首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optimal life-history models generally predict that the reproductive effort of iteroparous organisms may increase with age, as their expectation of future reproduction decreases. The population of three-spined sticklebacks (Gasterosteus aculeatus) in the Camargue (Rhone River Delta, France) is annual, all adults dying after their first breeding season. As the three-spined stickleback is a multiple spawner, we tested the hypothesis that reproductive effort may increase during the breeding season on field data. From 1987 to 1998, 653 female sticklebacks were collected in the field during the breeding seasons. The body size, body weight and weights of the liver, gonads and carcass were measured for these individuals. Only gravid females with mature eggs (176 fish) were included in the analysis. Considering the female three-spined stickleback as a capital breeder, the energetic resources available for allocation between soma and gonads were estimated by its body weight. Somatic condition decreased during the breeding season and reproductive effort (gonad weight relative to body weight) increased. These patterns did not vary significantly between years. These observed variations in reproductive effort during the breeding season can be interpreted as empirical evidence of a trade-off between reproductive effort and expectation of future reproduction.  相似文献   

2.
The proportion of annual biomass production allocated to various vegetative and reproductive tissues was measured in differently aged individuals of Vaccinium corymbosum from native populations in southern Michigan. The relationship between age and allocation was determined and a lifetime pattern of biomass partitioning was developed. The proportion of biomass allocated to reproduction was higher than many have predicted for woody species, and the relationship between age and reproductive effort did not conform to optimality models. In addition, reproductive performance was not affected by previous growth or reproduction. The basis of this complex reproductive behavior was examined by quantifying the relationships among components of reproduction. In general, yield components behaved independently within a season. A high potential reproductive effort coupled with yield component independence may be an adaptation to fluctuating environments.  相似文献   

3.
Previous models have predicted that when mortality increases with age, older individuals should invest more of their resources in reproduction and produce less dispersive offspring, as both their future reproductive value and their prospect of competing with their own sib decline. Those models assumed stable population sizes. We here study for the first time the evolution of age‐specific reproductive effort and of age‐specific offspring dispersal rate in a metapopulation with extinction‐recolonization dynamics and juvenile dispersal. Our model explores the evolutionary consequences of disequilibrium in the age structure of individuals in local populations, generated by disturbances. Life‐history decisions are then shaped both by changes with age in individual performances, and by changes in ecological conditions, as young and old individuals do not live on average in the same environments. Lower juvenile dispersal favours the evolution of higher reproductive effort in young adults in a metapopulation with extinction‐recolonization compared with a well‐mixed population. Contrary to previous predictions for stable structured populations, we find that offspring dispersal should generally increase with maternal age. This is because young individuals, who are overrepresented in recently colonized populations, should allocate more to reproduction and less to dispersal as a strategy to exploit abundant recruitment opportunities in such populations.  相似文献   

4.
The cost of reproduction theory posits that there are trade-offs between current and future reproduction because resources that are allocated to current offspring cannot be used for future reproductive opportunities. Two adaptive reproductive strategies have been hypothesized to offset the costs of reproduction and maximize lifetime fitness. The terminal investment hypothesis predicts that as individuals age they will allocate more resources to current reproduction as a response to decreasing residual reproductive value. The reproductive restraint hypotheses predicts that as individuals age they will allocate fewer resources to current reproduction to increase the chance of surviving for an additional reproductive opportunity. In this study, we test for adaptive responses to advancing age in male burying beetles, Nicrophorus orbicollis. Burying beetles use facultative biparental care, but the male typically abandons the brood before the female. Previous work in male burying beetles has suggested several factors to explain variation in male residency time, but no study has observed male behavior throughout their entire reproductive lifetimes to determine whether males change residency time in an adaptive way with age. We compared residency time of males that reproduced biparentally, uniparentally, and on different-sized carcasses to determine if they used an adaptive reproductive strategy. Males did not increase residency time as they aged when reproducing biparentally, but decreased residency time with age when reproducing uniparentally. A decrease in parental care with age is consistent with a reproductive restraint strategy. When female age increased over time, males did not increase their residency time to compensate for deteriorating female condition. To our knowledge, this is the first test of adaptive reproductive allocation strategies in male burying beetles.  相似文献   

