首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Smoking increases indices of free radical-mediated damage of DNA which are potential underlying processes in the pathogenesis of many diseases. In this study, we evaluated whether 8 weeks of green vegetable drink (Angelica keiskei based juice) supplementation to smokers can be protective against lymphocytic DNA damage. Twenty smokers were given 240 ml of commercially available green vegetable drink every day for 8 weeks. The DNA damage was determined using single cell gel electrophoresis (COMET assay) and the damage was quantified by measuring tail length (TL), tail moment (TM), and percent DNA in tail. Eight weeks of green vegetable drink consumption resulted in a significant in lymphocytes DNA damage in all three measurements; TL, TM and % DNA in tail. These results support the hypothesis that green vegetable drink exerts a cancer-protective effect via a decrease in oxidative damage to DNA in humans.  相似文献   

2.
Polyphenolic compounds exert a variety of physiological effects in vitro including antioxidative, immunomodulatory and antigenotoxic effects. In a randomized crossover study in healthy men on a low-polyphenol diet, we determined the effects of 2 polyphenol-rich juices (330 ml/d) supplemented for 2 weeks on bioavailability of polyphenols, markers of antioxidative and immune status, and reduction of DNA damage. Juices provided 236 mg (A) and 226 mg (B) polyphenols with cyanidin glycosides (A) and epigallocatechin gallate (B) as major polyphenolic ingredients. There was no accumulation of plasma polyphenols after two weeks of juice supplementation. In contrast, plasma malondialdehyde decreased with time during juice interventions. Moreover, juice consumption also increased lymphocyte proliferative responsiveness, with no difference between the two juices. Interleukin-2 secretion by activated lymphocytes and the lytic activity of natural killer cells were significantly increased by both juices. Juice intervention had no effect on single DNA strand breaks, but significantly reduced oxidative DNA damage in lymphocytes. A time-delay was observed between the intake of fruit juice and the reduction of oxidative DNA damage and the increase in interleukin-2 secretion. We conclude that consumption of either juice enhanced antioxidant status, reduced oxidative DNA damage and stimulated immune cell functions. However, fruit juice consumption for 2 weeks did not result in elevated plasma polyphenols in subjects after overnight fasting. Further studies should focus on the time-delay between juice intake and changes in measured physiological functions, as well as on active polyphenolic metabolites mediating the observed effects.  相似文献   

3.
Inflammatory Bowel Disease (IBD) is partly caused by oxidative stress from free radicals and reduced antioxidant levels. Using hydrogen peroxide to induce oxidative stress in vitro in peripheral lymphocytes we investigated the induction of DNA damage supplemented with ethanolic extract of Chaga mushroom as a protective antioxidant. Lymphocytes were obtained from 20 IBD patients and 20 healthy volunteers. For treatment, a constant H_{2}O_{2 } dose (50 microg/ml) was used with variable doses of Chaga extract (10-500 microg/ml). DNA damage was evaluated in 50 cells per individual and dose using the Comet assay (making 1000 observations per experimental point ensuring appropriate statistical power). Chaga supplementation resulted in a 54.9% (p < 0.001) reduction of H_{2}O_{2 } induced DNA damage within the patient group and 34.9% (p < 0.001) within the control group. Lymphocytes from Crohn's disease (CD) patients had a greater basic DNA damage than Ulcerative Colitis (UC) patients (p < 0.001). Conclusively, Chaga extract reduces oxidative stress in lymphocytes from IBD patients and also healthy individuals when challenged in vitro. Thus, Chaga extract could be a possible and valuable supplement to inhibit oxidative stress in general.  相似文献   

