首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure-based design of a potent inhibitor of the influenza-virus neuraminidase (sialidase) is one of the outstanding successes of rational drug design. Recent clinical trials of the drug have stimulated many companies to seek a share of the potentially huge flu market. Sialidases, however, are involved in the pathogenesis of a whole range of other diseases, so perhaps the knowledge and expertise gained from the influenza story can be used in the design of other drugs, given that they all share certain structural features.  相似文献   

2.
Avian influenza virus, a very sticky situation   总被引:1,自引:0,他引:1  
The appearance of the highly pathogenic avian influenza virus H5N1 highlighted the potential impact of influenza virus on humanity. The emergence of this high profile virus stimulated much research towards a better understanding of the key determinants for successful human-to-human transmission and as such has provided new directions for therapeutic intervention strategies. For example, a phylogenetic-based grouping of influenza virus sialidases into either Group 1 or 2 has been proposed. This has provided new opportunity for the development of Group 1-specific anti-influenza drugs. Furthermore, a number of next generation sialidase inhibitors as anti-influenza drugs have also been developed.  相似文献   

3.
The threat of pandemic influenza is a significant concern of governments worldwide. There is a very limited and relatively expensive armament to tackle such a pandemic should it occur. This fact provides much impetus to the scientific community for the discovery of new and less expensive anti-influenza drugs. Our longstanding interest in the inhibition of influenza virus sialidase, coupled with the development of simple carbohydrates that mimic an unsaturated derivative of the enzyme's naturally-occurring ligand, N-acetylneuraminic acid, has led us to investigate the development of influenza virus sialidase inhibitors based on these mimetics. We have successfully prepared a range of these compounds, in good yield, from the relatively inexpensive carbohydrate N-acetylglucosamine utilising a short synthetic procedure. We have employed a sialidase inhibition assay for biological evaluation of the target compounds and to our delight these mimetics have displayed significant inhibition of influenza virus sialidase.  相似文献   

4.
Oehler C  Kopitz J  Cantz M 《Biological chemistry》2002,383(11):1735-1742
A ganglioside-specific sialidase that controls cellular functions such as growth, differentiation, and adhesion has been observed in a variety of cells, but its characterization proved difficult due to firm membrane attachment and lability of the purified enzyme. Here we report on the specificity toward gangliosides and susceptibility to certain inhibitors of a ganglioside sialidase solubilized and purified 5100-fold from human brain. The sialidase removed terminal sialic acids from gangliosides GM3, GM4, GD3, GD2, GD1 a, GD1 b, GT1 b and GQ1 b, but was inactive toward gangliosides with sialic acid in a branching position (as in GM1 and GM2). Lyso-GM3 and -GD1a were good substrates, too, whereas O-acetylation of the sialic acid as in 9-O-acetyl-GD3 caused strongly reduced cleavage. The new influenza virus drug 4-guanidino-2-deoxy-2,3-dehydro-N-acetylneuraminic acid (Zanamivir) exhibited an IC50 value of about 7 x 10(-5) M that was in the range of the 'classical' sialidase inhibitor 2-deoxy-2,3-dehydro-N-acetylneuraminic acid; the bacterial sialidase inhibitor 4-nitrophenyloxamic acid, however, was ineffective. The glycosaminoglycans heparan sulfate, heparin, chondroitin sulfates A and B, as well as dextran sulfate and suramin, were all strongly inhibitory, suggesting that glycosaminoglycans present on the cell surface or in the extracellular matrix may influence the ability of the sialidase to alter the ganglioside composition of the membrane.  相似文献   

5.
Influenza A viruses possess two virion surface proteins, hemagglutinin (HA) and neuraminidase (NA). The HA binds to sialyloligosaccharide viral receptors, while the NA removes sialic acids from the host cell and viral sialyloligosaccarides. Alterations of the HA occur during adaptation of influenza viruses to new host species, as in the 1957 and 1968 influenza pandemics. To gain a better understanding of the contributions of the HA and possibly the NA to this process, we generated cell lines expressing reduced levels of the influenza virus receptor determinant, sialic acid, by selecting Madin-Darby canine kidney cells resistant to a lectin specific for sialic acid linked to galactose by alpha(2-3) or alpha(2-6) linkages. One of these cell lines had less than 1/10 as much N-acetylneuraminic acid as its parent cell line. When serially passaged in this cell line, human H3N2 viruses lost sialidase activity due to a large internal deletion in the NA gene, without alteration of the HA gene. These findings indicate that NA mutations can contribute to the adaptation of influenza A virus to new host environments and hence may play a role in the transmission of virus across species.  相似文献   