5.
In many taxa, reproductive performance increases throughout the lifespan and this may occur in part because older adults invest more in reproduction. The mechanisms that facilitate an increase in reproductive performance with age, however, are poorly understood. In response to stressors, vertebrates release glucocorticoids, which enhance survival but concurrently shift investment away from reproduction. Consequently, when the value of current reproduction is high relative to the value of future reproduction and survival, as it is in older adults, life history theory predicts that the stress response should be suppressed. In this study, we tested the hypothesis that older parents would respond less strongly to a stressor in a natural, breeding population of common terns (Sterna hirundo). Common terns are long-lived seabirds and reproductive performance is known to increase throughout the lifespan of this species. As predicted, the maximum level of glucocorticoids released in response to handling stress decreased significantly with age. We suggest that suppression of the stress response may be an important physiological mechanism that facilitates an increase in reproductive performance with age.  相似文献   

6.
Evolutionary theory predicts that differential reproductive effort and rate of reproductive senescence will evolve under different rates of external mortality. We examine the evolutionary divergence of age-specific reproduction in two life-history ecotypes of the western terrestrial garter snake, Thamnophis elegans. We test for the signature of reproductive senescence (decreasing fecundity with age) and increasing reproductive effort with age (increasing reproductive productivity per gram female) in replicate populations of two life-history ecotypes: snakes that grow fast, mature young and have shorter lifespans, and snakes that grow slow, mature late and have long lives. The difference between life-history ecotypes is due to genetic divergence in growth rate. We find (i) reproductive success (live litter mass) increases with age in both ecotypes, but does so more rapidly in the fast-growth ecotype, (ii) reproductive failure increases with age in both ecotypes, but the proportion of reproductive failure to total reproductive output remains invariant, and (iii) reproductive effort remains constant in fast-growth individuals with age, but declines in slow-growth individuals. This illustration of increasing fecundity with age, even at the latest ages, deviates from standard expectations for reproductive senescence, as does the lack of increases in reproductive effort. We discuss our findings in light of recent theories regarding the phenomenon of increased reproduction throughout life in organisms with indeterminate growth and its potential to offset theoretical expectations for the ubiquity of senescence.  相似文献   

7.
Williams predicted that reproductive effort should increase as individuals age and their reproductive value declines. This simple prediction has proven difficult to test because conventional measures of energy expenditure on reproduction may not be a true reflection of reproductive effort. We investigated age-specific variation in female reproductive effort in a stable population of North American red squirrels where energy expenditure on reproduction is likely to reflect actual reproductive effort. We used seven measures of reproductive effort spanning conception to offspring weaning. We found that females completed growth by age 3 and that reproductive value decreased after this age likely because of reproductive and survival senescence. We therefore, predicted that reproductive effort would increase from age 3 onwards. The probability of breeding, litter mass at weaning, and likelihood of territory bequeathal were all lower for 1- and 2-year-old females than for females older than 3 years, the age at which growth is completed. That growing females are faced with additional energetic requirements might account for their lower allocation to reproduction as compared with older females. The probability of attempting a second reproduction within the same breeding season and the propensity to bequeath the territory to juveniles increased from 3 years of age onwards, indicating an increase in reproductive effort with age. We think this increase in reproductive effort is an adaptive response of females to declining reproductive values when ageing, thereby supporting Williams' prediction.  相似文献   

8.
Plant reproduction yields immediate fitness benefits but can be costly in terms of survival, growth, and future fecundity. Life-history theory posits that reproductive strategies are shaped by trade-offs between current and future fitness that result from these direct costs of reproduction. Plant reproduction may also incur indirect ecological costs if it increases susceptibility to herbivores. Yet ecological costs of reproduction have received little empirical attention and remain poorly integrated into life-history theory. Here, we provide evidence for herbivore-mediated ecological costs of reproduction, and we develop theory to examine how these costs influence plant life-history strategies. Field experiments with an iteroparous cactus (Opuntia imbricata) indicated that greater reproductive effort (proportion of meristems allocated to reproduction) led to greater attack by a cactus-feeding insect (Narnia pallidicornis) and that damage by this herbivore reduced reproductive success. A dynamic programming model predicted strongly divergent optimal reproductive strategies when ecological costs were included, compared with when these costs were ignored. Meristem allocation by cacti in the field matched the optimal strategy expected under ecological costs of reproduction. The results indicate that plant reproductive allocation can strongly influence the intensity of interactions with herbivores and that associated ecological costs can play an important selective role in the evolution of plant life histories.  相似文献   

