首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Invadosomes are adhesion structures involved in tissue invasion that are characterized by an intense actin polymerization–depolymerization associated with β1 and β3 integrins and coupled to extracellular matrix (ECM) degradation activity. We induced the formation of invadosomes by expressing the constitutive active form of Src, SrcYF, in different cell types. Use of ECM surfaces micropatterned at the subcellular scale clearly showed that in mesenchymal cells, integrin signaling controls invadosome activity. Using β1−/− or β3−/− cells, it seemed that β1A but not β3 integrins are essential for initiation of invadosome formation. Protein kinase C activity was shown to regulate autoassembly of invadosomes into a ring-like metastructure (rosette), probably by phosphorylation of Ser785 on the β1A tail. Moreover, our study clearly showed that β1A links actin dynamics and ECM degradation in invadosomes. Finally, a new strategy based on fusion of the photosensitizer KillerRed to the β1A cytoplasmic domain allowed specific and immediate loss of function of β1A, resulting in disorganization and disassembly of invadosomes and formation of focal adhesions.  相似文献   

2.
3.
Glomerulosclerosis is considered to be the final pathway leading to the progressive loss of renal function in several kidney diseases, transforming growth factor β1 (TGF-β1) plays a critical role in glomerulosclerosis. However, the mechanisms of TGF-β1 stimulating glomerulosclerosis remain poorly understood. Here we report that TGF-β1-induced expression of fibronectin (FN) depends on the activity of aldose reductase (AR) in human mesangial cells (HMCs).The results show that TGF-β1 increased the expression of FN, which attenuated by pharmacological inhibition of AR or knockdown of the enzyme by small interfering RNA (siRNA). MAPKs (ERK, JNK and p38) signalling pathways were activated in HMCs after stimulated by TGF-β1, inhibition of AR blunted the activation ERK, p38 and JNK signalling pathways. These changes were associated with decreased TGF-β1-induced expression of FN. These results indicate that AR is a potent regulator of TGF-β1 induced expression of FN in human mesangial cells: it suggests that inhibition of this enzyme may be useful to prevented extracellular matrix (ECM) deposition in glomerulosclerosis.  相似文献   

4.
5.
The 5β-pregnane-3α,6α,20α-iriol and 5β-pregnane-3α,6α,20β-triol obtained by reduction of 3α,6α-dihydroxy-5β-pregnan-20-one were converted to trimethylsilyl ether derivatives and analysed by gas-liquid chromatography (GLC) and gas chromatography-mass spectrometry (GC-MS).After extraction, solvolysis and enzymatic hydrolysis of urinary steroid conjugates (from 19 normal pregnant women), the liberated steroids were separated by liquid-gel chromatography and were analysed by GLC and GLC-MS. The 5β-pregnane-3α,6α,20α-triol isolated and identified in the Sephadex LH-20 fractions 8 and 9, was present in urine from 15 pregnant women after the 16th week of gestation. After this time, this metabolite was found in a quantity between 0.20 to 2.90 mg/24 h, with a significant increase between the 26th to 30th week of the gestation.With the present in vivo data, it is not possible to establish the exact enzymatic pathway involved in the biosynthesis of the 5β-pregnane-3α,6α,20α-triol. However, it is probable that the immediate precursor of this compound was the 3α,6α-dihydroxy-5β-pregnan-20-one, and that urinary excretion of 5β-pregnane-3α,6α,20α-triol reflected one part of hepatomaternal metabolism of 6-hydroxyprogesterone formed in the foeto-placental unit.  相似文献   

6.

Introduction

Articular chondrocytes undergo an obvious phenotypic change when cultured in monolayers. During this change, or dedifferentiation, the expression of type I and type III procollagen is induced where normal chondrocytes express little type I and type III procollagen. In this study, we attempted to determine the mechanism(s) for the induction of such procollagen expression in dedifferentiating chondrocytes.

Methods

All experiments were performed using primary-cultured human articular chondrocytes under approval of institutional review boards. Integrin(s) responsible for the induction of type I and type III procollagen expression were specified by RNAi experiments. The signal pathway(s) involved in the induction were determined by specific inhibitors and RNAi experiments. Adenovirus-mediated experiments were performed to identify a small GTPase regulating the activity of integrins in dedifferentiating chondrocytes. The effect of inhibition of integrins on dedifferentiation was investigated by experiments using echistatin, a potent disintegrin. The effect of echistatin was investigated first with monolayer-cultured chondrocytes, and then with pellet-cultured chondrocytes.