6.
A novel synthesis of the bicyclo [2.2.2] octane ring system has been achieved utilising a tandem Henry cyclisation as the key stage. This chemistry has been employed in the synthesis of a potential inhibitor of influenza virus sialidase.  相似文献   

7.
The Bcl-2 family of proteins plays a major role in the regulation of apoptosis, or programmed cell death. Overexpression of the anti-apoptotic members of this family (Bcl-2, Bcl-xL, and Mcl-1) can render cancer cells resistant to chemotherapeutic agents and therefore these proteins are important targets for the development of new anti-cancer agents. Here we describe the discovery of a potent, highly selective, Bcl-2 inhibitor using SAR by NMR and structure-based drug design which could serve as a starting point for the development of a Bcl-2 selective anti-cancer agent. Such an agent would potentially overcome the Bcl-xL mediated thrombocytopenia observed with ABT-263.  相似文献   

8.
The inhibition of sialidase activity from influenza viruses A and B, parainfluenza 2 virus,Vibrio cholerae, Arthrobacter ureafaciens, Clostridium perfringens, and sheep liver by a range of 2-deoxy-2,3-didehydro-N-acetylneuraminic acid analogues modified at the C-4 position has been studied. All substitutions tested resulted in a decrease in the degree of inhibition of the bacterial and mammalian sialidases. For sialidases from influenza viruses A and B, on the other hand, most of the substitutions tested either had no significant effect on binding or, in the case of the basic amino and guanidino substituents, resulted in significantly stronger inhibition. The results for parainfluenza 2 virus sialidase were mostly intermediate, in that inhibition was neither significantly increased nor decreased by most of the modifications. We conclude that only the influenza A and B sialidase active sites possess acid groups correctly positioned to participate in charge-charge interactions in the region of C-4 of bound substrate, and that the C-4 binding pockets of the bacterial and mammalian sialidases examined are considerably smaller than is observed for either the influenza virus or parainfluenza virus sialidases.This paper is dedicated to the memory of Professor Dr E. Zbiral.  相似文献   

9.
Influenza A viruses possess both hemagglutinin (HA), which is responsible for binding to the terminal sialic acid of sialyloligosaccharides on the cell surface, and neuraminidase (NA), which contains sialidase activity that removes sialic acid from sialyloligosaccharides. Interplay between HA receptor-binding and NA receptor-destroying sialidase activity appears to be important for replication of the virus. Previous studies by others have shown that influenza A viruses lacking sialidase activity can undergo multiple cycles of replication if sialidase activity is provided exogenously. To investigate the sialidase requirement of influenza viruses further, we generated a series of sialidase-deficient mutants. Although their growth was less efficient than that of the parental NA-dependent virus, these viruses underwent multiple cycles of replication in cell culture, eggs, and mice. To understand the molecular basis of this viral growth adaptation in the absence of sialidase activity, we investigated changes in the HA receptor-binding affinity of the sialidase-deficient mutants. The results show that mutations around the HA receptor-binding pocket reduce the virus's affinity for cellular receptors, compensating for the loss of sialidase. Thus, sialidase activity is not absolutely required in the influenza A virus life cycle but appears to be necessary for efficient virus replication.  相似文献   