4.
Type 2 diabetes mellitus is associated with increased oxidative stress. Free radicals produced during this stress may damage various cellular components. Gliclazide, a second-generation sulfonylurea, is an oral hypoglycemic drug that possesses antioxidant properties. Therefore, gliclazide may diminish the harmful consequences of oxidative stress in diabetic patients. The aim of our study was to evaluate the action of gliclazide on DNA damage and repair in normal human peripheral blood lymphocytes and insulinoma mouse cells (beta-TC-6). DNA damage and repair were induced by hydrogen peroxide, gamma and ultraviolet radiation and MNNG (N-methyl-N'-nitro-N-nitrosoguanidine) in the presence or absence of gliclazide and were analysed by the alkaline comet assay. DNA double-strand breaks were assayed by pulsed-field gel electrophoresis. Gliclazide protected DNA of both kinds of cells from DNA damage induced by chemicals and radiations. These results suggest that gliclazide may diminish the risk of free radical-related diseases associated with type 2 diabetes mellitus and possibly cancer.  相似文献   

5.
Berry extracts possess antioxidant activity in cell free systems, whereas cell culture and animal experimental systems have produced mixed outcomes. Our aim was to investigate the effects of blackcurrant juice and specifically blackcurrant anthocyanins on the steady state level of oxidative DNA damage in mononuclear blood cells (MNBC) of humans, determined as strand breaks (SB) as well as endonuclease III (Endo III) and formamidopyrimidine DNA glycosylase (Fpg) sensitive sites by the comet assay. Fifty-seven healthy humans completed a 3-week controlled parallel intervention study with three groups randomized to supplementation with blackcurrant juice, anthocyanin drink, or a control drink. The daily doses ranged from 475 to 1000ml/d according to body weight (mean anthocyanin intakes in blackcurrant juice and anthocyanin drink groups were 397 and 365g/d, respectively) and they were ingested during three daily meals while all volunteers were on the same strictly controlled low-flavonoid diet. Fasting venous blood samples were obtained at baseline and after 3-week of supplementation. The baseline level of oxidative DNA damage was low (e.g. less than 200 Fpg lesions per diploid cell). Fpg sensitive sites increased during the intervention within the blackcurrant juice group, whereas there were no differences between treatments in any of the DNA damage markers. In conclusion, this study shows that even large amounts of dietary antioxidants did not decrease the already low steady state levels of oxidative DNA damage in healthy adequately nourished humans.  相似文献   

6.
Grape seed polyphenols have been reported to exhibit a broad spectrum of biological properties. In this study, eleven phenolic phytochemicals from grape seeds were purified by gel chromatography and high performance liquid chromatography (HPLC). The antioxidant activities of five representative compounds with different structure type were assessed by the free radical-scavenging tests and the effects of the more potent phytochemicals on oxidative damage to DNA in mice spleen cells were investigated. Procyanidin B4, catechin, epicatechin and gallic acid reduced ferricyanide ion and scavenged the stable free radical, alpha, alpha-diphenyl-beta-picrylhydrazyl (DPPH) much more effectively than the known antioxidant vitamin ascorbic acid, while epicatechin lactone A, an oxidative derivative of epicatechin, did not reduce ferricyanide ion appreciably at concentrations used and was only about half as effective on free radical-scavenging as epicatechin. Mice spleen cells, when pre-incubated with relatively low concentration of procyanidin B4, catechin or gallic acid, were less susceptible to DNA damage induced by hydrogen peroxide (H2O2), as evaluated by the comet assay. In contrast, noticeable DNA damage was induced in mice spleen cells by incubating with higher concentration (150 microM) of catechin. Collectively, these data suggest that procyanidin B4, catechin, gallic acid were good antioxidants, at low concentration they could prevent oxidative damage to cellular DNA. But at higher concentration, these compounds may induce cellular DNA damage, taking catechin for example, which explained the irregularity of dose-effect relationship.  相似文献   

7.
While oxidative damage owing to reactive oxygen species (ROS) often increases with advancing age and is associated with many age-related diseases, its causative role in ageing is controversial. In particular, studies that have attempted to modulate ROS-induced damage, either upwards or downwards, using antioxidant or genetic approaches, generally do not show a predictable effect on lifespan. Here, we investigated whether dietary supplementation with either vitamin E (α-tocopherol) or vitamin C (ascorbic acid) affected oxidative damage and lifespan in short-tailed field voles, Microtus agrestis. We predicted that antioxidant supplementation would reduce ROS-induced oxidative damage and increase lifespan relative to unsupplemented controls. Antioxidant supplementation for nine months reduced hepatic lipid peroxidation, but DNA oxidative damage to hepatocytes and lymphocytes was unaffected. Surprisingly, antioxidant supplementation significantly shortened lifespan in voles maintained under both cold (7 ± 2°C) and warm (22 ± 2°C) conditions. These data further question the predictions of free-radical theory of ageing and critically, given our previous research in mice, indicate that similar levels of antioxidants can induce widely different interspecific effects on lifespan.  相似文献   

