格局, 其次为随机作用; 生境异质性和扩散限制的联合作用主要在小尺度(0-5 m)影响树种分布, 而生境异质性在较大尺度(15-25 m)上影响树种的空间分布格局。  相似文献   

4.
建群种是植物群落优势层中的主要物种,对群落环境有显著控制作用。空间格局是植物种群的基本特征之一,探讨建群种的空间格局是理解生物与生境之间关系和认识群落生态过程的有效途径。空间格局特征包括种群空间关联性及其空间分布型。利用无人机技术,获取昆明海口林场半湿润常绿阔叶林和落叶栎类林的多光谱遥感影像,采用ArcGIS Pro软件进行遥感影像分类并提取滇青冈(Cyclobalanopsis glaucoides)、光叶石栎(Lithocarpus mairei)、滇石栎(L.dealbatus)、栓皮栎(Quercus variabilis)、槲栎(Q.aliena)植株树冠中心点空间坐标。在Programita Febrero 2014软件中进点格局分析。结果表明:各物种10m以下呈均匀分布或随机,随尺度增加,渐渐表现为聚集分布。光叶石栎种群和滇石栎种群空间关联性表现为负相关。  相似文献   

5.
Rates of tree growth in tropical forests reflect variation in life history strategies, contribute to the determination of species' distributional limits, set limits to timber harvesting and control the carbon balance of the stands. Here, we review the resources that limit tree growth at different temporal and spatial scales, and the different growth rates and responses of functional groups defined on the basis of regeneration strategy, maximum size, and species' associations with particular edaphic and climatic conditions.Variation in soil water availability determines intra- and inter-annual patterns of growth within seasonal forests, whereas irradiance may have a more important role in aseasonal forests. Nutrient supply limits growth rates in montane forests and may determine spatial variation in growth of individual species in lowland forests. However, its role in determining spatial variation in stand-level growth rates is unclear. In terms of growth rate, we propose a functional classification of tropical tree species which contrasts inherently fast-growing, responsive species (pioneer, large-statured species), from slow-growing species that are less responsive to increasing resource availability (shade-bearers, small-statured species). In a semi-deciduous forest in Ghana, pioneers associated with high-rainfall forests with less fertile soils, had significantly lower growth rates than pioneers that are more abundant in low-rainfall forests with more fertile soils. These results match patterns found in seedling trials and suggest for pioneers that species' associations with particular environmental conditions are useful indicators of maximum growth rate.The effects of variation in resource availability and of inherent differences between species on stand-level patterns of growth will not be independent if the functional group composition of tropical forests varies along resource gradients. We find that there is increasing evidence of such spatial shifts at both small and large scales in tropical forests. Quantifying these gradients is important for understanding spatial patterns in forest growth rates.  相似文献   

6.
Spatial ecological patterns reflect the underlying processes that shape the structure of species and communities. Mechanisms like intra- and inter-specific competition, dispersal and host-pathogen interactions can act over a wide range of scales. Yet, the inference of such processes from patterns is a challenging task. Here we call attention to a quite unexpected phenomenon in the extensively studied tropical forest at the Barro-Colorado Island (BCI): the spatial deployment of (almost) all tree species is statistically equivalent, once distances are normalized by 0, the typical distance between neighboring conspecific trees. Correlation function, cluster statistics and nearest-neighbor distance distribution become species-independent after this rescaling. Global observables (species frequencies) and local spatial structure appear to be interrelated. This "glocality" suggests a radical interpretation of recent experiments that show a correlation between species'' abundance and the negative feedback among conspecifics. For the forest to be glocal, the negative feedback must govern spatial patterns over all scales.  相似文献   