10.
The M2 proteins of influenza A and B virus, AM2 and BM2, respectively, are transmembrane proteins that oligomerize in the viral membrane to form proton-selective channels. Proton conductance of the M2 proteins is required for viral replication; it is believed to equilibrate pH across the viral membrane during cell entry and across the trans-Golgi membrane of infected cells during viral maturation. In addition to the role of M2 in proton conductance, recent mutagenesis and structural studies suggest that the cytoplasmic domains of the M2 proteins also play a role in recruiting the matrix proteins to the cell surface during virus budding. As viral ion channels of minimalist architecture, the membrane-embedded channel domain of M2 has been a model system for investigating the mechanism of proton conduction. Moreover, as a proven drug target for the treatment of influenza A infection, M2 has been the subject of intense research for developing new anti-flu therapeutics. AM2 is the target of two anti-influenza A drugs, amantadine and rimantadine, both belonging to the adamantane class of compounds. However, resistance of influenza A to adamantane is now widespread due to mutations in the channel domain of AM2. This review summarizes the structure and function of both AM2 and BM2 channels, the mechanism of drug inhibition and drug resistance of AM2, as well as the development of new M2 inhibitors as potential anti-flu drugs.  相似文献   

11.
Seasonal influenza virus infections cause annual epidemics and sporadic pandemics. These present a global health concern, resulting in substantial morbidity, mortality and economic burdens. Prevention and treatment of influenza illness is difficult due to the high mutation rate of the virus, the emergence of new virus strains and increasing antiviral resistance. Animal models of influenza infection are crucial to our gaining a better understanding of the pathogenesis of and host response to influenza infection, and for screening antiviral compounds. However, the current animal models used for influenza research are not amenable to visualization of host-pathogen interactions or high-throughput drug screening. The zebrafish is widely recognized as a valuable model system for infectious disease research and therapeutic drug testing. Here, we describe a zebrafish model for human influenza A virus (IAV) infection and show that zebrafish embryos are susceptible to challenge with both influenza A strains APR8 and X-31 (Aichi). Influenza-infected zebrafish show an increase in viral burden and mortality over time. The expression of innate antiviral genes, the gross pathology and the histopathology in infected zebrafish recapitulate clinical symptoms of influenza infections in humans. This is the first time that zebrafish embryos have been infected with a fluorescent IAV in order to visualize infection in a live vertebrate host, revealing a pattern of vascular endothelial infection. Treatment of infected zebrafish with a known anti-influenza compound, Zanamivir, reduced mortality and the expression of a fluorescent viral gene product, demonstrating the validity of this model to screen for potential antiviral drugs. The zebrafish model system has provided invaluable insights into host-pathogen interactions for a range of infectious diseases. Here, we demonstrate a novel use of this species for IAV research. This model has great potential to advance our understanding of influenza infection and the associated host innate immune response.KEY WORDS: Influenza, Zebrafish, Virus, Innate immunity  相似文献   

12.
Sialidase of influenza virus type A has been extensively studied through structural and kinetic approaches. However, sialidase of influenza virus type B has been less investigated. In this work, we have studied the activity and some properties (optimal pH, KM, Vmax, thermal stability) of sialidase in three influenza virus strains of type B (circulating in the period 1983–86) and also the activity and properties of sialidase from three virus strains of type A circulating at the same period of time.The results show that the activity and the Vmax was always higher for sialidase of type A viruses relative to those values of type B. Differences were also found for optimal pH and, in some cases, for thermal stability of the sialidase between strains belonging to the influenza viruses type A and B. However, the behaviour for the sialidase in all strains was very similar towards two competitive inhibitors. Thus, it could be suggested that the evolution pattern of the sialidase of both types of influenza viruses determines some modifications which result in a higher efficiency for sialidase of some strains of influenza virus type A, but maintaining in the two types of viruses a similar behaviour towards competitive inhibitors.Dedicated to Professor Maurice Leclerc by one of us (J.A.C.) on the occasion of his retirement.  相似文献   

13.
The compound Neu5Ac3alphaF-DSPE (4), in which the C-3 position was modified with an axial fluorine atom, inhibited the catalytic hydrolysis of influenza virus sialidase and the binding activity of hemagglutinin. The inhibitory activities to sialidases were independent of virus isolates examined. With the positive results obtained for inhibition of hemagglutination and hemolysis induced by A/Aichi/2/68 virus, the inhibitory effect of Neu5Ac3alphaF-DSPE (4) against MDCK cells was examined, and it was found that 4 inhibits the viral infection with IC50 value of 5.6 microM based on the cytopathic effects. The experimental results indicate that compound 4 not only inhibits the attachment of virus to the cell surface receptor but also disturbs the release of the progeny viruses from infected cells by inhibiting both hemagglutinin and sialidase of the influenza viruses. The study suggested that the compound is a new class of bifunctional drug candidates for the future chemotherapy of influenza.  相似文献   

