首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Cystathionine beta-synthase catalyzes the condensation of serine and homocysteine to give cystathionine in a pyridoxal phosphate (PLP)-dependent reaction. The human enzyme contains a single heme per monomer that is bound in an N-terminal 69 amino acid extension that is missing from the otherwise highly homologous yeast enzyme. The heme dominates the UV-visible spectrum and obscures kinetic characterization of the PLP-bound reaction intermediates. In this study, we have engineered a hemeless mutant of human cystathionine beta-synthase by deletion of the N-terminal 69 amino acids. The resulting variant displays approximately 40% of the activity seen with the wild type enzyme, binds stoichiometric amounts of PLP, and permits spectral characterization of PLP-based intermediates. The enzyme as isolated exhibits an absorption maximum at 412nm corresponding to a protonated internal aldimine. Addition of serine shifts the lambdamax to 420nm (assigned as the external aldimine) with a broad shoulder between 450 and 500nm (assigned as the aminoacrylate intermediate). Addition of the product, cystathionine, also leads to formation of an external aldimine (420nm). Homocysteine elicits a red shift (and a decrease in absorption) in the spectrum from 412 to 424nm and an increase in absorption at 330nm, presumably due to formation of a dead-end complex. Mutation of K119, the residue that forms the Schiff base, to alanine results in a approximately 10(3)-fold decrease in activity, which increases approximately 2-fold in the presence of an exogenous base, ethylamine. Spectral shifts (412 --> 420nm) consistent with the formation of external aldimines are observed in the presence of serine or cystathionine, but an aminoacrylate intermediate is not formed at detectable levels. These results are consistent with an additional role for K119 as a general base in the reaction catalyzed by human cystathionine beta-synthase.  相似文献   

2.
Jhee KH  Niks D  McPhie P  Dunn MF  Miles EW 《Biochemistry》2001,40(36):10873-10880
Our studies of the reaction mechanism of cystathionine beta-synthase from Saccharomyces cerevisiae (yeast) are facilitated by the spectroscopic properties of the pyridoxal phosphate coenzyme that forms a series of intermediates in the reaction of L-serine and L-homocysteine to form L-cystathionine. To characterize these reaction intermediates, we have carried out rapid-scanning stopped-flow and single-wavelength stopped-flow kinetic measurements under pre-steady-state conditions, as well as circular dichroism and fluorescence spectroscopy under steady-state conditions. We find that the gem-diamine and external aldimine of aminoacrylate are the primary intermediates in the forward half-reaction with L-serine and that the external aldimine of aminoacrylate or its complex with L-homocysteine is the primary intermediate in the reverse half-reaction with L-cystathionine. The second forward half-reaction of aminoacrylate with L-homocysteine is rapid. No primary kinetic isotope effect was obtained in the forward half-reaction with L-serine. The results provide evidence (1) that the formation of the external aldimine of L-serine is faster than the formation of the aminoacrylate intermediate, (2) that aminoacrylate is formed by the concerted removal of the alpha-proton and the hydroxyl group of L-serine, and (3) that the rate of the overall reaction is rate-limited by the conversion of aminoacrylate to L-cystathionine. We compare our results with cystathionine beta-synthase with those of related investigations of tryptophan synthase and O-acetylserine sulfhydrylase.  相似文献   

3.
Jhee KH  Niks D  McPhie P  Dunn MF  Miles EW 《Biochemistry》2002,41(6):1828-1835
Our studies of the reaction mechanism of cystathionine beta-synthase from yeast (Saccharomyces cerevisiae) are facilitated by the spectroscopic properties of the pyridoxal phosphate coenzyme. The enzyme catalyzes the reaction of L-serine with L-homocysteine to form L-cystathionine through a series of pyridoxal phosphate intermediates. In this work, we explore the substrate specificity of the enzyme by use of substrate analogues combined with kinetic measurements under pre-steady-state conditions and with circular dichroism and fluorescence spectroscopy under steady-state conditions. Our results show that L-allothreonine, but not L-threonine, serves as an effective substrate. L-Allothreonine reacts with the pyridoxal phosphate cofactor to form a stable 3-methyl aminoacrylate intermediate that absorbs maximally at 446 nm. The rapid-scanning stopped-flow results show that the binding of L-allothreonine as the external aldimine is faster than formation of the 3-methyl aminoacrylate intermediate. The 3-methyl aminoacrylate intermediate reacts with L-homocysteine to form a new amino acid, 3-methyl-L-cystathionine, which was characterized by nuclear magnetic resonance spectroscopy. This new amino acid may be a useful analogue of L-cystathionine.  相似文献   