7.
Spatial patterns of adult plants are a consequence of several ecological processes related to seed dispersal and recruitment. Dispersal limitation, mediated by dispersal syndrome, is considered a key factor in the formation of adult plant spatial patterns. Although this initial pattern determined by dispersal has been thoroughly studied, the subsequently modification by the effect of additional ecological factors, such as habitat heterogeneity is less understood. We explored the relative importance of dispersal syndrome and spatial heterogeneity on the realization of spatial patterns of adult trees in an Ecuadorian tropical dry forest. The spatial distribution of 28 species was modeled with four different spatial point processes each: homogeneous Poisson (HPP), inhomogeneous Poisson (IPP), homogeneous Poisson cluster (HPCP), and inhomogeneous Poisson cluster process (IPCP). These models allowed us to discern between effects of random processes, habitat heterogeneity, limited dispersal, and joint effects of habitat heterogeneity and limited dispersal. We employed Akaike's information criterion (AIC) to select the model which best fit the spatial pattern of each species. The best model of each species was used to analyze differences in cluster size and degree of aggregation, between dispersal syndromes. Seventy‐five percent of the species showed inhomogeneous patterns. IPCP yielded the best fit for the spatial distribution of 50% of species in the studied forest and was the prevalent model for the three dispersal syndromes. Thus, the effect of spatial heterogeneity was prevalent in the distribution of most species in this dry tropical forest. Only 21% of species had spatial patterns compatible with random mechanisms associated to limited dispersal around parent sources. Clearly, ignoring habitat heterogeneity could bias the analysis of relationships between dispersal syndrome and species patterns.  相似文献   

8.
Studying the spatial pattern and interspecific associations of plant species may provide valuable insights into processes and mechanisms that maintain species coexistence. Point pattern analysis was used to analyze the spatial distribution patterns of twenty dominant tree species, their interspecific spatial associations and changes across life stages in a 20-ha permanent plot of seasonal tropical rainforest in Xishuangbanna, China, to test mechanisms maintaining species coexistence. Torus-translation tests were used to quantify positive or negative associations of the species to topographic habitats. The results showed: (1) fourteen of the twenty tree species were negatively (or positively) associated with one or two of the topographic variables, which evidences that the niche contributes to the spatial pattern of these species. (2) Most saplings of the study species showed a significantly clumped distribution at small scales (0–10 m) which was lost at larger scales (10–30 m). (3) The degree of spatial clumping deceases from saplings, to poles, to adults indicates that density-dependent mortality of the offspring is ubiquitous in species. (4) It is notable that a high number of positive small-scale interactions were found among the twenty species. For saplings, 42.6% of all combinations of species pairs showed positive associations at neighborhood scales up to five meters, but only 38.4% were negative. For poles and adults, positive associations at these distances still made up 45.5% and 29.5%, respectively. In conclusion, there is considerable evidence for the presence of positive interactions among the tree species, which suggests that species herd protection may occur in our plot. In addition, niche assembly and limited dispersal (likely) contribute to the spatial patterns of tree species in the tropical seasonal rain forest in Xishuangbanna, China.  相似文献   

9.
We used point pattern analysis to examine the spatial distribution of 46 common tree species (diameter at breast height >10 cm) in a fully mapped 500x500-m tropical forest plot in Sinharaja, Sri Lanka. We aimed to disentangle the effect of species interactions (second-order effects) and environment (first-order effects) on the species' spatial distributions. To characterize first-order associations (segregation, overlap), we developed a classification scheme based on Ripley's K and nearest-neighbor statistics. We subsequently used heterogeneous Poisson null models, accounting for possible environmental heterogeneity, to reveal significant uni- and bivariate second-order interactions (regularity, aggregation and repulsion, attraction). First-order effects were strong; overall, 53% of all species pairs occupied largely disjoint areas (segregation), 40% showed partial overlap, and 6% overlapped. Only 5% of all species pairs showed significant second-order effects, but about half of the species showed significant intraspecific effects. Significant plant-plant interactions occurred mostly within 2-4 m and disappeared within 15-20 m of the focal plant. While lack of significant species interactions suggests support for the unified neutral theory, species' observed spatial segregation does not support the assumptions of the neutral theory. The strong observed tendency of species to segregate may have supplementary effects on other processes promoting species coexistence.  相似文献   