14.
Zhang C  Lai L 《Biochemical Society transactions》2011,39(5):1382-6, suppl 1 p following 1386
Structure-based drug design for chemical molecules has been widely used in drug discovery in the last 30 years. Many successful applications have been reported, especially in the field of virtual screening based on molecular docking. Recently, there has been much progress in fragment-based as well as de novo drug discovery. As many protein-protein interactions can be used as key targets for drug design, one of the solutions is to design protein drugs based directly on the protein complexes or the target structure. Compared with protein-ligand interactions, protein-protein interactions are more complicated and present more challenges for design. Over the last decade, both sampling efficiency and scoring accuracy of protein-protein docking have increased significantly. We have developed several strategies for structure-based protein drug design. A grafting strategy for key interaction residues has been developed and successfully applied in designing erythropoietin receptor-binding proteins. Similarly to small-molecule design, we also tested de novo protein-binder design and a virtual screen of protein binders using protein-protein docking calculations. In comparison with the development of structure-based small-molecule drug design, we believe that structure-based protein drug design has come of age.  相似文献   

15.
Necroptosis represents a form of programmed cell death that can be engaged by various upstream signals, for example by ligation of death receptors, by viral sensors or by pattern recognition receptors. It depends on several key signaling proteins, including the kinases Receptor-Interacting Protein (RIP)1 and RIP3 and the pseudokinase mixed-lineage kinase domain-like protein (MLKL). Necroptosis has been implicated in a number of physiological and pathophysiological conditions and is disturbed in many human diseases. Thus, targeted interference with necroptosis signaling may offer new opportunities for the treatment of human diseases. Besides structure-based drug design, in recent years drug repositioning has emerged as a promising alternative to develop drug-like compounds. There is accumulating evidence showing that multi-targeting kinase inhibitors, for example Dabrafenib, Vemurafenib, Sorafenib, Pazopanib and Ponatinib, used for the treatment of cancer also display anti-necroptotic activity. This review summarizes recent evidence indicating that some anticancer kinase inhibitors also negatively affect necroptosis signaling. This implies that some cancer therapeutics may be repurposed for other pathologies, e.g. ischemic or inflammatory diseases.  相似文献   

16.
The Hemagglutinin (HA) is a protein of influenza A virus. It is present on the surface of influenza A virus and it is a glycoprotein. The HA is identified as potential drug target. H1N1 thiazolides, proved to be a potent drug in the inhibition of H1N1 replication. It is also known as inhibitor of other strains of influenza A virus. Thiazolide drug represses viral HA''s maturation at a level which exists just before the resistance from digestion of endoglycosidase-H and thereby it hampers, HA insertion in host membrane. Blocking the appropriate active site of hemagglutinin protein helps in the disease control. In the present work, we have generated diverse combinatorial library based ligands on known inhibitor thiazolides and they were used for virtual screening by Molegro virtual docker program. K-means clustering approach was used for finding new inhibitory molecules with more appropriate features. These resulted molecules are may be helpful in the treatment of swine flu and many other related diseases.  相似文献   

17.
The sialoglycosphingolipid GM1 is important for lipid rafts and immune cell signaling. T cell activation in vitro increases GM1 expression and increases endogenous sialidase activity. GM1 expression has been hypothesized to be regulated by endogenous sialidase. We tested this hypothesis in vivo using a mouse model of respiratory syncytial virus (RSV) infection. RSV infection increased endogenous sialidase activity in lung mononuclear cells. RSV infection increased lung CD8+ T cell surface GM1 expression. Activated CD8+ T cells in the lungs of RSV-infected mice were GM1(high). Treatment of RSV-infected mice with the sialidase/neuraminidase inhibitor oseltamivir decreased T cell surface GM1 levels. Oseltamivir treatment decreased RSV-induced weight loss and inhibited RSV clearance. Our data indicate a novel role for an endogenous sialidase in regulating T cell GM1 expression and antiviral immunity. Also, oseltamivir, an important anti-influenza drug, inhibits the clearance of a respiratory virus that lacks a neuraminidase gene, RSV.  相似文献   

