首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolution of obligate interspecific brood parasitism in birds   总被引:2,自引:1,他引:1  
We present a simple analytical model to investigate the conditionsfor the evolution of obligate interspecific brood parasitismin birds, based on clutch size optimization, when birds canlay more eggs than their optimal clutch size. The results showthat once intraspecific parasitism has appeared (i.e., femalesstart to spread their eggs over their own and other nests) the evolutionarily stable number of eggs laid in its own nest decreases.Two possible ESSs exist: (1) either the evolutionarily stablenumber of eggs laid in its own nest is larger than zero, anda fraction of the total number of eggs is laid parasitically(i.e., intraspecific parasitism); and (2) either the evolutionarilystable number of eggs laid in its own nest is zero and all eggs are laid parasitically. Since all females lay parasitically,this could favor the evolution of obligate interspecific broodparasitism. The key parameter allowing the shift from intraspecificto obligate interspecific parasitism is the intensity of density-dependentmortality within broods (i.e., nestling competition). Strongnestling competition, as in altricial species, can lead toan ESS where all eggs are laid parasitically. Altricial speciesare, therefore, predicted to evolve more easily toward obligate interspecific parasitism than precocial species. These predictionsfit the observed distribution of brood parasitism in birds,where only one species out of 95 obligate interspecific parasitesexhibits a precocial mode of development. Different nestlingsurvival functions provided similar findings (i.e., obligatebrood parasitism is more likely to evolve in altricial species),suggesting that these results are robust with respect to themain assumption of the model.  相似文献   

2.
On the origin of brood parasitism in altricial birds   总被引:1,自引:0,他引:1  
The probability that obligate interspecific brood parasitism(OP), among altricial birds evolved directly from the normalbreeding (no parasitism, NP) mode or indirectly through intraspecificnest parasitism (INP) was examined by using maximum-likelihoodand parsimony approaches. We examined the probability of ancestralstates at 24 key nodes in order to test our hypotheses. Thestate of the most basal node in a tree of 565 genera of altricialbirds is equivocal; however, the state probability of NP atthis node is about 5.5-fold more likely than the state of obligateparasite. A similar trend was observed for basal nodes of mostfamilies examined. The INP state was supported only in the Hirundinidae.The high incidence of INP among martins and swallows explainsthis finding. Contrary to our predictions, even in other groupswhere there is a high incidence of INP and OP, such as in thetribe Icteri and the Old World finches, the probability of NPbeing ancestral was very high. We conclude that in all casesbut one (Hirundinidae) obligate, and probably facultative, broodparasitism evolved directly from normal breeding mode ratherthan indirectly through some other form of parasitism.  相似文献   

3.
Mode of development in birds helps determine the form of brood parasitism a species exhibits. Most knowledge of precocial brood parasites comes from a single avian family, the waterfowl (Anatidae: Anseriformes). Here we review cases of interspecific brood parasitism (IBP) in a second group of precocial birds, the order Galliformes. IBP is uncommon but taxonomically widespread, occurring in at least 11 species and in four of five galliform families. By far the most common brood parasite is the Ring-necked Pheasant Phasianus colchicus . Hosts were generally other ground-nesting precocial species. It is unclear whether the absence of IBP in the Cracidae (Guans, Curassows, and Chachalacas) is due to the paucity of research on tropical gamebirds or because tropical birds such as the Cracidae may be less likely to practise IBP. Galliform birds mirror the trend found in ducks in which virtually all species that parasitize heterospecifics are also conspecific brood parasites (CBP). This association supports the hypothesis that IBP as an adaptive tactic or strategy may evolve from CBP. Alternatively, or additionally, egg-dumping may represent reproductive error on the part of females, such that concordance between CBP and IBP could be a byproduct of having sufficient knowledge of breeding biology only for a subset of galliform species.  相似文献   

4.
Laying eggs in others' nests: Intraspecific brood parasitism in birds   总被引:1,自引:0,他引:1  
Intraspecific brood parasitism occurs commonly in a large number of bird species. Recent work shows that females parasitize the parental care of conspecifics either as a 'best-of-a-bad-job' strategy or as part of a superior reproductive strategy. A number of parasite and host behaviours, which either facilitate or prevent intraspecific brood parasitism, are similar to those occurring among interspecific brood parasites and their hosts.  相似文献   