10.
于江西九连山国家自然保护区设置4 hm2亚热带常绿阔叶林固定监测样地,用样方法对亚热带常绿阔叶林进行调查分析。应用点格局方法分析生境异质性是否影响树木分布并分析优势种红钩栲(Castanopsis lamontii)、米槠(Castanopsis carlesii)、罗浮柿(Diospyros morrisiana)和细枝柃(Eurya loquaiana)分布格局,对比存在生境异质性和排除生境异质性两种情况下优势树种不同生长阶段(幼树、小树、成年树)的空间分布格局以及不同生长阶段之间的空间关联性,探讨生境异质性之外的其它种群分布影响因子。结果表明:1)生境异质性效应显著影响九连山树木分布,4个优势树种在大尺度上存在明显的生境偏好;2)用完全随机零模型不排除生境异质性时,4个优势种总体及其不同生长阶段在0—30 m所有尺度上主要呈现聚集分布;3)用异质性随机零模型排除生境异质性后,4个优势种及其不同生长阶段的聚集程度显著下降,只在小尺度上(0—5 m)呈现聚集分布;4)4个优势种的幼树与小树均表现显著的正相关。红钩栲的成年树与幼树及成年树与小树总体表现不相关。米槠的成年树与幼树总体以无相关为主;成年树与小树之间总体呈正相关。小乔木罗浮柿的成年树与幼树之间在小尺度上(0—5 m)表现负相关或无相关,在较大尺度范围上总体表现正相关关系;小树与成年树在研究尺度上表现出正相关。灌木细枝柃的成年树与幼树,成年树与小树及小树与幼树之间在研究尺度范围内均呈现正相关关系;5)研究发现九连山优势乔木物种通过密度制约和Janzen-Connell效应释放空间,为其他物种共存提供条件,而优势灌木物种细枝柃没有表现出这两个效应。  相似文献   

11.
以山西省翅果油树自然保护区翅果油树(Elaeagnus mollis)种群为研究对象,采用点格局分析中的O-ring统计方法,利用Programita软件对翅果油树群落中主要物种翅果油树、荆条(Vitex negundo var.heterophylla)和黄刺玫(Rosa xanthina)种群的分布格局及其相互关系进行了分析。结果表明:(1)各种群在相对小的尺度上聚集分布特征明显,随尺度增加各种群主要表现出随机分布特征;(2)各树种间的空间关联性主要表现在小尺度范围,随尺度加大空间关联性逐渐不明显;(3)翅果油树种群径级I、II和III在较小尺度时存在明显的聚集分布,径级IV、V和VI在所有尺度上均呈现随机分布;(4)翅果油树种群径级I和II与径级IV、V和VI存在正关联,同时径级I与VI,径级II与V在一定尺度上表现出空间负关联,相邻径级在空间分布上相关性不显著。  相似文献   

12.
Disturbances play an important role in forest dynamics across the globe. Researchers have mainly focused on the temporal context of disturbances, but have largely ignored the spatial patterns of tree recruitment they create. Geostatistical tools enable the analysis of spatial patterns and variability in tropical forest disturbance histories. Here, we examine the potential of combining dendroecological analysis and spatial statistics to reconstruct the disturbance history of a seasonal dry evergreen tropical forest plot at the Huai Kha Khaeng Wildlife Sanctuary (HKK), western Thailand. We used tree‐ring‐derived age estimates for 70 individuals of the shade‐intolerant pioneer species Melia azederach (Meliaceae) and tree locations across a 316‐ha study plot to identify the timing and spatial extent of past disturbances. Although the age distribution for Melia suggested that regeneration had been continuous over the past 60 yr, spatial analyses (mark correlation function and kriging) demonstrated the presence of three spatially discrete age cohorts. Two of these cohorts suggested a severe disturbance ~20 yr before present. A third cohort appears to have established ~50 years ago. Using historical records, we conclude that fire disturbance is the most likely disturbance factor affecting HKK. Nevertheless, we do not rule out other disturbance factors. The combined application of tree‐ring analysis and spatial statistics as applied in this study could be readily applied to reconstruct disturbance histories in other tropical regions where tree species with annual growth rings are present.  相似文献   

13.
The relationship between species diversity and sampled area is fundamental to ecology. Traditionally, theories of the species-area relationship have been dominated by random-placement models. Such models were used to formulate the canonical theory of species-area curves and species abundances. In this paper, however, armed with a detailed data set from a moist tropical forest, we investigate the validity of random placement and suggest improved models based upon spatial aggregation. By accounting for intraspecific, small-scale aggregation, we develop a cluster model which reproduces empirical species-area curves with high fidelity. We find that inter-specific aggregation patterns, on the other hand, do not affect the species-area curves significantly. We demonstrate that the tendency for a tree species to aggregate, as well as its average clump size, is not significantly correlated with the species' abundance. In addition, we investigate hierarchical clumping and the extent to which aggregation is driven by topography. We conclude that small-scale phenomena such as dispersal and gap recruitment determine individual tree placement more than adaptation to larger-scale topography.  相似文献   