4.
Taoka S  West M  Banerjee R 《Biochemistry》1999,38(9):2738-2744
Cystathionine beta-synthase is an unusual enzyme that requires the cofactors heme and pyridoxal phosphate (PLP) to catalyze the condensation of homocysteine and serine to generate cystathionine. This transsulfuration reaction represents one of two major cellular routes for detoxification of homocysteine, which is a risk factor for atherosclerosis. While the beta-replacement reaction catalyzed by this enzyme suggests a role for the pyridoxal phosphate, the role of the heme is uncertain. In this study we have examined the effect of changing one of the ligands to the heme on the activity of the enzyme. Binding of carbon monooxide results in the displacement of a thiolate ligand to the ferrous heme, and is accompanied by complete loss of cystathionine beta-synthase activity. Furthermore, inhibition by CO is competitive with respect to homocysteine, providing the first indication that the homocysteine binding site is in the proximity of heme. Binding of both CO and cyanide to ferrous cystathionine beta-synthase occurs in two distinct isotherms and indicates that the hemes are nonequivalent. We have employed fluorescence spectroscopy to characterize the bound PLP and its interaction with serine. PLP bound to cystathionine beta-synthase is weakly fluorescent and exists as a mixture of the protonated and unprotonated tautomers. Reaction with hydroxylamine releases the oxime and greatly enhances the associated fluorescence. Binding of serine is accompanied by a shift to the unprotonated tautomer of the external aldimine as well as the appearance of a new fluorescent species at approximately 400 nm that could be due to the aminoacrylate or to a gemdiamine intermediate. These data provide the first characterization of the PLP bound to cystathionine beta-synthase. Treatment of cystathionine beta-synthase with hydroxylamine releases two PLPs after 1 day and results in complete loss of activity. Incubation for an additional 3-4 days results in the release of two more PLPs. These data lead us to revise the PLP stoichiometry to 4 per tetramer, and to the conclusion that the heme and PLP sites in cystathionine beta-synthase are nonequivalent.  相似文献   

5.
Cystathionine β-synthase (CBS) catalyzes the first step in the transsulfuration pathway in mammals, i.e., the condensation of serine and homocysteine to produce cystathionine and water. Recently, we have reported a steady-state kinetic analysis of the three hydrogen sulfide (H(2)S)-generating reactions that are catalyzed by human and yeast CBS [Singh, S., et al. (2009) J. Biol. Chem. 284, 22457-22466]. In the study presented here, we report a pre-steady-state kinetic analysis of intermediates in the H(2)S-generating reactions catalyzed by yeast CBS (yCBS). Because yCBS does not have a heme cofactor, in contrast to human CBS, it is easier to observe reaction intermediates with yCBS. The most efficient route for H(2)S generation by yCBS is the β-replacement of the cysteine thiol with homocysteine. In this reaction, yCBS first reacts with cysteine to release H(2)S and forms an aminoacrylate intermediate (k(obs) of 1.61 ± 0.04 mM(-1) s(-1) at low cysteine concentrations and 2.8 ± 0.1 mM(-1) s(-1) at high cysteine concentrations, at 20 °C), which has an absorption maximum at 465 nm. Homocysteine binds to the E·aminoacrylate intermediate with a bimolecular rate constant of 142 mM(-1) s(-1) and rapidly condenses to form the enzyme-bound external aldimine of cystathionine. The reactions could be partially rate limited by release of the products, cystathionine and H(2)S.  相似文献   