5.
The loss of anti-parasite adaptations against the European cuckoo Cuculus canorus was studied in three European passerine species, song thrush Turdus philomelos , blackbird T. merula , and chaffinch Fringilla coelebs , introduced to New Zealand in the 19th century. Chaffinches in New Zealand ejected non-mimetic eggs at a rate similar to their source population in the United Kingdom, but both song thrushes and blackbirds in New Zealand rejected non-mimetic eggs at a higher rate than the United Kingdom. It is not clear if this difference reflects variation among hosts in their response to brood parasitism or if it is an artefact of subtle differences in the types of non-mimetic eggs tested. In contrast, all three introduced species showed little aggression to a taxidermic model of a European cuckoo presented at their nests. This differs from European populations of these species, where model cuckoos are typically attacked. Our results suggest that in the∼130 years since their release in New Zealand, introduced birds have lost recognition of the European cuckoo but not their ability to discriminate non-mimetic eggs. The differential loss of anti-parasite adaptations by introduced birds in New Zealand suggests that cyclical models of host/parasite co-evolution may need to take into account the differing rates at which different host adaptations are lost and gained.  相似文献   

6.
On the origin and rarity of interspecific nest parasitism in birds   总被引:4,自引:0,他引:4  
Interspecific nest parasitism is surprisingly rare in birds given the potential advantages for the parasite of exploiting the parental care of other species. One possibility is that chicks will not thrive with the parental care and food of heterospecifics. I simulated parasitism in nonparasitic congeners by switching eggs between nests of three species of titmice (great tit Parus major, blue tit Parus caeruleus, and coal tit Parus ater). The experiment showed that compatibility of parental care was not a constraint preventing parasitism. I also used the model system to compare fitness consequences of inter- and intraspecific nest parasitism, addressing the problem of which form is ancestral. Fledging success (body mass, survival) was higher when an egg was added to the nest of a smaller species than to the nest of a conspecific and also higher when the parasitic chick hatched early rather than late relative to host chicks. This suggests that interspecific nest parasitism may not require a stage of intraspecific nest parasitism before evolving but may start from a larger species directly exploiting the parental care of a smaller species or a species with shorter incubation period directly exploiting a species with longer incubation period.  相似文献   

7.
Sexual reproduction relies on the recognition of conspecifics for breeding. Most experiments in birds have implicated a critical role for early social learning in directing subsequent courtship behaviours and mating decisions. This classical view of avian sexual imprinting is challenged, however, by studies of megapodes and obligate brood parasites, species in which reliable recognition is achieved despite the lack of early experience with conspecifics. By rearing males with either conspecific or heterospecific brood mates, we experimentally tested the effect of early social experience on the association preferences and courtship behaviours of two sympatrically breeding ducks. We predicted that redheads (Aythya americana), which are facultative interspecific brood parasites, would show a diminished effect of early social environment on subsequent courtship preferences when compared with their host and congener, the canvasback (Aythya valisineria). Contrary to expectations, cross-fostered males of both species courted heterospecific females and preferred them in spatial association tests, whereas control males courted and associated with conspecific females. These results imply that ontogenetic constraints on species recognition may be a general impediment to the initial evolution of interspecific brood parasitism in birds. Under more natural conditions, a variety of mechanisms may mitigate or counteract the effects of early imprinting for redheads reared in canvasback broods.  相似文献   

8.
Females are expected to have evolved to be more discriminatory in mate choice than males as a result of greater reproductive investment into larger gametes (eggs vs. sperm). In turn, males are predicted to be more promiscuous than females, showing both a larger variance in the number of mates and a greater increase in reproductive success with more mates, yielding more intense sexual selection on males vs. females (Bateman's Paradigm). However, sex differences in costly parental care strategies can either reinforce or counteract the initial asymmetry in reproductive investment, which may be one cause for some studies failing to conform with predictions of Bateman's Paradigm. For example, in many bird species with small female‐biased initial investment but extensive biparental care, both sexes should be subject to similar strengths of sexual selection because males and females are similarly restricted in their ability to pursue additional mates. Unlike 99% of avian species, however, obligate brood parasitic birds lack any parental care in either sex, predicting a conformation to Bateman's Paradigm. Here we use microsatellite genotyping to demonstrate that in brood parasitic brown‐headed cowbirds (Molothrus ater), per capita annual reproductive success increases with the number of mates in males, but not in females. Furthermore, also as predicted, the variance of the number of mates and offspring is greater in males than in females. Thus, contrary to previous findings in this species, our results conform to predictions of the Bateman's Paradigm for taxa without parental care.  相似文献   