14.
Seed dispersal and spatial pattern in tropical trees   总被引:5,自引:1,他引:5       下载免费PDF全文
Theories of tropical tree diversity emphasize dispersal limitation as a potential mechanism for separating species in space and reducing competitive exclusion. We compared the dispersal morphologies, fruit sizes, and spatial distributions of 561 tree species within a fully mapped, 50-hectare plot of primary tropical forest in peninsular Malaysia. We demonstrate here that the extent and scale of conspecific spatial aggregation is correlated with the mode of seed dispersal. This relationship holds for saplings as well as for mature trees. Phylogenetically independent contrasts confirm that the relationship between dispersal and spatial pattern is significant even after controlling for common ancestry among species. We found the same qualitative results for a 50-hectare tropical forest plot in Panama. Our results provide broad empirical evidence for the importance of dispersal mode in establishing the long-term community structure of tropical forests.  相似文献   

15.
Spatial pattern and process in forest stands within the Virginia piedmont   总被引:1,自引:0,他引:1  
Abstract. Question: Underlying ecological processes have often been inferred from the analysis of spatial patterns in ecosystems. Using an individual‐based model, we evaluate whether basic assumptions of species’life‐history, drought‐susceptibility, and shade tolerance generate dynamics that replicate patterns between and within forest stands. Location: Virginia piedmont, USA. Method: Model verification examines the transition in forest composition and stand structure between mesic, intermediate and xeric sites. At each site, tree location, diameter, and status were recorded in square plots ranging from 0.25 to 1.0 ha. Model validation examines the simulated spatial pattern of individual trees at scales of 1–25 m within each forest site using a univariate Ripley's K function. Results: 7512 live and dead trees were surveyed across all sites. All sites exhibit a consistent, significant shift in pattern for live trees by size, progressing from a clumped understorey (trees ± 0.1 m in diameter) to a uniform overstorey (trees > 0.25 m). Simulation results reflect not only the general shift in pattern of trees at appropriate scales within sites, but also the general transition in species composition and stand structure between sites. Conclusions: This shift has been observed in other forest ecosystems and interpreted as a result of competition; however, this hypothesis has seldom been evaluated using simulation models. These results support the hypothesis that forest pattern in the Virginia piedmont results from competition involving species’life‐history attributes driven by soil moisture availability between sites and light availability within sites.  相似文献   

16.
Spatial distribution pattern of biological related species present unique opportunities and challenges to explain species coexistence. In this study, we explored the spatial distributions and associations among congeneric species at both the species and genus levels to explain their coexistence through examining the similarities and differences at these two levels. We first used DNA and cluster analysis to confirmed the relative relationship of eight species within a 20 ha subtropical forest in southern China. We compared Diameter at breast height (DBH) classes, aggregation intensities and spatial patterns, associations, and distributions of four closely related species pairs to reveal similarities and differences at the species and genus levels. These comparisons provided insight into the mechanisms of coexistence of these congeners. O-ring statistics were used to measure spatial patterns of species. Ω 0–10, the mean conspecific density within 10 m of a tree, was used as a measure of the intensity of aggregation of a species, and g-function was used to analyze spatial associations. Our results suggested that spatial aggregations were common, but the differences between spatial patterns were reduced at the genus level. Aggregation intensity clearly reduced at the genus level. Negative association frequencies decreased at the genus level, such that independent association was commonplace among all four genera. Relationships between more closely related species appeared to be more competitive at both the species and genus levels. The importance of competition on interactions is most likely influenced by similarity in lifestyle, and the habitat diversity within the species’ distribution areas. Relatives with different lifestyles likely produce different distribution patterns through different interaction process. In order to fully understand the mechanisms generating spatial distributions of coexisting siblings, further research is required to determine the spatial patterns and associations at other classification levels.  相似文献   