9.
Natural Selection of Optimal Reproductive Tactics   总被引:5,自引:0,他引:5  
Acting through differential reproductive success, natural selectionhas produced a great diversity of existing reproductive tactics,each of which presumably corresponds to a local optimum thatmaximizes an individual organism's lifetime reproductive successin its particular environment. A body of theory on so-calledreproductive "strategies" has yet to be adequately related toan independent theoretical framework on optimal foraging tactics.Some of the possible interactions and constraints between ananimal's input of matter and energy via foraging and its outputin offspring using these same materials are briefly considered.For example, storage and utilization of lipids allow an organismto gather and sequester matter and energy during a period thatis not suitable for successful reproduction, but enable theorganism to expend those materials at a later, more satisfactorytime. Such interactions between foraging and reproduction leadto a sort of temporal integration, which greatly complicatesestimation of reproductive effort (current investment in seed,eggs, or progeny) in variable environments. An optimal reproductivetactic maximizes an individual's reproductive value (the sumof all present plus the expected probable number of all futureoffspring) at every age. Reproductive effort should vary inverselywith residual reproductive value (expectation of future offspring);moreover, the precise form of the trade-off between presentoffspring versus future progeny, which is itself sensitive toa multitude of environmental influences including resource availabilityand the immediate environmental conditions for reproductionand survival, dictates the optimal tactic at any given age.Simple graphical models of optimal reproductive tactics arepresented and discussed. Finally, some promising directionsfor future work, as well as certain potential difficulties,are noted.  相似文献   

10.
1. Age-related changes in reproductive effort have been predicted by theoretical models and observed in a wide range of organisms. However, for indeterminate growers such as fish, an allometric relationship linking gonad weight to body size is commonly observed. There is often a positive linear relationship when these variables are log-transformed, which by implication reduces the influence of age on reproductive effort.
2. Contrasting with this usual pattern, we report a nonlinear relationship between gonad weight and fish size (after log-transformation) in mosquitofish ( Gambusia holbrooki ), clearly resulting from age changes. The declining rate of increase of gonad mass as a function of body size revealed a higher reproductive effort for younger individuals relative to size.
3. This size-independent age effect on reproductive effort was predicted based on previous studies of mosquitofish and is certainly related to their particular life-history strategy, combining an early maturation and short lifespan with the physiological costs of reproduction and over-wintering. Our findings probably apply to other small, short-lived species with similar life history.  相似文献   

11.
Despite increasing interest, animal personality is still a puzzling phenomenon. Several theoretical models have been proposed to explain intraindividual consistency and interindividual variation in behaviour, which have been primarily supported by qualitative data and simulations. Using an empirical approach, I tested predictions of one main life-history hypothesis, which posits that consistent individual differences in behaviour are favoured by a trade-off between current and future reproduction. Data on life-history were collected for individuals of a natural population of grey mouse lemurs (Microcebus murinus). Using open-field and novel-object tests, I quantified variation in activity, exploration and boldness for 117 individuals over 3 years. I found systematic variation in boldness between individuals of different residual reproductive value. Young males with low current but high expected future fitness were less bold than older males with high current fecundity, and males might increase in boldness with age. Females have low variation in assets and in boldness with age. Body condition was not related to boldness and only explained marginal variation in exploration. Overall, these data indicate that a trade-off between current and future reproduction might maintain personality variation in mouse lemurs, and thus provide empirical support of this life-history trade-off hypothesis.  相似文献   

12.
Plasticity in reproductive physiology is one avenue by which environmental signals, such as poor quality food, can be coordinated with adaptive responses. Insects have the ability to resorb oocytes that are not oviposited. Oosorption is proposed to be an adaptive mechanism to optimize fitness in hostile environments, recouping resources that might otherwise be lost, and reinvesting them into future reproductive potential. We tested the hypothesis that oosorption is an evolved mechanism by which females can reallocate resources from current reproductive effort to survival and future reproduction, when conditions for reproduction are poor, by examining the reproductive physiology and life-history outcome under poor quality food in populations of the milkweed bug (Oncopeltus fasciatus) that have adapted to live on sunflower seed. Females fed a diet of pumpkin seeds, known to be a poor host food, had higher levels of ovarian apoptosis (oosorption), lower reproductive output, but no reduction in life span under poor nutrition, as predicted under the oosorption hypothesis. However, the schedule of reproduction was surprising given the "wait to reproduce" assumption of oosorption as early fecundity was unaffected.  相似文献   