9.
We constructed a molecular phylogeny of 15 species of cuckoos using mitochondrial DNA sequences spanning 553 nucleotide bases of the cytochrome b gene and 298 nucleotide bases of the ND2 gene. A parallel analysis for the cytochrome b gene including published sequences in the Genbank database was performed. Phylogenetic analyses of the sequences were done using parsimony, a sequence distance method (Fitch-Margoliash), and a character-state method which uses probabilities (maximum likelihood). Phenograms support the monophyly of three major clades: Cuculinae, Phaenicophaeinae and Neomorphinae-Crotophaginae. Clamator, a strictly parasitic genus traditionally included within the Cuculinae, groups together with Coccyzus (a nonobligate parasite) and some nesting cuckoos. Tapera and Dromococcyx, the parasitic cuckoos from the New World, appear as sister genera, close to New World cuckoos: Neomorphinae and Crotophaginae. Based on the results, and being conscious that a more strict resolution of the relationships among the three major clades is required, we postulate that brood parasitism has a polyphyletic origin in the Cuculiformes, with parasite species being found within the three defined clades. Evidence suggests that species within each clade share a common parasitic ancestor, but some show partial or total loss of brood parasitic behaviour.  相似文献   

10.
Although 90 % of all bird species are monogamous, many species practice alternative reproductive strategies as extra-pair copulations, intra-specific brood parasitism, and quasi-parasitism. In territorial monogamous species, both partners hold and defend the territory from intruders. Often, the intruders are males and usually the local male banishes the intruders. Indeed, many studies focused on the response of the local male toward intruder males. However, the benefits and costs associated with the responses of the local male toward intruder females have been largely overlooked. Focusing mainly on alternative reproductive strategies, we developed a model to predict the aggression a monogamous male may demonstrate toward an intruder female during the pre-egg laying stage of his local female partner. This model demonstrates that the intensity of aggression that the local male shows toward an intruder female depends on the extra-pair copulations that his local female partner may perform. Further, the aggression also depends upon intra-specific brood parasitism and quasi-parasitism that might be carried out by the intruder female. Our approach suggests that when considering mating strategies, there is a need to assess how these three alternative reproductive strategies may affect the local male's aggression toward intruder females.  相似文献   

11.
A fundamental question in biology is how diversity evolves and why some clades are more diverse than others. Phenotypic diversity has often been shown to result from morphological adaptation to different habitats. The role of behavioral interactions as a driver of broadscale phenotypic diversity has received comparatively less attention. Behavioral interactions, however, are a key agent of natural selection. Antagonistic behavioral interactions with predators or with parasites can have significant fitness consequences, and hence act as strong evolutionary forces on the phenotype of species, ultimately generating diversity between species of both victims and exploiters. Avian obligate brood parasites lay their eggs in the nests of other species, their hosts, and this behavioral interaction between hosts and parasites is often considered one of the best examples of coevolution in the natural world. In this review, we use the coevolution between brood parasites and their hosts to illustrate the potential of behavioral interactions to drive evolution of phenotypic diversity at different taxonomic scales. We provide a bridge between behavioral ecology and macroevolution by describing how this interaction has increased avian phenotypic diversity not only in the brood parasitic clades but also in their hosts.  相似文献   

12.
In conspecific brood parasitism (CBP), a parasitic female takes advantage of the parental care performed by a host female by laying eggs in the nest of the host. The host female raises the offspring of the parasitic female as well as her own. In species where local females are related, direct costs for the host might be more than compensated for by gains in inclusive fitness through increased reproduction of a related parasite, but the role of relatedness in CBP is debated. This inclusive-fitness model of parasitism, structured as a game between host and parasite, suggests that both females can gain inclusive fitness and that host-parasite relatedness can therefore facilitate the evolution of CBP. Crucial assumptions are that there is kin discrimination and a potential for host resistance to parasitism by unrelated females but close relatives are accepted. The cost of parasitism in terms of reduced clutch size or offspring survival for the host must not be large; otherwise, parasitism will reduce her inclusive fitness. Therefore, if these costs are high, it does not benefit a host to accept a parasite, even if the parasite is closely related. The secondary female may still have higher fitness from parasitism, but if the costs are high, she should parasitize an unrelated host, not a relative. This requires that the reduction in parasite success that a host can cause by resistance is not too large; otherwise, it will be better for the secondary female to parasitize an accepting related host or to nest solitarily. For these reasons, host-parasite relatedness is most likely to occur in animals where costs of being parasitized are low and host resistance can markedly reduce the success of an unrelated parasite. When costs are higher, parasitism of unrelated hosts may be better, and if host resistance strongly reduces parasite success, solitary breeding is preferable. In some cases, CBP is directly advantageous for the host, and it may sometimes evolve in close connection with cooperative breeding, which is also considered in the model. Some but not all empirical results support these ideas, and more detailed studies of behavior, relatedness, and reproduction of host and parasite are needed for critical tests.  相似文献   