17.
辽东山区次生林乔木幼苗分布格局与种间空间关联性   总被引:1,自引:0,他引:1  
在辽东山区次生林建立4 hm^2样地(200 m×200 m),研究0~50 m尺度范围内乔木幼苗分布格局及种间空间关联性.结果表明:在完全随机零模型下,0~20 m尺度上,95%的树种呈现聚集分布格局;0~16 m尺度上,19个树种呈现聚集分布;随着尺度的增加,聚集分布树种的比例逐渐减少,50 m尺度上,随机分布成为树种分布的主要形式;在异质性泊松过程零模型下,0~24 m尺度上,5%的树种呈现聚集分布,26~50 m尺度上,42%和58%的树种呈现随机和均匀分布.在完全随机零模型下,正相关树种对比例最高,且在50 m尺度下呈现正相关、负相关、无相关3种相关性的树种对比例相同;在异质性泊松过程零模型下,树种对主要呈现负相关,且随尺度增大,负相关的树种对比例逐渐升高.种子扩散限制和生境异质性在某种程度上解释了乔木幼苗的聚集分布格局,乔木幼苗强烈的聚集分布又促使种间空间关联性密切,更新群落稳定性较差.  相似文献   

18.
To estimate species loss from habitat destruction, ecologists typically use species–area relationships, but this approach neglects the spatial pattern of habitat fragmentation. Here, we provide new, easily applied, analytical methods that place upper and lower bounds on immediate species loss at any spatial scale and for any spatial pattern of habitat loss. Our formulas are expressed in terms of what we name the ‘Preston function’, which describes triphasic species–area relationships for contiguous regions. We apply our method to case studies of deforestation and tropical tree species loss at three different scales: a 50 ha forest plot in Panama, the tropical city‐state of Singapore and the Brazilian Amazon. Our results show that immediate species loss is somewhat insensitive to fragmentation pattern at small scales but highly sensitive at larger scales: predicted species loss in the Amazon varies by a factor of 16 across different spatial structures of habitat loss.  相似文献   

19.
Overhunting in tropical forests reduces populations of vertebrate seed dispersers. If reduced seed dispersal has a negative impact on tree population viability, overhunting could lead to altered forest structure and dynamics, including decreased biodiversity. However, empirical data showing decreased animal-dispersed tree abundance in overhunted forests contradict demographic models which predict minimal sensitivity of tree population growth rate to early life stages. One resolution to this discrepancy is that seed dispersal determines spatial aggregation, which could have demographic consequences for all life stages. We tested the impact of dispersal loss on population viability of a tropical tree species, Miliusa horsfieldii, currently dispersed by an intact community of large mammals in a Thai forest. We evaluated the effect of spatial aggregation for all tree life stages, from seeds to adult trees, and constructed simulation models to compare population viability with and without animal-mediated seed dispersal. In simulated populations, disperser loss increased spatial aggregation by fourfold, leading to increased negative density dependence across the life cycle and a 10-fold increase in the probability of extinction. Given that the majority of tree species in tropical forests are animal-dispersed, overhunting will potentially result in forests that are fundamentally different from those existing now.  相似文献   

20.
Abstract In this work, we investigated the spatial distribution of two sessile insect herbivores over the entire range of their host plant, Coccoloba cereifera, a sclerophyllous shrub endemic to Serra do Cipó, Brazil. The two insects have very distinct life histories and dispersal behaviours and we hypothesized that their classification into behavioural syndromes could be used to predict their spatial distribution patterns. Abgrallaspis cyanophylli (Homoptera) is an armoured scale insect that fits well into the eruptive syndrome. Stenapion aff. contrarium (Coleoptera) is a petiole borer with wide search capabilities, which fits into the latent syndrome. We expected that Abgrallaspis would follow the host plant aggregation pattern whereas Stenapion would be distributed more uniformly through the region and be less affected by host aggregation. We counted the number of attacked and non‐attacked ramets within two perpendicular belt transects as well as within a 20 m × 20 m quadrat placed over a dense shrub aggregation. Local quadrat covariance methods were used to estimate the spatial pattern of each insect. At fine scales, we found Stenapion evenly distributed over the host plant and Abgrallaspis with a significantly aggregated pattern. This finding is in accordance with our hypothesis. At larger scales, however, this pattern was lost and the results were largely variable. We conclude that the classification of insects into behavioural syndromes may be useful to predict distribution patterns at fine scales. At larger scales, however, history and chance events may be more important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号