Results

In dedifferentiating chondrocytes, α5β1 integrin was found to be involved in the induction of type I and type III procollagen expression. The induction was known to be mediated by v-akt murine thymoma viral oncogene homolog (AKT) signaling. Among the three AKT isoforms, AKT1 seemed to be most involved in the signaling. Elated RAS viral (r-ras) oncogene homolog (RRAS) was considered to regulate the progression of dedifferentiation by modulating the affinity and avidity of α5β1 integrin to ligands. Echistatin inhibited dedifferentiation of monolayer-cultured chondrocytes. Furthermore, the matrix formed by pellet-cultured chondrocytes more closely resembled that of normal cartilage compared with the controls.

Conclusions

The result of this study has shown, for the first time, that α5β1 integrin may be responsible for the induction of non-cartilaginous collagen expression in chondrocytes undergoing dedifferentiation. Again, this study has shown that the inhibition of ligand ligation to integrins may be an effective strategy to inhibit phenotypic change of cultured chondrocytes, and to improve the quality of matrix synthesized by primary cultured chondrocytes.  相似文献   

7.
8.
Keratinocyte differentiation is the process of cellular maturation from a mitotic state to a terminally differentiated state during which skin builds up a tough yet soft skin barrier to protect the body. Its irreversibility also allows the shedding of excessive keratinocytes, thereby maintaining skin homeostasis and preventing skin diseases. Although the entire journey of keratinocyte differentiation is intricate and not well understood, it is known that Ras is able to block keratinocyte terminal differentiation and instead induce keratinocyte proliferation and transformation. It appears that uncontrolled proliferation actually interrupts differentiation.

However, it has been unclear whether there are any innate surveillants that would be able to induce terminal differentiation by antagonizing excessive mitotic activities. Inhibitor of nuclear factor κB kinase-α (IKKα, previously known as Chuk) emerges as a master regulator in the coordinative control of keratinocyte differentiation and proliferation and as a major tumor suppressor in human and mouse skin squamous cell carcinomas. IKKα does so largely by integrating into the epidermal growth factor receptor (EGFR)/Ras/extracellular signal-regulated kinase (Erk)/EGFR ligand pathways during mitosis and differentiation. We discuss these findings herein to extend our understanding of how IKKα-mediated terminal differentiation serves as an innate surveillant in skin.  相似文献   

9.
10.
The Wnt-signaling pathway regulates β-cell functions. It is not known how the expression of endogenous Wnt-signaling molecules is regulated in β-cells. Therefore, we investigated the effect of antidiabetic drugs and glucose on the expression of Wnt-signaling molecules in β-cells. Primary islets were isolated and cultured. The expression of Wnt-signaling molecules (Wnt-4, Wnt-10b, Frizzled-4, LRP5, TCF7L2) and TNFα was analyzed by semiquantitative PCR and Western blotting. Transient transfections were carried out and proliferation assays of INS-1 β-cells performed using [(3)H]thymidine uptake and BrdU ELISA. Insulin secretion was quantified. A knockdown (siRNA) of Wnt-4 in β-cells was carried out. Exendin-4 significantly increased the expression of Wnt-4 in β-cells on the mRNA level (2.8-fold) and the protein level (3-fold) (P < 0.001). The effect was dose dependent, with strongest stimulation at 10 nM, and it was maintained after long-term stimulation over 4 wk. Addition of exd-(9-39), a GLP-1 receptor antagonist, abolished the effect of exendin-4. Treatment with glucose, insulin, or other antidiabetic drugs had no effect on the expression of any of the examined Wnt-signaling molecules. Functionally, Wnt-4 antagonized the activation of canonical Wnt-signaling in β-cells. Wnt-4 had no effect on glucose-stimulated insulin secretion or insulin gene expression. Knocking down Wnt-4 decreased β-cell proliferation to 45% of controls (P < 0.05). In addition, Wnt-4 and exendin-4 treatment decreased the expression of TNFaα mRNA in primary β-cells. These data demonstrate that stimulation with exendin-4 increases the expression of Wnt-4 in β-cells. Wnt-4 modulates canonical Wnt signaling and acts as regulator of β-cell proliferation and inflammatory cytokine release. This suggests a novel mechanism through which GLP-1 can regulate β-cell proliferation.  相似文献   