13.
One of the central tenets in life-history theory is that there is a trade-off between current and future reproduction (i.e. a cost of reproduction). The mechanism for this cost of reproduction is, however, largely unknown. One hypothesis is that the high workload during reproduction compromises resistance to parasites and that the resulting increase in parasitaemia has negative effects on the prospects of future survival. Although empirical evidence for a negative relationship between reproductive effort and parasite resistance exists, the causal relationships between reproductive effort, parasite resistance and future reproduction are still unclear. We use a path analytical approach to investigate whether a change in parasite resistance (as measured by intensities of infections by the blood parasite Haemoproteus) after manipulation of reproductive effort, translates into altered survival in female blue tits. Our results show a negative relationship between reproductive effort and parasite resistance, although evident only in first-year breeders. Moreover, we found survival costs of reproduction in first-year breeders. These costs were, however, not mediated by the blood parasite studied.  相似文献   

14.
Fisher DO  Blomberg SP 《PloS one》2011,6(1):e15226
Evolutionary explanations for life history diversity are based on the idea of costs of reproduction, particularly on the concept of a trade-off between age-specific reproduction and parental survival, and between expenditure on current and future offspring. Such trade-offs are often difficult to detect in population studies of wild mammals. Terminal investment theory predicts that reproductive effort by older parents should increase, because individual offspring become more valuable to parents as the conflict between current versus potential future offspring declines with age. In order to demonstrate this phenomenon in females, there must be an increase in maternal expenditure on offspring with age, imposing a fitness cost on the mother. Clear evidence of both the expenditure and fitness cost components has rarely been found. In this study, we quantify costs of reproduction throughout the lifespan of female antechinuses. Antechinuses are nocturnal, insectivorous, forest-dwelling small (20-40 g) marsupials, which nest in tree hollows. They have a single synchronized mating season of around three weeks, which occurs on predictable dates each year in a population. Females produce only one litter per year. Unlike almost all other mammals, all males, and in the smaller species, most females are semelparous. We show that increased allocation to current reproduction reduces maternal survival, and that offspring growth and survival in the first breeding season is traded-off with performance of the second litter in iteroparous females. In iteroparous females, increased allocation to second litters is associated with severe weight loss in late lactation and post-lactation death of mothers, but increased offspring growth in late lactation and survival to weaning. These findings are consistent with terminal investment. Iteroparity did not increase lifetime reproductive success, indicating that terminal investment in the first breeding season at the expense of maternal survival (i.e. semelparity) is likely to be advantageous for females.  相似文献   

15.
Life-history theory proposes that organisms must trade-off investment in current and future reproduction. Production of ornamental display is an important component of reproductive effort that has rarely been considered in tests of allocation trade-offs. Male eastern bluebirds (Sialia sialis) display brilliant ultraviolet-blue plumage that is correlated with mate acquisition and male competitive ability. To investigate trade-offs between current reproductive effort and the future expression of a sexually selected ornament, we manipulated the parental effort of males by changing their brood sizes. We found that parents provisioned experimentally enlarged broods more often than reduced broods. As predicted by life-history theory, the change in parental effort had a significant effect on the relative plumage ornamentation of males in the subsequent year: males with reduced broods significantly increased in plumage brightness. Moreover, this change in plumage coloration had a direct effect on the timing of breeding in the following season: males that displayed brighter plumage in the year following the manipulation mated with females that initiated egg laying earlier in the season. These data indicate that male bluebirds must trade-off conserving energy for production of future ornamentation versus expending energy for current reproduction.  相似文献   

16.
Evolutionary theories of aging posit that greater reproductive effort causes somatic decline given a fundamental trade-off between investing energy in reproduction and repair. Few studies in high fertility human populations support this hypothesis, and problems of phenotypic correlation can obscure the expected trade-off between reproduction and somatic condition. This cross-sectional study investigates whether greater reproductive effort is associated with reduced calcaneal bone mineral density (BMD) among female Tsimane forager-farmers of lowland Bolivia. We also investigate whether female Tsimane BMD values are lower than sex- and age-matched US reference values, despite the fact that Tsimane engage in higher physical activity levels that can increase mechanical loading. To measure calcaneal BMD, quantitative ultrasonography was performed on 130 women (mean ± SD age = 36.6 ± 15.7, range = 15–75) that were recruited regardless of past or current reproductive status. Anthropometric and demographic data were collected during routine medical exams. As predicted, higher parity, short inter-birth interval, and earlier age at first birth are associated with reduced BMD among Tsimane women after adjusting for potential confounders. Population-level differences are apparent prior to the onset of reproduction, and age-related decline in BMD is greater among Tsimane compared with American women. Greater cumulative reproductive burden may lower calcaneal BMD individually and jointly with other lifestyle and heritable factors. Fitness impacts of kin transfers in adulthood may determine the value of investments in bone remodeling, and thus affect selection on age-profiles of bone mineral loss. Am J Phys Anthropol 156:637–648, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
Among organisms with determinate growth, optimization models predict that reproductive effort should increase as individuals approach old age, but the assumptions of these models may be inappropriate because the senescence that generates the necessary selective pressure may be not itself be optimal. Population genetics models were constructed to examine whether genes for age-specific changes in reproductive effort could invade a population in which senescence was maintained at equilibrium levels by a balance between mutation and selection. In asexually reproducing organisms, it was found that strategies of increasing reproductive effort could not normally invade the population. In sexually reproducing organisms, however, recombination was found to be important and genes for age-specific changes in effort could spread in the population under most circumstances.  相似文献   