6.
Our studies of cystathionine beta-synthase from Saccharomyces cerevisiae (yeast) are aimed at clarifying the cofactor dependence and catalytic mechanism and obtaining a system for future investigations of the effects of mutations that cause human disease (homocystinuria or coronary heart disease). We report methods that yielded high expression of the yeast gene in Escherichia coli and of purified yeast cystathionine beta-synthase. The absorption and circular dichroism spectra of the homogeneous enzyme were characteristic of a pyridoxal phosphate enzyme and showed the absence of heme, which is found in human and rat cystathionine beta-synthase. The absence of heme in the yeast enzyme facilitates spectroscopic studies to probe the catalytic mechanism. The reaction of the enzyme with L-serine in the absence of L-homocysteine produced the aldimine of aminoacrylate, which absorbed at 460 nm and had a strong negative circular dichroism band at 460 nm. The formation of this intermediate from the product, L-cystathionine, demonstrates the partial reversibility of the reaction. Our results establish the overall catalytic mechanism of yeast cystathionine beta-synthase and provide a useful system for future studies of structure and function. The absence of heme in the functional yeast enzyme suggests that heme does not play an essential catalytic role in the rat and human enzymes. The results are consistent with the absence of heme in the closely related enzymes O-acetylserine sulfhydrylase, threonine deaminase, and tryptophan synthase.  相似文献   

7.
Jhee KH  McPhie P  Miles EW 《Biochemistry》2000,39(34):10548-10556
Cystathionine beta-synthase from yeast (Saccharomyces cerevisiae) provides a model system for understanding some of the effects of disease-causing mutations in the human enzyme. The mutations, which lead to accumulation of L-homocysteine, are linked to homocystinuria and cardiovascular diseases. Here we characterize the domain architecture of the heme-independent yeast cystathionine beta-synthase. Our finding that the homogeneous recombinant truncated enzyme (residues 1-353) is catalytically active and binds pyridoxal phosphate stoichiometrically establishes that the N-terminal residues 1-353 compose a catalytic domain. Removal of the C-terminal residues 354-507 increases the specific activity and alters the steady-state kinetic parameters including the K(d) for pyridoxal phosphate, suggesting that the C-terminal residues 354-507 compose a regulatory domain. The yeast enzyme, unlike the human enzyme, is not activated by S-adenosyl-L-methionine. The truncated yeast enzyme is a dimer, whereas the full-length enzyme is a mixture of tetramer and octamer, suggesting that the C-terminal domain plays a role in the interaction of the subunits to form higher oligomeric structures. The N-terminal catalytic domain is more stable and less prone to aggregate than full-length enzyme and is thus potentially more suitable for structure determination by X-ray crystallography. Comparisons of the yeast and human enzymes reveal significant differences in catalytic and regulatory properties.  相似文献   

8.
Human cystathionine β-synthase (CBS), a novel heme-containing pyridoxal 5′-phosphate enzyme, catalyzes the condensation of homocysteine and serine or cysteine to produce cystathionine and H2O or H2S, respectively. The presence of heme in CBS has limited spectrophotometric characterization of reaction intermediates by masking the absorption of the pyridoxal 5′-phosphate cofactor. In this study, we employed difference stopped-flow spectroscopy to characterize reaction intermediates formed under catalytic turnover conditions. The reactions of l-serine and l-cysteine with CBS resulted in the formation of a common aminoacrylate intermediate (kobs = 0.96 ± 0.02 and 0.38 ± 0.01 mm−1 s−1, respectively, at 24 °C) with concomitant loss of H2O and H2S and without detectable accumulation of the external aldimine or other intermediates. Homocysteine reacted with the aminoacrylate intermediate with kobs = 40.6 ± 3.8 s−1 and re-formed the internal aldimine. In the reverse direction, CBS reacted with cystathionine, forming the aminoacrylate intermediate with kobs = 0.38 ± 0.01 mm−1 s−1. This study provides the first insights into the pre-steady-state kinetic mechanism of human CBS and indicates that the reaction is likely to be limited by a conformational change leading to product release.  相似文献   