8.
Serra Gaucha is described as the most important wine region of Brazil. Regarding cultivars widespread in the Serra Gaucha, about 90 % of the area is occupied by vines of Vitis labrusca that is the most important specie used in grape juice production. The objective of this study was to investigate the antioxidant and neuroprotective effect of chronic intake of purple grape juice (organic and conventional) from Bordo variety (V. labrusca) on oxidative stress in different brain regions of rats supplemented with high-fat diet (HFD) for 3 months. A total of 40 male rats were randomly divided into 4 groups. Group 1 received a standard diet and water, group 2 HFD and water, group 3 HFD and conventional grape juice (CGJ), and group 4 HFD and organic grape juice (OGJ). All groups had free access to food and drink and after 3 months of treatment the rats were euthanized by decapitation and the cerebral cortex, hippocampus and cerebellum isolated and homogenized on ice for oxidative stress analysis. We observed that the consumption of calories in HFD and control groups, were higher than the groups supplemented with HFD and grape juices and that HFD diet group gain more weight than the other animals. Our results also demonstrated that HDF enhanced lipid peroxidation (TBARS) and protein damage (carbonyl) in cerebral cortex and hippocampus, reduced the non-enzymatic antioxidants defenses (sulfhydryl) in cerebral cortex and cerebellum, reduced catalase and superoxide dismutase activities in all brain tissues and enhanced nitric oxide production in all cerebral tissues. CGJ and OGJ were able to ameliorate these oxidative alterations, being OGJ more effective in this protection. Therefore, grape juices could be useful in the treatment of some neurodegenerative diseases associated with oxidative damage.  相似文献   

9.
The antioxidant potential of phenolic compounds is generally linked to their ability to scavenge free radicals. However, in addition to their radical-scavenging activity, phenolic compounds can chelate metal ions, such as iron, to prevent their participation in Fenton-type reactions, which lead to the formation of free radicals. The aim of the present study was to evaluate the ability of a phenolic-rich juice made from grapes, cherries and berries to protect human myeloid leukemia (U937) cells from oxidative stress caused by tert-butylhydroperoxide (tB-OOH). Preincubation of cells with extracts of the phenolic-rich juice at different concentrations (0-200 microM ferulic acid equivalents) for 3 h partially prevented cell death and abolished the DNA cleavage induced by tB-OOH. Moreover, when preincubating cells with the 100-microM juice extract (the dose that diminished cell death by around 50%), the partial prevention of tB-OOH-induced formation of reactive oxygen species (ROS) and mitochondrial permeability transition pore opening was observed. The radical scavenger antioxidant N,N'-diphenyl-1,4-phenylene-diamine (DPPD) and the intracellular iron chelator o-phenanthroline (o-Phe) were also tested to know whether protective effects depended on radical-scavenging or iron-chelating activities. o-Phe prevented cell death, DNA cleavage and ROS generation, whereas DPPD only prevented cell death, suggesting that phenolics in the juice afforded protection against induced oxidative stress, most probably by means of an iron-chelating mechanism.  相似文献   

10.
Carotenoids, found in many fruits and vegetables, are antioxidants that protect human skin from UV radiation. In humans, fruit and vegetable intake increases carotenoid contents in skin, which are conventionally assessed by invasive blood tests. In this study, 47 healthy Korean subjects (volunteers) consumed fruit juice containing tomato, apple, strawberry, or grape three times per week for 6 weeks. Skin antioxidant levels were measured by non-invasive resonance Raman spectroscopy. The correlation between skin carotenoid (SC) score with demographic data (age, height, weight) and juice supplementation and changes in SC scores among groups were analyzed. Variations in skin antioxidant levels increased with juice supplementation (p < 0.05). Fruit juice intake was significantly correlated with SC score, indicating increased skin antioxidant levels. Grape and tomato increased skin antioxidant levels and showed higher antioxidant activity than other fruits. Fruit juices containing high levels of carotenoids and antioxidants may provide modest benefits to human health.  相似文献   

