首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple and efficient synthesis of nAChR antagonist (+/-)-7-methyl-2-exo-(3'-iodo-5'-pyridinyl)-7-azabicyclo[2.2.1]-heptane ((+/-)-NMI-EPB) has been developed. Both enantiomers of (+/-)-NMI-EPB were separated by semi-preparative chiral HPLC. The enantiomers manifested a substantial difference in their inhibition binding affinities ((+)-NMI-EPB, K(i)=2310, 1680 pM; (-)-NMI-EPB, K(i)=55, 68 pM). The enantiomers were stereoselectively radiolabeled with (11)C. In the distribution studies in the rodent brain [(11)C](-)-NMI-EPB specifically labeled nAChR whereas [(11)C](+)-NMI-EPB exhibited little specific binding. In the baboon PET study [(11)C](-)-NMI-EPB did not reach steady-state within 90 min post-injection suggesting that the radioligand may have some limitations for quantitative imaging.  相似文献   

2.
(R)-1-(10,11-Dihydro-dibenzo[b,f]azepin-5-yl)-3-methylamino-propan-2-ol ((R)-OHDMI) and (S,S)-1-cyclopentyl-2-(5-fluoro-2-methoxy-phenyl)-1-morpholin-2-yl-ethanol (CFMME) were synthesized and found to be potent inhibitors of norepinephrine reuptake. Each was labelled efficiently in its methyl group with carbon-11 (t(1/2)=20.4 min) as a prospective radioligand for imaging brain norepinephrine transporters (NET) with positron emission tomography (PET). The uptake and distribution of radioactivity in brain following intravenous injection of each radioligand into cynomolgus monkey was examined in vivo with PET. After injection of (R)-[(11)C]OHDMI, the maximal whole brain uptake of radioactivity was very low (1.1% of injected dose; I.D.). For occipital cortex, thalamus, lower brainstem, mesencephalon and cerebellum, radioactivity ratios to striatum at 93 min after radioligand injection were 1.35, 1.35, 1.2, 1.2 and 1.0, respectively. After injection of [(11)C]CFMME, radioactivity readily entered brain (3.5% I.D.). Ratios of radioactivity to cerebellum at 93 min for thalamus, occipital cortex, region of locus coeruleus, mesencephalon and striatum were 1.35, 1.3, 1.3, 1.2 and 1.2, respectively. Radioactive metabolites in plasma were measured by radio-HPLC. (R)-[(11)C]OHDMI represented 75% of plasma radioactivity at 4 min after injection and 6% at 30 min. After injection of [(11)C]CFMME, 84% of the radioactivity in plasma represented parent at 4 min and 20% at 30 min. Since the two new hydroxylated radioligands provide only modest regional differentiation in brain uptake and form potentially troublesome lipophilic radioactive metabolites, they are concluded to be inferior to existing radioligands, such as (S,S)-[(11)C]MeNER, (S,S)-[(18)F]FMeNER-D(2) and (S,S)-[(18)F]FRB-D(4), for the study of brain NETs with PET in vivo.  相似文献   

3.
A novel positron emission tomography (PET) radiotracer, 6-[18F]fluoro-3-(2(S)-azetidinylmethoxy)pyridine (6-[18F]fluoro-A-85380, 6-[18F]FA) was synthesized by a no-carrier-added fluorination. In vitro 6-[18F]FA bound to nicotinic acetylcholine receptors (nAChRs), with very high affinity (Kd 28 pM). In PET studies, 6-[18F]FA specifically labeled central nAChRs in the brain of the Rhesus monkey and demonstrated highest levels of accumulation of radioactivity in brain regions enriched with the alpha4beta2 subtype of nAChR. 6-[18F]FA exhibited a target-to-non-target ratio (estimated as radioactivity in the thalamus to that in the cerebellum) of binding in primate brain similar to that previously determined for a labeled analog of epibatidine, [18F]FPH. In contrast to [18F]FPH, the novel tracer is expected to exhibit substantially less toxicity. Thus, the novel radioligand, 6-[18F]FA, appears to be a suitable candidate for imaging nAChRs in human brain.  相似文献   