9.
S Taoka  L Widjaja  R Banerjee 《Biochemistry》1999,38(40):13155-13161
Cystathionine beta-synthase is a unique heme protein that catalyzes a pyridoxal phosphate (or PLP)-dependent beta-replacement reaction. The reaction involves the condensation of serine and homocysteine and constitutes one of the two major avenues for detoxification of homocysteine in mammals. The enzyme is allosterically regulated by S-adenosylmethionine (AdoMet). In this study, we have characterized the kinetic, spectroscopic, and ligand binding properties of a truncated catalytic core of cystathionine beta-synthase extending from residues 1 through 408 in which the C-terminal 143 residues have been deleted. This is similar to a natural variant of the protein that has been described in a homocystinuric patient in which the predicted peptide is 419 amino acids in length. Truncation leads to the formation of a dimeric enzyme in contrast to the tetrameric organization of the native enzyme. Some of the kinetic properties of the truncated enzyme are different from the full-length form, most notably, significantly higher K(m)s for the two substrates, and loss of activation by AdoMet. This is paralleled by the absence of AdoMet binding to the truncated form, whereas four AdoMet molecules bind cooperatively to the full-length tetrameric enzyme with a K(d) of 7. 4 microM. Steady-state kinetic analysis indicates that the order of substrate addition is important. Thus, preincubation of the enzyme with homocysteine leads to a 2-fold increase in V(max) relative to preincubation of the enzyme with serine. Since the intracellular concentration of serine is significantly greater than that of homocysteine, the physiological significance of this phenomenon needs to be considered. Based on ligand binding studies and homology searches with protein sequences in the database, we assign residues 68-209 as being important for PLP binding, residues 241-341 for heme binding, and residues 421-469 for AdoMet binding.  相似文献   

10.
Human cystathionine beta-synthase is a pyridoxal 5'-phosphate enzyme containing a heme binding domain and an S-adenosyl-l-methionine regulatory site. We have investigated by single crystal microspectrophotometry the functional properties of a mutant lacking the S-adenosylmethionine binding domain. Polarized absorption spectra indicate that oxidized and reduced hemes are reversibly formed. Exposure of the reduced form of enzyme crystals to carbon monoxide led to the complete release of the heme moiety. This process, which takes place reversibly and without apparent crystal damage, facilitates the preparation of a heme-free human enzyme. The heme-free enzyme crystals exhibited polarized absorption spectra typical of a pyridoxal 5'-phosphate-dependent protein. The exposure of these crystals to increasing concentrations of the natural substrate l-serine readily led to the formation of the key catalytic intermediate alpha-aminoacrylate. The dissociation constant of l-serine was found to be 6 mm, close to that determined in solution. The amount of the alpha-aminoacrylate Schiff base formed in the presence of l-serine was pH independent between 6 and 9. However, the rate of the disappearance of the alpha-aminoacrylate, likely forming pyruvate and ammonia, was found to increase at pH values higher than 8. Finally, in the presence of homocysteine the alpha-aminoacrylate-enzyme absorption band readily disappears with the concomitant formation of the absorption band of the internal aldimine, indicating that cystathionine beta-synthase crystals catalyze both beta-elimination and beta-replacement reactions. Taken together, these findings demonstrate that the heme moiety is not directly involved in the condensation reaction catalyzed by cystathionine beta-synthase.  相似文献   

11.
Aitken SM  Kirsch JF 《Biochemistry》2003,42(2):571-578
Cystathionine beta-synthase (CBS) is a pyridoxal-phosphate-dependent enzyme that catalyzes a beta-replacement reaction in which the hydroxyl group of serine (L-Ser) is displaced by the thiol of homocysteine (L-Hcys) to form cystathionine (L-Cth) in the first step of the trans-sulfuration pathway. A new continuous assay for the forward reaction, employing cystathionine beta-lyase and L-lactate dehydrogenase as coupling enzymes, is described. It alleviates product inhibition by L-Cth and revealed that the values for (1.2 mM) and for substrate inhibition by L-Hcys ( = 2.0 mM) are lower than those previously reported. A continuous, 5,5'-dithio-bis-(2-nitrobenzoic acid) (DTNB)-based assay for the CBS-catalyzed hydrolysis of L-Cth to L-Ser and L-Hcys provides a tool for investigation of the reverse reaction (k(catR) = 0.56 s(-)(1), = 0.083 mM). The (catR)/ versus pH profile of ytCBS is bell-shaped with a pH optimum of 8.3, and the pK(a) values for the acidic and basic limbs are 8.05 and 8.63, respectively. The latter is assigned to the alpha-amino group of L-Cth (pK(a) = 8.54). The internal aldimine of ytCBS remains protonated at pH < 11; therefore, the acidic pK(a) is assigned to an enzyme functionality that is not associated with the internal aldimine. K(eq) was determined directly and from the kinetic parameters, and the values are 0.61 and 1.2 microM, respectively.  相似文献   