11.
The main objective of this study was to compare the protective effect of daidzein and genistein against induced oxidative damage in Jurkat T-cell line and in peripheral blood lymphocytes of healthy subjects. After supplementation of cells with isoflavones (from 2.5 to 20micromol/L in Jurkat T-cell and from 0.01 to 2.5micromol/L in primary lymphocytes, 24h), we determined DNA damage induced by hydrogen peroxide using the comet assay and lipid peroxidation evaluating malondialdehyde (MDA) production after ferrous ion treatment. Supplementation of Jurkat cells and primary lymphocytes with both isoflavones significantly increased DNA protection from oxidative damage at concentrations between 0.1 and 5micromol/L (P<0.05), and with just daidzein, at concentrations higher than 2.5micromol/L, there was a decrease in the production of MDA (P<0.05). Our results seem to support that daidzein is just as effective as genistein in protecting cells against oxidative damage especially with respect to DNA. Moreover, since the protective effect was found at concentrations reachable in plasma after soy consumption (less than 2micromol/L), it can be assumed that the antioxidant activity of isoflavones could really contribute to the healthy properties of soy.  相似文献   

12.
Free radicals derived from oxygen, nitrogen and sulphur molecules in the biological system are highly active to react with other molecules due to their unpaired electrons. These radicals are important part of groups of molecules called reactive oxygen/nitrogen species (ROS/RNS), which are produced during cellular metabolism and functional activities and have important roles in cell signalling, apoptosis, gene expression and ion transportation. However, excessive ROS attack bases in nucleic acids, amino acid side chains in proteins and double bonds in unsaturated fatty acids, and cause oxidative stress, which can damage DNA, RNA, proteins and lipids resulting in an increased risk for cardiovascular disease, cancer, autism and other diseases. Intracellular antioxidant enzymes and intake of dietary antioxidants may help to maintain an adequate antioxidant status in the body. In the past decades, new molecular techniques, cell cultures and animal models have been established to study the effects and mechanisms of antioxidants on ROS. The chemical and molecular approaches have been used to study the mechanism and kinetics of antioxidants and to identify new potent antioxidants. Antioxidants can decrease the oxidative damage directly via reacting with free radicals or indirectly by inhibiting the activity or expression of free radical generating enzymes or enhancing the activity or expression of intracellular antioxidant enzymes. The new chemical and cell-free biological system has been applied in dissecting the molecular action of antioxidants. This review focuses on the research approaches that have been used to study oxidative stress and antioxidants in lipid peroxidation, DNA damage, protein modification as well as enzyme activity, with emphasis on the chemical and cell-free biological system.  相似文献   

13.
Type 2 diabetes mellitus is associated with elevated level of oxidative stress, which is one of the most important factors responsible for the development of chronic complications of this disease. Moreover, it was shown that diabetic patients had increased level of oxidative DNA damage and decreased effectiveness of DNA repair. These changes may be associated with increased risk of cancer in T2DM patients, since DNA damage and DNA repair play a pivotal role in malignant transformation. It was found that gliclazide, an oral hypoglycemic drug with antioxidant properties, diminished DNA damage induced by free radicals. Therefore, the aim of the present study was to evaluate the in vitro impact of gliclazide on: (i) endogenous basal and oxidative DNA damage, (ii) DNA damage induced by hydrogen peroxide and (iii) the efficacy of DNA repair of such damage. DNA damage and DNA repair in peripheral blood lymphocytes of 30 T2DM patients and 30 non-diabetic individuals were evaluated by alkaline single cell electrophoresis (comet) assay. The extent of oxidative DNA damage was assessed by DNA repair enzymes: endonuclease III and formamidopyrimidine-DNA glycosylase. The endogenous basal and oxidative DNA damages were higher in lymphocytes of T2DM patients compared to non-diabetic subjects and gliclazide decreased the level of such damage. The drug significantly decreased the level of DNA damage induced by hydrogen peroxide in both groups. Gliclazide increased the effectiveness of DNA repair in lymphocytes of T2DM patients (93.4% (with gliclazide) vs 79.9% (without gliclazide); P< or =0.001) and non-diabetic subjects (95.1% (with gliclazide) vs 90.5% (without gliclazide); P< or =0.001). These results suggest that gliclazide may protect against the oxidative stress-related chronic diabetes complications, including cancer, by decreasing the level of DNA damage induced by reactive oxygen species.  相似文献   