4.
N-[(18)F]Fluoroethyl-4-piperidyl acetate ([(18)F]FEtP4A) was synthesized and evaluated as a PET tracer for imaging brain acetylcholinesterase (AchE) in vivo. [(18)F]FEtP4A was previously prepared by reacting 4-piperidyl acetate (P4A) with 2-[(18)F]fluoroethyl bromide ([(18)F]FEtBr) at 130 degrees C for 30 min in 37% radiochemical yield using an automated synthetic system. In this work, [(18)F]FEtP4A was synthesized by reacting P4A with 2-[(18)F]fluoroethyl iodide ([(18)F]FEtI) or 2-[(18)F]fluoroethyl triflate ([(18)F]FEtOTf in improved radiochemical yields, compared with [(18)F]FEtBr under the corresponding condition. Ex vivo autoradiogram of rat brain and PET summation image of monkey brain after iv injection of [(18)F]FEtP4A displayed a high radioactivity in the striatum, a region with the highest AchE activity in the brain. Moreover, the distribution pattern of (18)F radioactivity was consistent with that of AchE in the brain: striatum>frontal cortex>cerebellum. In the rat and monkey plasma, two radioactive metabolites were detected. However, their presence might not preclude the imaging studies for AchE in the brain, because they were too hydrophilic to pass the blood-brain barrier and to enter the brain. In the rat brain, only [(18)F]fluoroethyl-4-piperidinol ([(18)F]FEtP4OH) was detected at 30 min postinjection. The hydrolytic [(18)F]FEtP4OH displayed a slow washout and a long retention in the monkey brain until the PET experiment (120 min). Although [(18)F]FEtP4A is a potential PET tracer for imaging AchE in vivo, its lower hydrolytic rate and lower specificity for AchE than those of [(11)C]MP4A may limit its usefulness for the quantitative measurement for AchE in the primate brain.  相似文献   

5.
2-(2',6'-Dimethoxy-[1,1'-biphenyl]-3-yl)-N,N-dimethylethanamine has been identified as a potent ligand for the serotonin 7 (5-HT(7)) receptor. In this study, we describe the synthesis, radiolabeling and in vivo evaluation of [(11)C]2-(2',6'-dimethoxy-[1,1'-biphenyl]-3-yl)-N,N-dimethylethanamine ([(11)C]Cimbi-806) as a radioligand for imaging brain 5-HT(7) receptors with positron emission tomography (PET). Precursor and reference compound was synthesized and subsequent (11)C-labelling with [(11)C]methyltriflate produced [(11)C]Cimbi-806 in specific activities ranging from 50 to 300 GBq/μmol. Following intravenous injection, brain uptake and distribution of [(11)C]Cimbi-806 was assessed with PET in Danish Landrace pigs. The time-activity curves revealed high brain uptake in thalamic and striatal regions (SUV ~2.5) and kinetic modeling resulted in distribution volumes (V(T)) ranging from 6 mL/cm(3) in the cerebellum to 12 mL/cm(3) in the thalamus. Pretreatment with the 5-HT(7) receptor antagonist SB-269970 did not result in any significant changes in [(11)C]Cimbi-806 binding in any of the analyzed regions. Despite the high brain uptake and relevant distribution pattern, the absence of appropriate in vivo blocking with a 5-HT(7) receptor selective compounds renders the conclusion that [(11)C]Cimbi-806 is not an appropriate PET radioligand for imaging the 5-HT(7) receptor in vivo.  相似文献   

6.
The biodistribution of the nicotinic acetylcholine receptor (nAChR) radioligand 2-[18F]fluoro-3-[2(S)-2-azetidinylmethoxy]pyridine ([18F]fluoro-A-85380, half-life of fluorine-18 = 110 min) in selected rat brain areas was assessed in vivo. The radiotracer showed a good penetration in the brain. The regional distribution of the radioligand was consistent with the density of nAChRs determined from previous studies in vitro. Sixty minutes post-injection, the highest uptake was observed in the thalamus, (1% I.D./g tissue), an intermediate one in the frontal cortex (0.78% I.D./g tissue), and the lowest in the cerebellum (0.5% I.D./g tissue). Pretreatment with several nAChR ligands (nicotine, cytisine, epibatidine, unlabeled fluoro-A-85380) substantially reduced uptake of the radioligand in the three cerebral areas. Pretreatment with the nAChR channel blocker mecamylamine or with the muscarinic receptor antagonist dexetimide had no appreciable effect on the uptake of fluoro-A-85380. These results support the high in vivo selectivity and specificity of fluoro-A-85380. Therefore, [18F]fluoro-A-85380 may be useful for positron emission tomography study of nAChRs in humans.  相似文献   