11.
12.
Transforming growth factor-β1 (TGF-β1) is an important regulator of fibrogenesis in heart disease. In many other cellular systems, TGF-β1 may also induce autophagy, but a link between its fibrogenic and autophagic effects is unknown. Thus we tested whether or not TGF-β1-induced autophagy has a regulatory function on fibrosis in human atrial myofibroblasts (hATMyofbs). Primary hATMyofbs were treated with TGF-β1 to assess for fibrogenic and autophagic responses. Using immunoblotting, immunofluorescence and transmission electron microscopic analyses, we found that TGF-β1 promoted collagen type Iα2 and fibronectin synthesis in hATMyofbs and that this was paralleled by an increase in autophagic activation in these cells. Pharmacological inhibition of autophagy by bafilomycin-A1 and 3-methyladenine decreased the fibrotic response in hATMyofb cells. ATG7 knockdown in hATMyofbs and ATG5 knockout (mouse embryonic fibroblast) fibroblasts decreased the fibrotic effect of TGF-β1 in experimental versus control cells. Furthermore, using a coronary artery ligation model of myocardial infarction in rats, we observed increases in the levels of protein markers of fibrosis, autophagy and Smad2 phosphorylation in whole scar tissue lysates. Immunohistochemistry for LC3β indicated the localization of punctate LC3β with vimentin (a mesenchymal-derived cell marker), ED-A fibronectin and phosphorylated Smad2. These results support the hypothesis that TGF-β1-induced autophagy is required for the fibrogenic response in hATMyofbs.Interstitial fibrosis is common to many cardiovascular disease etiologies including myocardial infarction (MI),1 diabetic cardiomyopathy2 and hypertension.3 Fibrosis may arise due to maladaptive cardiac remodeling following injury and is a complex process resulting from activation of signaling pathways, such as TGF-β1.4 TGF-β1 signaling has broad-ranging effects that may affect cell growth, differentiation and the production of extracellular matrix (ECM) proteins.5, 6 Elevated TGF-β1 is observed in post-MI rat heart7 and is associated with fibroblast-to-myofibroblast phenoconversion and concomitant activation of canonical Smad signaling.8 The result is a proliferation of myofibroblasts, which then leads to inappropriate deposition of fibrillar collagens, impaired cardiac function and, ultimately, heart failure.9, 10Autophagy is necessary for cellular homeostasis and is involved in organelle and protein turnover.11, 12, 13, 14 Autophagy aids in cell survival by providing primary materials, for example, amino acids and fatty acids for anabolic pathways during starvation conditions.15, 16 Alternatively, autophagy may be associated with apoptosis through autodigestive cellular processes, cellular infection with pathogens or extracellular stimuli.17, 18, 19, 20 The overall control of cardiac fibrosis is likely due to the complex functioning of an array of regulatory factors, but to date, there is little evidence linking autophagy with fibrogenesis in cardiac tissue.11, 12, 13, 14, 15, 16, 17, 18, 21, 22Recent studies have demonstrated that TGF-β1 may not only promote autophagy in mouse fibroblasts and human tubular epithelial kidney cells15, 23, 24 but can also inhibit this process in fibroblasts extracted from human patients with idiopathic pulmonary fibrosis.25 Moreover, it has recently been reported that autophagy can negatively15 and positively25, 26, 27 regulate the fibrotic process in different model cell systems. In this study, we have explored the putative link between autophagy and TGF-β1-induced fibrogenesis in human atrial myofibroblasts (hATMyofbs) and in a model of MI rat heart.  相似文献   

13.
14.
Kariya Y  Gu J 《PloS one》2011,6(11):e27084
α6?4 integrin is an essential component of hemidesmosomes and modulates cell migration in wound healing and cancer invasion. To elucidate the role of N-glycosylation on ?4 integrin, we investigated keratinocyte adhesion and migration through the re-expression of wild-type or N-glycosylation-defective ?4 integrin (ΔN?4) in ?4 integrin null keratinocytes. N-glycosylation of ?4 integrin was not essential for the heterodimer formation of ?4 integrin with α6 integrin and its expression on a cell surface, but N-glycosylation was required for integrin-mediated cell adhesion and migration. Concomitantly with the reduction of ?4 integrin in the membrane microdomain, the intracellular signals of Akt and ERK activation were decreased in cells expressing ΔN?4 integrin. Forced cross-linking of ?4 integrin rescued the decreased ERK activation in ΔN?4 integrin-expressing cells to a similar extent in wild-type ?4 integrin-expressing cells. Surprisingly, compared with cells expressing wild-type ?4 integrin, an alternation in N-glycan structures expressed on epidermal growth factor receptor (EGFR), and the induction of a stronger association between EGFR and ?4 integrin were observed in ΔN?4 integrin-expressing cells. These results clearly demonstrated that N-glycosylation on ?4 integrin plays an essential role in keratinocyte cellular function by allowing the appropriate complex formation on cell surfaces.  相似文献   

15.
Liver X activated receptor alpha (LXRalpha) forms a functional dimeric nuclear receptor with RXR that regulates the metabolism of several important lipids, including cholesterol and bile acids. As compared with RXR, the LXRalpha protein level in the cell is low and the LXRalpha protein itself is very hard to detect. We have previously reported that the mRNA for LXRalpha is highly expressed in human cultured macrophages. In order to confirm the presence of the LXRalpha protein in the human macrophage, we have established a monoclonal antibody against LXRalpha, K-8607. The binding of mAb K-8607 to the human LXRalpha protein was confirmed by a wide variety of different techniques, including immunoblotting, immunohistochemistry, and electrophoretic mobility shift assay (EMSA). By immunoblotting with this antibody, the presence of native LXR protein in primary cultured human macrophage was demonstrated, as was its absence in human monocytes. This monoclonal anti-LXRalpha antibody should prove to be a useful tool in the analysis of the human LXRalpha protein.  相似文献   