14.
Diabetes patients often show increased production of reactive oxidative species (ROS) together with vascular complications. The presence of these ROS may lead to increased DNA damage in peripheral blood lymphocytes that may be revealed by the comet assay. To test whether DNA is damaged in diabetes, peripheral blood samples were taken from 30 control individuals and 63 diabetic patients (15 insulin dependent (IDDM) and 48 non-insulin dependent (NIDDM)) and the alkaline comet assay was used to evaluate background levels of DNA damage. Significant differences were detected between control and diabetic patients in terms of frequencies of damaged cells. The extend of DNA migration was greater in NIDDM patients by comparison with IDDM patients which might indicate that IDDM patients are handling more oxidative damage on a regular basis. Smoker individuals had higher frequencies of cells with migration by comparison with the non-smokers in both groups. Also, clear differences between patients on placebo and on Vitamin E supplementation for 12 weeks were observed on the basis of the extend of DNA migration during single cell gel electrophoresis.  相似文献   

15.
Cigarette smoke is widely believed to increase free radical concentrations causing subsequent oxidative processes that lead to DNA damage and hence, to several diseases including lung cancer and atherosclerosis. Vitamin C is a reducing agent that can terminate free-radical-driven oxidation by being converted to a resonance-stabilized free radical. To investigate whether short-term supplementation with the antioxidants vitamin C and E decreases free-radical-driven oxidation and thus decreases DNA damage in smokers, we determined the frequency of micronuclei in lymphocytes in 24 subjects and monitored the electron paramagnetic resonance signal of ascorbate free radical formation in plasma. Further parameters comprised sister-chromatid exchanges and thiobarbituric acid-reactive substances. Twelve smokers and twelve non-smokers took 1000 mg ascorbic acid daily for 7 days and then 1000 mg ascorbic acid and 335.5 mg RRR-α-tocopherol daily for the next 7 days. Baseline concentrations of both vitamins C and E were lower and baseline numbers of micronuclei were higher (p < 0.0001) in smokers than in non-smokers. After 7 days of vitamins C and E, DNA damage as monitored by the number of micronulei was decreased in both, smokers and non-smokers, but it was more decreased in smokers as indicated by fewer micronuclei in peripheral lymphocytes (p < 0.05). Concomitantly, the plasma concentrations of vitamin C (p < 0.001) as well as the ascorbate free radical (p < 0.05) were increased. The corresponding values in non-smokers, however, did not change. Our findings show that increased ascorbate free radical formation in plasma after short-term supplementation with vitamins C and E can decrease the number of micronuclei in blood lymphocytes and thus DNA damage in smokers.  相似文献   

16.
Diabetes patients often show increased production of reactive oxidative species (ROS) together with vascular complications. The presence of these ROS may lead to increased DNA damage in peripheral blood lymphocytes that may be revealed by the comet assay. To test whether DNA is damaged in diabetes, peripheral blood samples were taken from 30 control individuals and 63 diabetic patients (15 insulin dependent (IDDM) and 48 non-insulin dependent (NIDDM)) and the alkaline comet assay was used to evaluate background levels of DNA damage. Significant differences were detected between control and diabetic patients in terms of frequencies of damaged cells. The extend of DNA migration was greater in NIDDM patients by comparison with IDDM patients which might indicate that IDDM patients are handling more oxidative damage on a regular basis. Smoker individuals had higher frequencies of cells with migration by comparison with the non-smokers in both groups. Also, clear differences between patients on placebo and on Vitamin E supplementation for 12 weeks were observed on the basis of the extend of DNA migration during single cell gel electrophoresis.  相似文献   