18.
In iteroparous animals, investment in growth is compromised by investment in reproduction, especially in species with indeterminate growth. Life‐history theory predicts that growth should be favoured over reproduction, assuming size‐related fecundity or survival. Hence, increase body condition represents an increase in reproductive potential. Simultaneous hermaphrodites should adjust their resource allocation to each sex function in response to current conditions but, recently, it has been suggested that, in hermaphrodites, gender allocation should be considered as a three‐way trade‐off, including the investment in somatic growth. Due to the higher costs involved, the female function is affected to a greater extent by environmentally stressful conditions rather than the male function. To examine this, we induced stress in the hermaphroditic earthworm Eisenia fetida (Savigny, 1826) and looked for changes in resource allocation in nonreproductive and reproductive individuals. Experimental stress was induced by using tweezers to elicit contractile escape movements. We predicted that stressed earthworms would preferentially allocate resources to growth. In nonreproductive individuals, however, stress had a negative effect on growth, although weight recovery was rapid once manipulation ceased, indicating the importance of body condition, as well as the existence of mechanisms of compensatory growth for growth trajectories in this earthworm species. The response of reproductive individuals was consistent with our expectation: (1) stressed worms maintained their growth rate at the expense of current reproduction and (2) stressed earthworms laid 25% fewer cocoons, which were 30% lighter than cocoons laid by control earthworms. The present results suggest that E. fetida regulates its reproductive effort and that future reproduction has more impact on its fitness than current reproduction. The trade‐off between current and future reproduction should be taken into consideration in models of sex allocation in simultaneous hermaphrodites. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 91 , 593–600.  相似文献   

19.
Antipredator behavior and the asset-protection principle   总被引:7,自引:2,他引:5  
Many species of animals face the continual problem of balancingthe trade-off between reducing predation risks and maintainingor increasing their reproductive fitness. The terms of the trade-offare often asymmetric: each separate behavioral decision maylead to only a marginal increase in fitness, but may place theorganism's entire future reproduction in jeopardy. Consequently,the organism's reproductive value is an important componentof most antipredator decision problems. In this paper reproductivevalue is considered as an asset in need of protection. The "asset-protectionprinciple" states that the larger the current reproductive asset,the more important it becomes to protect it. Because reproductivevalue is usually age and condition dependent, optimal antipredatorbehavior also often depends on these variables. I use a uniformmodeling technique (dynamic programming) to address a varietyof issues related to antipredator behavior  相似文献   

20.
A plant's reproductive allocation (RA) schedule describes the fraction of surplus energy allocated to reproduction as it increases in size. While theorists use RA schedules as the connection between life history and energy allocation, little is known about RA schedules in real vegetation. Here we review what is known about RA schedules for perennial plants using studies either directly quantifying RA or that collected data from which the shape of an RA schedule can be inferred. We also briefly review theoretical models describing factors by which variation in RA may arise. We identified 34 studies from which aspects of an RA schedule could be inferred. Within those, RA schedules varied considerably across species: some species abruptly shift all resources from growth to reproduction; most others gradually shift resources into reproduction, but under a variety of graded schedules. Available data indicate the maximum fraction of energy allocated to production ranges from 0.1 to 1 and that shorter lived species tend to have higher initial RA and increase their RA more quickly than do longer‐lived species. Overall, our findings indicate, little data exist about RA schedules in perennial plants. Available data suggest a wide range of schedules across species. Collection of more data on RA schedules would enable a tighter integration between observation and a variety of models predicting optimal energy allocation, plant growth rates, and biogeochemical cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号