13.
Conspecific brood parasitism (CBP), defined as parasitic laying of eggs in a conspecific nest without providing parental care, occurs in insects, fishes, amphibians, and many birds. Numerous factors have been proposed to influence the evolution of CBP, including nest site limitation; effects of brood size, laying order, or parasitic status on offspring survival; randomness of parasitic egg distribution; adult life-history trade-offs; and variation in parental female quality or risk of nest predation. However, few theoretical studies consider multiple possible types of parasitism or the interplay between evolution of parasitism and population dynamics. We review existing theory of CBP and develop a synthetic modeling approach to ask how best-of-a-bad job parasitism, separate-strategies parasitism (in which females either nest or parasitize), and joint-strategies parasitism (in which females can both nest and parasitize) differ in their evolutionary conditions and impacts on population dynamics using an adaptive dynamics framework including multivariate traits. CBP can either stabilize or destabilize population dynamics in different scenarios, and the role of comparable parameters on evolutionarily stable strategy parasitism rate, equilibrium population size, and population stability can differ for the different modes of parasitism.  相似文献   

14.
The evolution of brood parasitism: the role of facultative parasitism   总被引:1,自引:0,他引:1  
The hypothesis that facultative brood parasitism may serve asan intermediate step in the evolutionary transition from purelyparental reproduction to obligate parasitism was investigated.The population dynamics of a host-parasite complex were computer-simulatedin a model that incorporated different intensities of parasitismand host defense and considered a simplified semelparous birdspecies living in a homogeneous habitat The individuals usetwo different breeding strategies: provide parental care orparasitize the nest of those providing parental care. Underobligate parasitism, the parasites appeared unsuccessful, drovethe host population to extinction, or coexisted with the hostin stable or oscillating proportions. The behavior of the systemdepended on both the effectiveness of the parasite and the defenseof the host. Under facultative parasitism (making the best ofa bad job), the parasites reduced host numbers but did not reducethe population size below the number of breeding sites. Thus,facultative parasitism provides a better opportunity for thedevelopment of defense in the host. The population of a hostthat shows a certain level of defense can be more successfullyinvaded by obligate parasites so that stable coexistence ofhosts and parasites is possible.  相似文献   

15.
Modelling the arms race in avian brood parasitism   总被引:5,自引:0,他引:5  
Takasu  Fugo 《Evolutionary ecology》1998,12(8):969-987
In brood parasitism, interactions between a parasite and its host lead to a co-evolutionary process called an arms race, in which evolutionary progress on one side provokes a further response on the other side. The host evolves defensive means to reduce the impact of parasitism, while the parasite evolves means to counter the host's defence. To gain insights into the co-evolutionary process of the arms race, a model is developed and analysed, in which the host's defence and the parasite's counterdefence are assumed to be genetically determined. First, the effect of parasite counterdefence on host defence is analysed. I show that parasite counterdefence can critically affect the establishment of host defence, giving rise to three situations in the equilibrium state: The host shows (1) no defence, (2) an intermediate level of defence or (3) perfect defence. Based on these results, the evolution of parasite counterdefence is considered in connection with host defence. It is suggested that the parasite can evolve counterdefence to a certain degree, but once it has established counterdefence beyond this, the host gives up its defence against parasitism provided the defence entails some cost to perform. Dynamic aspects of selection pressure are crucial for these results. Based on these results, I propose a hypothetical evolutionary sequence in the arms race, along which interactions between the host and parasite proceed.  相似文献   