12.
Reaction mechanism and regulation of cystathionine beta-synthase   总被引:3,自引:0,他引:3  
In mammals, cystathionine beta-synthase catalyzes the first step in the transsulfuration pathway which provides an avenue for the conversion of the essential amino acid, methionine, to cysteine. Cystathionine beta-synthase catalyzes a PLP-dependent condensation of serine and homocysteine to cystathionine and is unique in also having a heme cofactor. In this review, recent advances in our understanding of the kinetic mechanism of the yeast and human enzymes as well as pathogenic mutants of the human enzyme and insights into the role of heme in redox sensing are discussed from the perspective of the crystal structure of the catalytic core of the human enzyme.  相似文献   

13.
Ojha S  Hwang J  Kabil O  Penner-Hahn JE  Banerjee R 《Biochemistry》2000,39(34):10542-10547
Human cystathionine beta-synthase is one of two key enzymes involved in intracellular metabolism of homocysteine. It catalyzes a beta-replacement reaction in which the thiolate of homocysteine replaces the hydroxyl group of serine to give the product, cystathionine. The enzyme is unusual in its dependence on two cofactors: pyridoxal phosphate and heme. The requirement for pyridoxal phosphate is expected on the basis of the nature of the condensation reaction that is catalyzed; however the function of the heme in this protein is unknown. We have examined the spectroscopic properties of the heme in order to assign the axial ligands provided by the protein. The heme Soret peak of ferric cystathionine beta-synthase is at 428 nm and shifts to approximately 395 nm upon addition of the thiol chelator, mercuric chloride. This is indicative of 6-coordinate low-spin heme converting to a 5-coordinate high-spin heme. The enzyme as isolated exhibits a rhombic EPR signal with g values of 2.5, 2.3, and 1.86, which are similar to those of heme proteins and model complexes with imidazole/thiolate ligands. Mercuric chloride treatment of the enzyme results in conversion of the rhombic EPR signal to a g = 6 signal, consistent with formation of the high-spin ferric heme. The X-ray absorption data reveal that iron in ferric cystathionine beta-synthase is 6-coordinate, with 1 high-Z scatterer and 5 low-Z scatterers. This is consistent with the presence of 5 nitrogens and 1 sulfur ligand. Together, these data support assignment of the axial ligands as cysteinate and imidazole in ferric cystathionine beta-synthase.  相似文献   

14.
Evande R  Blom H  Boers GH  Banerjee R 《Biochemistry》2002,41(39):11832-11837
Human cystathionine beta-synthase is a heme protein that catalyzes the condensation of serine and homocysteine to form cystathionine in a pyridoxal phosphate-dependent reaction. Mutations in this enzyme are the leading cause of hereditary hyperhomocysteinemia with attendant cardiovascular and other complications. The enzyme is activated approximately 2-fold by the allosteric regulator S-adenosylmethionine (AdoMet), which is presumed to bind to the C-terminal regulatory domain. The regulatory domain exerts an inhibitory effect on the enzyme, and its deletion is correlated with a 2-fold increase in catalytic activity and loss of responsiveness to AdoMet. A mutation in the C-terminal regulatory domain, D444N, displays high levels of enzyme activity, yet is pathogenic. In this study, we have characterized the biochemical penalties associated with this mutation and demonstrate that it is associated with a 4-fold lower steady-state level of cystathionine beta-synthase in a fibroblast cell line that is homozygous for the D444N mutation. The activity of the recombinant D444N enzyme mimics the activity of the wild-type enzyme seen in the presence of AdoMet and can be further activated approximately 2-fold in the presence of supraphysiolgical concentrations of the allosteric regulator. The mutation increases the K(act) for AdoMet from 7.4 +/- 0.2 to 460 +/- 130 microM, thus rendering the enzyme functionally unresponsive to AdoMet under physiological concentrations. These results indicate that the D444N mutation partially abrogates the intrasteric inhibition imposed by the C-terminal domain. We propose a model that takes into account the three kinetically distinguishable states that are observed with human cystathionine beta-synthase: "basal" (i.e., wild-type enzyme as isolated), "activated" (wild-type enzyme + AdoMet or the D444N mutant as isolated), and superactivated (D444N mutant + AdoMet or wild-type enzyme lacking the C-terminal regulatory domain).  相似文献   