7.
N-(5-Fluoro-2-phenoxyphenyl)-N-(2-[(18)F]fluoromethoxy-d(2)-5-methoxybenzyl)acetamide ([(18)F]2) is a potent ligand (IC(50): 1.71 nM) for peripheral benzodiazepine receptor (PBR). However, in vivo evaluation on rodents and primates showed that this ligand was unstable and rapidly metabolized to [(18)F]F(-) by defluorination of the [(18)F]fluoromethyl moiety. In this study, we designed a deuterium-substituted analogue, N-(5-fluoro-2-phenoxyphenyl)-N-(2-[(18)F]fluoromethoxy-d(2)-5-methoxybenzyl)acetamide ([(18)F]5) as a radioligand for PBR to reduce the in vivo metabolic rate of the non-deuterated [(18)F]2. The design principle was based on the hypothesis that the deuterium substitution may reduce the rate of defluorination initiated by cleavage of the C-H bond without altering the binding affinity for PBR. The non-radioactive 5 was prepared by reacting diiodomethane-d(2) (CD(2)I(2), 6) with a phenol precursor 7, followed by treatment with tetrabutylammonium fluoride. The ligand [(18)F]5 was synthesized by the alkylation of 7 with [(18)F]fluoromethyl iodide-d(2) ([(18)F]FCD(2)I, [(18)F]9). Compound 5 displayed a similar in vitro affinity to PBR (IC(50): 1.90 nM) with 2. In vivo evaluation demonstrated that [(18)F]5 was metabolized by defluorination to [(18)F]F(-) as a main radioactive component, but its metabolic rate was slower than that of [(18)F]2 in the brain of mice. The deuterium substitution decreased the radioactivity level of [(18)F]5 in the bone of mouse, augmented by the percentage of specific binding to PBR in the rat brain determined by ex vivo autoradiography. However, the PET image of [(18)F]5 for monkey brain showed high radioactivity in the brain and skull, suggesting a possible species difference between rodents and primates.  相似文献   

8.
The serotonin receptor 6 (5-HT(6)) is implicated in the pathophysiology of cognitive diseases, schizophrenia, anxiety and obesity and in vivo studies of this receptor would be of value for studying the pathophysiology of these disorders. Therefore, N-[3,5-dichloro-2-(methoxy)phenyl]-4-(methoxy)-3-(1-piperazinyl)benzenesulfonamide (SB399885), a selective and high affinity (pK(i)=9.11) 5-HT(6) antagonist, has been radiolabeled with carbon-11 by O-methylation of the corresponding desmethyl analogue with [(11)C]MeOTf in order to determine the suitability of [(11)C]SB399885 to quantify 5-HT(6)R in living brain using PET. Desmethyl-SB399885 was prepared, starting from 1-(2-methoxyphenyl) piperazine hydrochloride, in excellent yield. The yield obtained for radiolabeling of [(11)C]SB399885 was 30±5% (EOS) and the total synthesis time was 30min at EOB. PET studies with [(11)C]SB399885 in baboon showed fast uptake followed by rapid clearance in the brain. Highest uptake of radioactivity of [(11)C]SB399885 in baboon brain were found in temporal cortex, parahippocampal gyrus, pareital cortex, amygdala, and hippocampus. Poor brain entry and inconsistent brain uptake of [(11)C]SB399885 compared to known 5-HT(6)R distribution limits its usefulness for the in vivo quantification of 5-HT(6)R with PET.  相似文献   