16.
Chondrosarcoma is a type of highly malignant tumor with a potent capacity to invade locally and cause distant metastasis. Chondrosarcoma shows a predilection for metastasis to the lungs. Integrins are the major adhesive molecules in mammalian cells and have been associated with metastasis of cancer cells. Insulin-like growth factor-I (IGF)-I plays an important role in regulating cell growth, proliferation, survival, and metabolism. However, the effects of IGF-I in migration and integrin expression in chondrosarcoma cells are largely unknown. In this study, we found that IGF-I increased the migration and the expression of α5β1 integrin in human chondrosarcoma cells. Pretreatment of cells with IGF-I receptor antibody reduced IGF-I-induced cell migration and integrin expression. Activations of phosphatidylinositol 3-kinase (PI3K), Akt, and nuclear factor-κB (NF-κB) pathways after IGF-I treatment were demonstrated, and IGF-I-induced expression of integrin and migration activity was inhibited by the specific inhibitor and mutant of PI3K, Akt, and NF-κB cascades. Taken together, our results indicated that IGF-I enhances the migration of chondrosarcoma cells by increasing α5β1 integrin expression through the IGF-I receptor/PI3K/Akt/NF-κB signal transduction pathway.  相似文献   

17.
Datura meteloides; plants were fed with tiglic acid-[-14C] via the roots and after 2 days the percentage incorporation into the alkaloids 3α-tigloyloxytropane, 3α,6β-ditigloyloxytropane, meteloidine and 3α,6β-ditigloyloxytropan-7β-ol were 15·2, 1·82, 2·2 and 1·8 respectively. 3α,6β-Ditigloyloxytropane was partially hydrolysed to 6β-hydroxy-3α-tigloyloxytropane which contained 58·1% of the radioactivity of the original base, whereas 3α,6β-ditigloyloxytropan-7β-ol gave meteloidine containing only 9·2% of the original activity. The results suggest that the di- and tri-hydroxytropanes may be formed by different routes.  相似文献   

18.
Background information. Previous studies have reported that cross‐talk between integrins may be an important regulator of integrin—ligand binding and subsequent signalling events that control a variety of cell functions in many tissues. We previously demonstrated that αvβ5/β6 integrin represses α2β1‐dependent cell migration. The αv subunits undergo an endoproteolytic cleavage by protein convertases, whose role in tumoral invasion has remained controversial. Results. Inhibition of convertases by the convertase inhibitor α1‐PDX (α1‐antitrypsin Portland variant), leading to the cell‐surface expression of an uncleaved form of the αv integrin, stimulated cell migration toward type I collagen. Under convertase inhibition, α2β1 engagement led to enhanced phosphorylation of both FAK (focal adhesion kinase) and MAPK (mitogen‐activated protein kinase). This outside‐in signalling stimulation was associated with increased levels of activated β1 integrin located in larger than usual focal‐adhesion structures and a cell migration that was independent of the PI3K (phosphoinositide 3‐kinase)/Akt (also called protein kinase B) pathway. Conclusions. The increase in cell migration observed upon convertases inhibition appears to be due to the up‐regulation of β1 integrins and to their location in larger focal‐adhesion structures. The endoproteolytic cleavage of αv subunits is necessary for αvβ5/β6 integrin to control α2β1 function and could thus play an essential role in colon cancer cell migration.  相似文献   

19.
20.
Specific and efficient recognition of import cargoes is essential to ensure nucleocytoplasmic transport. To this end, the prototypical karyopherin importin β associates with import cargoes directly or, more commonly, through import adaptors, such as importin α and snurportin. Adaptor proteins bind the nuclear localization sequence (NLS) of import cargoes while recruiting importin β via an N-terminal importin β binding (IBB) domain. The use of adaptors greatly expands and amplifies the repertoire of cellular cargoes that importin β can efficiently import into the cell nucleus and allows for fine regulation of nuclear import. Accordingly, the IBB domain is a dedicated NLS, unique to adaptor proteins that functions as a molecular liaison between importin β and import cargoes. This review provides an overview of the molecular role played by the IBB domain in orchestrating nucleocytoplasmic transport. Recent work has determined that the IBB domain has specialized functions at every step of the import and export pathway. Unexpectedly, this stretch of ~ 40 amino acids plays an essential role in regulating processes such as formation of the import complex, docking and translocation through the nuclear pore complex (NPC), release of import cargoes into the cell nucleus and finally recycling of import adaptors and importin β into the cytoplasm. Thus, the IBB domain is a master regulator of nucleocytoplasmic transport, whose complex molecular function is only recently beginning to emerge. This article is part of a Special Issue entitled: Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号