18.
Influenza virus neuraminidase (NA) is a homotetrameric surface protein that, in contrast to other non-influenza NAs, requires a quaternary assembly to exhibit enzymatic activity, suggesting that the oligomeric state significantly impacts the active site of influenza NA. Nevertheless, most structure-based drug design studies have been reported by employing the monomeric state in the closed or open-loop due to the computational cost of employing the tetrameric NA. In this work, we present MD simulations coupled to the MMGBSA approach of avian N1 type NA in its monomeric and tetrameric closed and open-loop state both with and without the inhibitor oseltamivir and its natural substrate, sialic acid. Structural and energetic analyses revealed that the tetrameric state impacts flexibility as well as the map of interactions participating in stabilizing the protein–ligand complexes with respect to the monomeric state. It was observed that the tetrameric state exerts dissimilar effects in binding affinity, characteristic of positive and negative cooperativity for oseltamivir and sialic acid, respectively. Based on our results, to perform a confident structure-based drug design, as well as to evaluate the impact of key mutations through MD simulations, it is important to consider the tetrameric state closed-loop state.  相似文献   

19.
Inflammation is an important and appropriate host response to infection or injury. However, dysregulation of this response, with resulting persistent or inappropriate inflammation, underlies a broad range of pathological processes, from inflammatory dermatoses to type 2 diabetes and cancer. As such, identifying new drugs to suppress inflammation is an area of intense interest. Despite notable successes, there still exists an unmet need for new effective therapeutic approaches to treat inflammation. Traditional drug discovery, including structure-based drug design, have largely fallen short of satisfying this unmet need. With faster development times and reduced safety and pharmacokinetic uncertainty, drug repositioning – the process of finding new uses for existing drugs – is emerging as an alternative strategy to traditional drug design that promises an improved risk-reward trade-off. Using a zebrafish in vivo neutrophil migration assay, we undertook a drug repositioning screen to identify unknown anti-inflammatory activities for known drugs. By interrogating a library of 1280 approved drugs for their ability to suppress the recruitment of neutrophils to tail fin injury, we identified a number of drugs with significant anti-inflammatory activity that have not previously been characterized as general anti-inflammatories. Importantly, we reveal that the ten most potent repositioned drugs from our zebrafish screen displayed conserved anti-inflammatory activity in a mouse model of skin inflammation (atopic dermatitis). This study provides compelling evidence that exploiting the zebrafish as an in vivo drug repositioning platform holds promise as a strategy to reveal new anti-inflammatory activities for existing drugs.KEY WORDS: Drug repositioning, Zebrafish, Inflammation, Neutrophil, Atopic dermatitis, Immunity  相似文献   

20.
Human non-pancreatic secretory phospholipase A(2) (hnps-PLA(2)) is a group IIA enzyme that is massively over-expressed in a variety of severe inflammatory diseases. The enzyme degrades membrane phospholipids and it has been hypothesized that this activity can lead to a loss of tissue and organ integrity and function. This report overviews efforts directed toward the identification and clinical evaluation of a new class of anti-inflammatory drugs that specifically targets and inhibits the catalytic site of this hydrolytic enzyme. To achieve this goal, structure-based drug design was applied to a lead molecule identified by random high volume screening. Through an iterative process consisting of X-ray structure determination followed by inhibitor modification and testing, the lead compound was improved more than 6000-fold. Detailed information learned from earlier X-ray studies of stable substrate mimics aided this inhibitor improvement process. The optimized drug candidate, LY315920/S-5920, is currently undergoing phase II clinical evaluation. The outcome of studies such as these will define with greater clarity the pathological role of hnps-PLA(2) in human inflammatory diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号