9.
A novel radioligand, 6-chloro-3-((2-( S )-azetidinyl)methoxy)-5-(2-fluoropyridin-4-yl)pyridine (NIDA522131), for imaging extrathalamic nicotinic acetylcholine receptors (nAChRs) was characterized in vitro and in vivo using positron emission tomography. The Kd and T1/2 of dissociation of NIDA522131 binding measured at 37°C in vitro were 4.9 ± 0.4 pmol/L and 81 ± 5 min, respectively. The patterns of radioactivity distribution in monkey brain in vivo was similar to that of 2-[18F]fluoro-3-(2( S )-azetidinylmethoxy)pyridine (2FA), a radioligand that has been successfully used in humans, and matched the α4β2* nAChRs distribution. Comparison between [18F]NIDA522131 and 2FA demonstrated better in vivo binding properties of the new radioligand and substantially greater radioactivity accumulation in brain. Consistent with [18F]NIDA522131 elevated affinity for nAChRs and its increased lipophilicity, both, the total and non-displaceable distribution volumes were substantially higher than those of 2FA. Estimated binding potential values in different brain regions, characterizing the specificity of receptor binding, were 3–4 fold higher for [18F]NIDA522131 than those of 2FA. Pharmacological evaluation in mice demonstrated a toxicity that was comparable to 2FA and is in agreement with a 2300 fold higher affinity at α4β2* versus α3β4* nAChRs. These results suggest that [18F]NIDA522131 is a promising positron emission tomography radioligand for studying extrathalamic nAChR in humans.  相似文献   

10.
The peptide hormone ghrelin mediates through action on its receptor, the growth hormone secretagogue receptor (GHSR), and is known to play an important role in a variety of metabolic functions including appetite stimulation, weight gain, and suppression of insulin secretion. In light of the fact that obesity is one of the major health problems plaguing the modern society, the ghrelin signaling system continues to remain an important and attractive pharmacological target for the treatment of obesity. In vivo imaging of the GHSR could shed light on the mechanism by which ghrelin affects feeding behavior and thus offers a new therapeutic perspective for the development of effective treatments. Recently, a series of piperidine-substituted quinazolinone derivatives was reported to be selective and potent GHSR antagonists with high binding affinities. Described herein is the synthesis, in vitro, and in vivo evaluation of (S)-6-(4-fluorophenoxy)-3-((1-[(11)C]methylpiperidin-3-yl)methyl)-2-o-tolylquinazolin-4(3H)-one ([(11)C]1), a potential PET radioligand for imaging GHSR.  相似文献   

11.
Compounds 1-4 were synthesized and investigated for selectivity and potency for the oxytocin receptor (OTR) to determine their viability as radioactive ligands. Binding assays determined 1-4 to have high binding affinity for both the human and rodent OTR and also have high selectivity for the human OTR over human vasopressin V1a receptors (V1aR). Inadequate selectivity for OTR over V1aR was found for rodent receptors in all four compounds. The radioactive (C-11, F-18, and I-125) derivatives of 1-4 were synthesized and investigated for use as autoradiography and positron emission tomography (PET) ligands. Receptor autoradiography performed with [(125)I]1 and [(125)I]2 on rodent brain slices provided the first small molecule radioligand images of the OTR and V1aR. Biodistribution studies determined [(125)I]1 and [(125)I]2 were adequate for in vivo peripheral investigations, but not for central investigations due to low uptake within the brain. A biodistribution study with [(18)F]3 suggested brain uptake occurred slowly over time. PET imaging studies with [(18)F]3 and [(11)C]4 using a rat model provided insufficient uptake in the brain over a 90 and 45 min scan times respectively to merit further investigations in non-human primates.  相似文献   

12.
AimsThere is an urgent need for positron emission tomography (PET) imaging of the nicotinic acetylcholine receptors (nAChR) to study the role of the nicotinic system in Alzheimer's and Parkinson's diseases, schizophrenia, drug dependence and many other disorders. Greater understanding of the underlying mechanisms of the nicotinic system could direct the development of medications to treat these disorders. Central nAChRs also contribute to a variety of brain functions, including cognition, behavior and memory.Main methodsCurrently, only two radiotracers, (S)-3-(azetidin-2-ylmethoxy)-2-[18F]fluoropyridine (2-[18F]FA) and (S)-5-(azetidin-2-ylmethoxy)-2-[18F]fluoropyridine (6-[18F]FA), are available for studying nAChRs in human brain using PET. However, the “slow” brain kinetics of these radiotracers hamper mathematical modeling and reliable measurement of kinetic parameters since it takes 4–7 h of PET scanning for the tracers to reach steady state. The imaging drawbacks of the presently available nAChR radioligands have initiated the development of radioligands with faster brain kinetics by several research groups.Key findingsThis minireview attempts to survey the important achievements of several research groups in the discovery of PET nicotinic radioligands reached recently. Specifically, this article reviews papers published from 2006 through 2008 describing the development of fifteen new nAChR 11C-and 18F-ligands that show improved imaging properties over 2-[18F]FA.SignificanceThe continuous efforts of radiomedicinal chemists led to the development of several interesting PET radioligands for imaging of nAChR including [18F]AZAN, a potentially superior alternative to 2-[18F]FA.  相似文献   