16.
Robust phylogenies for brood-parasitic birds, their hosts, and nearest nesting relatives provide the framework to address historical questions about host-parasite coevolution and the origins of parasitic behavior. We tested phylogenetic hypotheses for the two genera of African brood-parasitic finches, Anomalospiza and Vidua, using mitochondrial DNA sequence data from 43 passeriform species. Our analyses strongly support a sister relationship between Vidua and Anomalospiza, leading to the conclusion that obligate brood parasitism evolved only once in African finches rather than twice, as has been the conventional view. In addition, the parasitic finches (Viduidae) are not recently derived from either weavers (Ploceidae) or grassfinches (Estrildidae), but represent a third distinct lineage. Among these three groups, the parasitic finches and estrildids, which includes the hosts of all 19 Vidua species, are sister taxa in all analyses of our full dataset. Many characters shared by Vidua and estrildids, including elaborate mouth markings in nestlings, unusual begging behavior, and immaculate white eggs, can therefore be attributed to common ancestry rather than convergent evolution. The host-specificity of mouth mimicry in Vidua species, however, is clearly the product of subsequent host-parasite coevolution. The lineage leading to Anomalospiza switched to parasitizing more distantly related Old World warblers (Sylviidae) and subsequently lost these characteristics. Substantial sequence divergence between Vidua and Anomalospiza indicates that the origin of parasitic behavior in this clade is ancient (approximately 20 million years ago), a striking contrast to the recent radiation of extant Vidua. We suggest that the parasitic finch lineage has experienced repeated cycles of host colonization, speciation, and extinction through their long history as brood parasites and that extant Vidua species represent only the latest iterations of this process. This dynamic process may account for a significantly faster rate of DNA sequence evolution in parasitic finches as compared to estrildids and other passerines. Our study reduces by one the tally of avian lineages in which obligate brood parasitism has evolved and suggests an origin of parasitism that involved relatively closely related species likely to accept and provide appropriate care to parasitic young. Given the ancient origin of parasitism in African finches, ancestral estrildids must have been parasitized well before the diversification of extant Vidua, suggesting a long history of coevolution between these lineages preceding more recent interactions between specific hosts and parasites.  相似文献   

17.
  1. Brood parasitism is a breeding strategy adopted by many species of cuckoos across the world. This breeding strategy influences the evolution of life histories of brood parasite species.
  2. In this study, we tested whether the degree on diet specialization is related to the breeding strategy in cuckoo species, by comparing brood parasite and nonparasite species. We measured the gradient of diet specialization of cuckoos, by calculating the Gini coefficient, an index of inequality, on the multiple traits describing the diet of species. The Gini coefficient is a measure of statistical dispersion on a scale between 0 and 1, reflecting a gradient from low to high specialization, respectively. First, we tested the strength of the phylogenetic signal of diet specialization index among cuckoo species worldwide. Then, we ran phylogenetic generalized least square (PGLS) models to compare diet specialization, distribution range, and body mass of parasitic and nonparasitic cuckoo species, considering the phylogenetic signal of data.
  3. After adjusting for the phylogenetic signal of the data and considering both, species distribution range and species body mass, brood parasitic cuckoos were characterized by higher diet specialization than nonbrood parasitic species. Brood parasitic species were also characterized by a larger breeding distribution range than nonparasitic species.
  4. The findings of this study provide an additional understanding of the cuckoos’ ecology, relating diet and breeding strategies, information that could be important in conservation ecology.
  相似文献   

18.
19.
20.
Sibling competition was proposed as an important selective agent in the evolution of growth and development. Brood parasitism by the brown-headed cowbird (Molothrus ater) intensifies sibling competition in the nests of its hosts by increasing host chick mortality and exposing them to a genetically unrelated nestmate. Intranest sibling competition for resources supplied by parents is size dependent. Thus, it should select for high development rates and short nestling periods, which would alleviate negative impacts of brood parasitic chicks on host young. I tested these predictions on 134 North American passerines by comparative analyses. After controlling for covariates and phylogeny, I showed that high parasitism rate was associated with higher nestling growth rate, lower mass at fledging, and shorter nestling periods. These effects were most pronounced in species in which sibling competition is most intense (i.e., weighing over about 30 g). When species were categorized as nonhosts versus old hosts (parasitized for thousands of years) versus new hosts (parasitized the last 100-200 years), there was a clear effect of this parasitism category on growth strategies. Nestling growth rate was the most evolutionarily flexible trait, followed by mass at fledging and nestling period duration. Adjustments during incubation (incubation period length, egg volume) were less pronounced and generally disappeared after controlling for phylogeny. I show that sibling competition caused by brood parasites can have strong effects on the evolution of host growth strategies and that the evolution of developmental traits can take place very rapidly. Human alteration of habitats causing spread of brood parasites to new areas thus cascades into affecting the evolution of life-history traits in host species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号