17.
Oxidative damage to mitochondrial DNA (mtDNA) interferes with the expression of mitochondrial-encoded subunits of the electron transport complexes of oxidative phosphorylation. MtDNA is protected by several mitochondrial antioxidant systems, but the specific importance of glutathione is unknown. We hypothesized that glutathione protects mtDNA from oxidative damage in human blood lymphocytes and that glutathione depletion increases susceptibility to mtDNA depletion, which increases vulnerability to apoptosis. MtDNA damage was measured in human blood lymphocytes exposed to tert-butyl-hydroperoxide (t-BOOH) or t-BOOH plus the glutathione analog, glutathione ethyl ester (GEE). Mitochondrial oxidative stress, mtDNA damage, and susceptibility to apoptosis were analyzed after glutathione depletion with buthionine sulfoximine (BSO). The data show selective damage to lymphocyte mtDNA at low concentrations of tBOOH that is attenuated by glutathione supplementation. Moreover, inhibition of glutathione synthesis led to lymphocyte ROS generation and mtDNA damage, and increased susceptibility to receptor-mediated apoptosis. These findings implicate the glutathione system in maintaining mtDNA integrity and resistance to apoptosis in lymphocytes and suggest that assessment of mtDNA damage in blood lymphocytes may be a useful marker of oxidative stress in humans.  相似文献   

18.
Polychlorinated biphenyls (PCBs) exposure produces neurodegeneration and induces oxidative stress. Neuroprotective role of quercetin, on PCBs induced apoptosis in hippocampus has not yet been studied. The present study is focused to see whether quercetin supplementation precludes against PCBs induced oxidative stress and hippocampal apoptosis. The results have shown that quercetin at 50 mg/kg bwt/30 days has protected oxidative stress in hippocampus of adult male rats. Quercetin, a free radical scavenger decreased the levels of oxidative stress markers in the hippocampus of simultaneous PCB+quercetin treated rats. The pro-apoptotic and anti-apoptotic molecules such as Bad, Bid, Bax and Bcl2 were altered in the hippocampus of experimental animals. PCBs increased the DNA damage and induced neurodegeneration were assessed by histological studies. PCB induced ROS may be linked to increased hippocampal neuronal apoptosis. Quercetin supplementation decreased the neuronal damage and scavenged the free radicals induced by PCBs and protects PCBs induced apoptosis and oxidative stress.  相似文献   

19.
20.
Radiation-induced cellular injury is attributed primarily to the harmful effects of free radicals, which play a key role in irradiation-induced apoptosis. In this study, we investigated the radioprotective efficacy of edaravone, a licensed clinical drug and a powerful free radical scavenger that has been tested against γ-irradiation-induced cellular damage in cultured human peripheral blood lymphocytes in studies of various diseases. Edaravone was pre-incubated with lymphocytes for 2 h prior to γ-irradiation. It was found that pretreatment with edaravone increased cell viability and inhibited generation of γ-radiation-induced reactive oxygen species (ROS) in lymphocytes exposed to 3 Gy γ-radiation. In addition, γ-radiation decreased antioxidant enzymatic activity, such as superoxide dismutase and glutathione peroxidase, as well as the level of reduced glutathione. Conversely, treatment with 100 μM edaravone prior to irradiation improved antioxidant enzyme activity and increased reduced glutathione levels in irradiated lymphocytes. Importantly, we also report that edaravone reduced γ-irradiation-induced apoptosis through downregulation of Bax, upregulation of Bcl-2, and consequent reduction of the Bax:Bcl-2 ratio. The current study shows edaravone to be an effective radioprotector against γ-irradiation-induced cellular damage in lymphocytes in vitro. Finally, edaravone pretreatment significantly reduced DNA damage in γ-irradiated lymphocytes, as measured by comet assay (% tail DNA, tail length, tail moment, and olive tail moment) (p < 0.05). Thus, the current study indicates that edaravone offers protection from radiation-induced cytogenetic alterations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号