13.
Metabotropic glutamate receptor 2 (mGluR2) has been suggested as a therapeutic target for treating schizophrenia-like symptoms arising from increased glutamate transmission in the human forebrain. However, no reliable positron emission tomography (PET) radiotracer allowing for in vivo visualization of mGluR2 in the human brain is currently available. In this study, we synthesized 4-(2-fluoro-4-[11C]methoxyphenyl)-5-((2-methylpyridin-4-yl)methoxy)picolinamide ([11C]1) and evaluated its potential as a PET tracer for imaging mGluR2 in the rodent brain. Compound 1, a negative allosteric modulator (NAM) of mGluR2, showed high in vitro binding affinity (IC50: 26?nM) for mGluR2 overexpressed in human cells. [11C]1 was synthesized by O-[11C]methylation of the phenol precursor 2 with [11C]methyl iodide. After the reaction, HPLC purification and formulation, [11C]1 of 7.4?±?2.8?GBq (n?=?8) was obtained from [11C]carbon dioxide of 22.5?±?4.8?GBq (n?=?8) with >99% radiochemical purity and 70?±?32?GBq/μmol (n?=?8) molar activity at the end of synthesis. In vitro autoradiography for rat brains showed that [11C]1 binding was heterogeneously distributed in the cerebral cortex, striatum, hippocampus, and cerebellum. This pattern is consistent with the regional distribution pattern of mGluR2 in the rodent brain. The radioactivity was significantly reduced by self- or MNI-137 (a mGluR2 NAM) blocking. Small-animal PET studies indicated a low in vivo specific binding of [11C]1 in the rat brain. The brain uptake was increased in a P-glycoprotein and breast cancer resistant protein double knockout mouse, when compared to a wild-type mouse. While [11C]1 presented limited potential as an in vivo PET tracer for mGluR2, we suggested that it can be used as a lead compound for developing new radiotracers with improved in vivo brain properties.  相似文献   

14.
In recent years, there has been considerable effort to design and synthesize radiotracers suitable for use in Positron Emission Tomography (PET) imaging of the alpha4beta2 neuronal nicotinic acetylcholine receptor (nAChR) subtype. A new fluoropyridinyl derivative of (-)-cytisine (1), namely (-)-9-(2-fluoropyridinyl)cytisine (3, K(i) values of 24 and 3462 nM for the alpha4beta2 and alpha7 nAChRs subtypes, respectively) has been synthesized in four chemical steps from (-)-cytisine and labelled with fluorine-18 (T(1/2): 119.8 min) using an efficient two-step radiochemical process [(a). nucleophilic heteroaromatic ortho-radiofluorination using the corresponding N-Boc-protected nitro-derivative, (b). TFA removal of the Boc protective group]. Typically, 20-45 mCi (0.74-1.67 GBq) of (-)-9-(2-[18F]fluoropyridinyl)cytisine ([18F]-3, 2-3 Ci/micromol or 74-111 GBq/micromol) were easily obtained in 70-75 min starting from a 100 mCi (3.7 GBq) aliquot of a cyclotron-produced [18F]fluoride production batch (20-45% non decay-corrected yield based on the starting [18F]fluoride). The in vivo pharmacological profile of (-)-9-(2-[18F]fluoropyridinyl)cytisine ([18F]-3) was evaluated in rats with biodistribution studies and brain radioactivity monitoring using intracerebral radiosensitive beta-microprobes. The observed in vivo distribution of the radiotracer in brain was rather uniform, and did not match with the known regional densities of nAChRs. It was also significantly different from that of the parent compound (-)-[3H]cytisine. Moreover, competition studies with (-)-nicotine (5 mg/kg, 5 min before the radiotracer injection) did not reduce brain uptake of the radiotracer. These experiments clearly indicate that (-)-9-(2-[18F]fluoropyridinyl)cytisine ([18F]-3) does not have the required properties for imaging nAChRs using PET.  相似文献   