15.
The most common cause of severely elevated homocysteine or homocystinuria is inherited disorders in cystathionine beta-synthase. The latter enzyme is a unique hemeprotein that catalyzes pyridoxal phosphate (PLP)-dependent condensation of serine and homocysteine to give cystathionine, thus committing homocysteine to catabolism. A point mutation, V168M, has been described in a homocystinuric cell line and is associated with a B(6)-responsive phenotype. In this study, we have examined the kinetic properties of this mutant and demonstrate that the mutation affects the PLP but not the heme content. The approximately 13-fold diminution in activity because of the mutation corresponds to an approximately 7-fold decrease in the level of bound PLP. This may be explained by half of the sites activity associated with cystathionine beta-synthase. The addition of PLP results in partial but not full restoration of activity to wild type levels. Elimination of the C-terminal quarter of the mutant protein results in alleviation of the catalytic penalty imposed by the V168M mutation. The resulting truncated protein is very similar to the corresponding truncated enzyme with wild type sequence and is now able to bind the full complement of both heme and PLP cofactors. These results indicate that the V168M mutation per se does not affect binding of PLP directly and that interactions between the regulatory C terminus and the catalytic N terminus are important in modulating the cofactor content and therefore the activity of the full-length enzyme. These studies provide the first biochemical explanation for the B(6)-responsive phenotype associated with a cystathionine beta-synthase-impaired homocystinuric genotype.  相似文献   

16.
Phillips RS  Chen HY  Faleev NG 《Biochemistry》2006,45(31):9575-9583
Tyrosine phenol-lyase (TPL) from Citrobacter freundii is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the reversible hydrolytic cleavage of l-Tyr to give phenol and ammonium pyruvate. The proposed reaction mechanism for TPL involves formation of an external aldimine of the substrate, followed by deprotonation of the alpha-carbon to give a quinonoid intermediate. Elimination of phenol then has been proposed to give an alpha-aminoacrylate Schiff base, which releases iminopyruvate that ultimately undergoes hydrolysis to yield ammonium pyruvate. Previous stopped-flow kinetic experiments have provided direct spectroscopic evidence for the formation of the external aldimine and quinonoid intermediates in the reactions of substrates and inhibitors; however, the predicted alpha-aminoacrylate intermediate has not been previously observed. We have found that 4-hydroxypyridine, a non-nucleophilic analogue of phenol, selectively binds and stabilizes aminoacrylate intermediates in reactions of TPL with S-alkyl-l-cysteines, l-tyrosine, and 3-fluoro-l-tyrosine. In the presence of 4-hydroxypyridine, a new absorption band at 338 nm, assigned to the alpha-aminoacrylate, is observed with these substrates. Formation of the 338 nm peaks is concomitant with the decay of the quinonoid intermediates, with good isosbestic points at approximately 365 nm. The value of the rate constant for aminoacrylate formation is similar to k(cat), suggesting that leaving group elimination is at least partially rate limiting in TPL reactions. In the reaction of S-ethyl-l-cysteine in the presence of 4-hydroxypyridine, a subsequent slow reaction of the alpha-aminoacrylate is observed, which may be due to iminopyruvate formation. Both l-tyrosine and 3-fluoro-l-tyrosine exhibit kinetic isotope effects of approximately 2-3 on alpha-aminoacrylate formation when the alpha-(2)H-labeled substrates are used, consistent with the previously reported internal return of the alpha-proton to the phenol product. These results are the first direct spectroscopic observation of alpha-aminoacrylate intermediates in the reactions of TPL.  相似文献   

17.
Cystathionine beta-synthase in mammals lies at a pivotal crossroad in methionine metabolism directing flux toward cysteine synthesis and catabolism. The enzyme exhibits a modular organization and complex regulation. It catalyzes the beta-replacement of the hydroxyl group of serine with the thiolate of homocysteine and is unique in being the only known pyridoxal phosphate-dependent enzyme that also contains heme b as a cofactor. The heme functions as a sensor and modulates enzyme activity in response to redox change and to CO binding. Mutations in this enzyme are the single most common cause of hereditary hyperhomocysteinemia. Elucidation of the crystal structure of a truncated and highly active form of the human enzyme containing the heme- and pyridoxal phosphate binding domains has afforded a structural perspective on mechanistic and mutation analysis studies. The C-terminal regulatory domain containing two CBS motifs exerts intrasteric regulation and binds the allosteric activator, S-adenosylmethionine. Studies with mammalian cells in culture as well as with animal models have unraveled multiple layers of regulation of cystathionine beta-synthase in response to redox perturbations and reveal the important role of this enzyme in glutathione-dependent redox homestasis. This review discusses the recent advances in our understanding of the structure, mechanism, and regulation of cystathionine beta-synthase from the perspective of its physiological function, focusing on the clinically relevant human enzyme.  相似文献   