15.
The cyclohexyl piperazine 1 (1-cyclohexyl-4-[3-(5-methoxy-1,2,3,4-tetrahydro-naphthalen-1-yl)-propyl]-piperazine) has been shown to be a potent and selective sigma-2 receptor ligand. In the present study, we prepared [(11)C]1 by O-alkylation of the phenolic precursor 2 with [(11)C]CH(3)I. [(11)C]1 was obtained in a 29% non-decay corrected yield and specific activity of 9299 mCi/micromol calculated at end-of-synthesis. The biodistribution of [(11)C]1 in mouse brain demonstrated rapid and homogenous concentration in all brain structures, which included the cortex, thalamus, cerebellum and striatum. Co-administration of unlabelled 1 (1 mg/kg) or the sigma-2 selective ligand SM-21 (1 mg/kg) failed to show any significant inhibition of [(11)C]1 uptake in the mouse brain. The evaluation of this radioligand in vivo in the mouse clearly indicates that it does not possess the required properties for studying sigma-2 receptors in the brain using PET.  相似文献   

16.
In recent years, considerable effort has been spent on the design, synthesis and pharmacological characterization of radiofluorinated derivatives of the 5-HT(1A) receptor antagonist, WAY-100635, for the in vivo study of these receptors in human brain with PET. (Pyridinyl-6)-fluoro- and (pyridinyl-5)-fluoro-analogues of WAY-100635 (6-fluoro and 5-fluoro-WAY-100635, 5a/6a) were synthesized as well as the corresponding chloro-, bromo- and nitro-derivatives as precursors for labelling (5b-d and 6b-d). Comparative radiolabelling of these precursors with fluorine-18 (positron-emitting isotope, 109.8 min half-life) clearly demonstrated that only ortho-fluorination in this pyridine series, and not meta-fluorination, is of interest for the preparation of a radioligand by nucleophilic heteroaromatic substitution. 6-[(18)F]Fluoro-WAY-100635 ([(18)F]5a) can be efficiently synthesized in one step, either from the corresponding 6-bromo precursor (using conventional heating at 145 degrees C for 10 min) or from the corresponding 6-nitro precursor (using microwave activation at 100 W for 1 min). Typically, 15-25 mCi (0.55-0.92 GBq) of 6-[(18)F]fluoro-WAY-100635 ([(18)F]5a, 1-2 Ci/micromol or 37-72 GBq/micromol) were obtained in 50-70 min starting from a 100 mCi (3.7 GBq) aliquot of a batch of cyclotron-produced [(18)F]fluoride. This (18)F-labelled radioligand is now being evaluated in PET studies.  相似文献   

17.
The radiosynthesis and radiopharmacological evaluation of 1-[(11)C]methoxy-4-(2-(4-(methanesulfonyl)phenyl)cyclopent-1-enyl)-benzene [(11)C]5 as novel PET radiotracer for imaging of COX-2 expression is described. The radiotracer was prepared via O-methylation reaction with [(11)C]methyl iodide in 19% decay-corrected radiochemical yield at a specific activity of 20-25GBq/mumol at the end-of-synthesis within 35 min. The radiotracer [(11)C]5 was evaluated in vitro using various pro-inflammatory and tumor cell lines showing high functional expression of COX-2 at baseline or after induction. In vivo biodistribution of compound [(11)C]5 was characterized in male Wistar rats. Compound [(11)C]5 was rapidly metabolized in rat plasma, and more pronounced, in mouse plasma. In vivo kinetics and tumor uptake were demonstrated by dynamic small animal PET studies in a mouse tumor xenograft model. Tumor uptake of radioactivity was clearly visible overtime. However, radioactivity uptake in the tumor could not be blocked by the pre-injection of nonradioactive compound 5. Therefore, it can be concluded that radioactivity uptake in the tumor was not COX-2 mediated.  相似文献   