18.
Sen S  Banerjee R 《Biochemistry》2007,46(13):4110-4116
Cystathionine beta-synthase catalyzes the condensation of serine and homocysteine to yield cystathionine and is the single most common locus of mutations associated with homocystinuria. In this study, we have examined the kinetic consequences of a pair of linked patient mutations, P78R/K102N, that are housed in the catalytic core of the protein and compared it to the effects of the corresponding single mutations. The P78R mutation affords purification of a mixture of higher order oligomers, P78R-I, which resembles the mixed quaternary state associated with wild-type enzyme. However, unlike wild-type enzyme, P78R-I converts over time to P78R-II, which exists predominantly as a full-length dimer. The specific activities of the K102N, P78R-I, and P78R-II mutants in the absence of AdoMet are approximately 3-, 9-, and 3-fold lower than of wild-type enzyme and are stimulated 2.9-, 2.5-, and 1.4-fold respectively by AdoMet. However, when linked, the specific activity of the resulting double mutant is comparable to that of wild-type enzyme but it is unresponsive to AdoMet, revealing that interactions between the two sites modulate the phenotype of the enzyme. Steady-state kinetic analysis for the double mutant reveals a sigmoidal dependence on homocysteine that is not observed with wild-type enzyme, which is ascribed to the mutation at the K102 locus and indicates changes in subunit interactions. Hydrogen-deuterium mass spectrometric analysis reveals that, even in the absence of AdoMet, the double mutant is locked in an activated conformation that is observed for wild-type enzyme in the presence of AdoMet, providing a structural rationale for loss of this allosteric regulation. To our knowledge, this is the first example of mutations in the catalytic core of cystathionine beta-synthase that result in failure of AdoMet-dependent regulation. Furthermore, analysis of individual single mutations has permitted, for the first time, partial kinetic characterization of a full-length dimeric form of human cystathionine beta-synthase.  相似文献   

19.
We determined the 2.25 A resolution crystal structure of the betaA169L/betaC170W mutant form of the tryptophan synthase alpha(2)beta(2) complex from Salmonella typhimurium complexed with the alpha-active site substrate analogue 5-fluoro-indole-propanol-phosphate to identify the structural basis for the changed kinetic properties of the mutant (Anderson, K. S., Kim, A. Y., Quillen, J. M., Sayers, E., Yang, X. J., and Miles, E. W. (1995) J. Biol. Chem. 270, 29936-29944). Comparison with the wild-type enzyme showed that the betaTrp(170) side chain occludes the tunnel connecting the alpha- and beta-active sites, explaining the accumulation of the intermediate indole during a single enzyme turnover. To prevent a steric clash between betaLeu(169) and betaGly(135), located in the beta-sheet of the COMM (communication) domain (betaGly(102)-betaGly(189)), the latter reorganizes. The changed COMM domain conformation results in a loss of the hydrogen bonding networks between the alpha- and beta-active sites, explaining the poor activation of the alpha-reaction upon formation of the aminoacrylate complex at the beta-active site. The 100-fold reduced affinity for serine seems to result from a movement of betaAsp(305) away from the beta-active site so that it cannot interact with the hydroxyl group of a pyridoxal phosphate-bound serine. The proposed structural dissection of the effects of each single mutation in the betaA169L/betaC170W mutant would explain the very different kinetics of this mutant and betaC170F.  相似文献   

20.
Human cystathionine beta-synthase (CBS) catalyzes a pyridoxal 5'-phosphate (PLP) dependent beta-replacement reaction to synthesize cystathionine from serine and homocysteine. The enzyme is unique in bearing not only a catalytically important PLP but also heme. In order to study a regulatory process mediated by heme, we performed mutagenesis of Arg-51 and Arg-224, which have hydrogen-bonding interactions with propionate side chains of the prosthetic group. It was found that the arginine mutations decrease CBS activity by approximately 50%. The results indicate that structural changes in the heme vicinity are transmitted to PLP existing 20 A away from heme. A possible explanation of our results is discussed on the basis of CBS structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号