18.
D3 receptor radioligands (E)-4,3,2-[11C]methoxy-N-4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl-cinnamoylamides (4-[11C]MMC, [11C]1a; 3-[11C]MMC, [11C]1b; and 2-[11C]MMC, [11C]1c) were synthesized for evaluation as novel potential positron emission tomography (PET) imaging agents for brain D3 receptors. The new tracers 4,3,2-[11C]MMCs were prepared by O-[11C]methylation of corresponding precursors (E)-4,3,2-hydroxy-N-4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl-cinnamoylamides (4,3,2-HMCs) using [11C]methyl triflate and isolated by the solid-phase extraction (SPE) purification procedure with 40-65% radiochemical yields, decay corrected to end of bombardment (EOB), and a synthesis time of 15-20 min. The PET dynamic studies of the tracers [11C]1a-c in rats were performed using an animal PET scanner, IndyPET-II, developed in our laboratory. The results show that the brain uptake sequence was 4-[11C]MMC > 3-[11C]MMC > 2-[11C]MMC, which is consistent with their in vitro biological properties. The initial PET blocking studies of the tracers 4,3,2-[11C]MMCs with corresponding pretreatment drugs (E)-4,3,2-methoxy-N-4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl-cinnamoylamides (4,3,2-MMCs, 1a-c) had no effect on 4,3,2-[11C]MMCs-PET rat brain imaging. These results suggest that the localization of 4,3,2-[11C]MMCs in rat brain is mediated by nonspecific processes, and the visualization of 4,3,2-[11C]MMCs-PET in rat brain is related to nonspecific binding.  相似文献   

19.
Synthesis and in vitro evaluation of [O-methyl-(11)C]1-(2-chlorophenyl)-5-(4-methoxyphenyl)-4-methyl-1H-pyrazole-3-carboxylic acid piperidin-1-ylamide ([(11)C]-1), a potential imaging agent for CB(1) receptors using PET is described. 1-(2-Chlorophenyl)-5-(4-hydroxyphenyl)-4-methyl-1H-pyrazole-3-carboxylic acid piperidin-1-ylamide (5), the precursor for radiolabeling, was synthesized from 4-OTBDPS-propiophenone (2) in five steps with 30% overall yield. The reaction of alcohol 5 with [(11)C]MeOTf at 60 degrees C afforded [(11)C]-1 with an average radiochemical yield of 14.5% (EOS) and >2000 Ci/mmol specific activity. The radiotracer was found to selectively label CB(1) receptors in slide-mounted sections of postmortem human brain containing prefrontal cortex as demonstrated by in vitro autoradiography using phosphor imaging.  相似文献   

20.
Epibatidine (exo-2-(2'-chloro-5'-pyridyl)-7-azabicyclo[2.2.1]heptane), a natural compound isolated from the skin of the Ecuadorian poison frog Epipedobates tricolor, is the most potent nicotinic acetylcholine receptor (nAChR) agonist reported to date. In order to visualize and quantify in vivo these receptors in human brain using Positron Emission Tomography (PET), [18F]norchlorofluoroepibatidine (exo-2-(2'-[18F]fluoro-5'-pyridyl)-7-azabicyclo[2.2.1]heptane), a fluorine-18 (t(1/2): 110 min) radiolabeled derivative of epibatidine has been designed. The corresponding 2'-bromo-, 2'-iodo- and 2'-nitro exo-2-(5'-pyridyl)-7-azabicyclo[2.2.1]heptane analogues as labeling precursors, as well as norchlorofluoroepibatidine as a reference compound have been synthesized by reductive, stereoselective, palladium-catalyzed Heck-type coupling between an N-Boc protected azanorbornene and the corresponding halopyridine. [18F]Norchlorofluoroepibatidine has been radiolabeled with fluorine-18 by nucleophilic aromatic substitution from the corresponding Boc-protected halo- and nitro precursors using [18F]FK-K222 complex in DMSO by conventional heating (at 150-180 degrees C for 10 min) or microwave activations (at 100 Watt, for 1 to 2.5 min), followed by TFA-removal of the protective group. Typically, using the microwave activation procedure, 60-80 mCi (2.22-2.96 GBq) of pure [18F]norchlorofluoroepibatidine could be obtained in less than 2 h (110-115 min) from the bromo labeling precursor, with specific radioactivities of 1.5-2.5 Ci/micromol (55.5-92.5 GBq/micromol) calculated for End of Bombardment. The preliminary PET experiments in baboon (Papio papio) with [18F]norchlorofluoroepibatidine show a high uptake and a rapid accumulation of the radiotracer into the brain within 30 min. In the thalamus, a nAChR rich area, uptake of radioactivity reached a maximum at 40 min (10% I.D./100 mL tissue). The ratio of radioactivity thalamus/cerebellum (the latter being a nAChR poor area) was 2 at 40 min and increased with time, up to 4.3 at 160 min. Its specific regiodistribution and its high ratio of specific-to-nonspecific binding confirm the ideal profile of [18F]norchlorofluoroepibatidine as a suitable radioligand for PET imaging of nAChRs in the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号