首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Melanin is a pigment that plays an important role in providing coloration and protecting human skin from the harmful effects of UV light radiation. Human skin color is determined by the type and amount of melanins that are synthesized and deposited within the melanosomes. In addition, the transfer of these specialized membrane-bound organelles from melanocytes to surrounding keratinocytes also plays a role in dictating human skin color. In order to investigate the principle features of skin pigmentation, the origin, function, and production ability of melanin should be highly understood in terms of biological and pathophysiological aspects. Furthermore, a deep understanding of melanin synthesis will also contribute to cosmetics and drugs development. In this review, the processes of melanin biosynthesis, such as survival, proliferation, and differentiation of melanin cells, as well as the biological regulation of human pigmentation were described.  相似文献   

2.
The current utility of 3D skin equivalents is limited by the fact that existing models fail to recapitulate the cellular complexity of human skin. They often contain few cell types and no appendages, in part because many cells found in the skin are difficult to isolate from intact tissue and cannot be expanded in culture. Induced pluripotent stem cells (iPSCs) present an avenue by which we can overcome this issue due to their ability to be differentiated into multiple cell types in the body and their unlimited growth potential. We previously reported generation of the first human 3D skin equivalents from iPSC-derived fibroblasts and iPSC-derived keratinocytes, demonstrating that iPSCs can provide a foundation for modeling a complex human organ such as skin. Here, we have increased the complexity of this model by including additional iPSC-derived melanocytes. Epidermal melanocytes, which are largely responsible for skin pigmentation, represent the second most numerous cell type found in normal human epidermis and as such represent a logical next addition. We report efficient melanin production from iPSC-derived melanocytes and transfer within an entirely iPSC-derived epidermal-melanin unit and generation of the first functional human 3D skin equivalents made from iPSC-derived fibroblasts, keratinocytes and melanocytes.  相似文献   

3.
Human skin color is predominantly determined by melanin produced in melanosomes within melanocytes and subsequently distributed to keratinocytes. There are many studies that have proposed mechanisms underlying ethnic skin color variations, whereas the processes involved from melanin synthesis in melanocytes to the transfer of melanosomes to keratinocytes are common among humans. Apart from the activities in the melanogenic rate-limiting enzyme, tyrosinase, in melanocytes and the amounts and distribution patterns of melanosomes in keratinocytes, the abilities of the actin-associated factors in charge of melanosome transport within melanocytes also regulate pigmentation. Mutations in genes encoding melanosome transport-related molecules, such as MYO5A, RAB27A and SLAC-2A, have been reported to cause a human pigmentary disease known as Griscelli syndrome, which is associated with diluted skin and hair color. Thus we hypothesized that process might play a role in modulating skin color variations. To address that hypothesis, the correlations of expression of RAB27A and its specific effector, SLAC2-A, to melanogenic ability were evaluated in comparison with tyrosinase, using human melanocytes derived from 19 individuals of varying skin types. Following the finding of the highest correlation in RAB27A expression to the melanogenic ability, darkly-pigmented melanocytes with significantly higher RAB27A expression were found to transfer significantly more melanosomes to keratinocytes than lightly-pigmented melanocytes in co-culture and in human skin substitutes (HSSs) in vivo, resulting in darker skin color in concert with the difference observed in African-descent and Caucasian skins. Additionally, RAB27A knockdown by a lentivirus-derived shRNA in melanocytes concomitantly demonstrated a significantly reduced number of transferred melanosomes to keratinocytes in co-culture and a significantly diminished epidermal melanin content skin color intensity (ΔL* = 4.4) in the HSSs. These data reveal the intrinsically essential role of RAB27A in human ethnic skin color determination and provide new insights for the fundamental understanding of regulatory mechanisms underlying skin pigmentation.  相似文献   

4.
Prostaglandins are potent lipid hormones that activate multiple signaling pathways resulting in regulation of cellular growth, differentiation, and apoptosis. In the skin, prostaglandins are rapidly released by keratinocytes following ultraviolet radiation and are chronically present in inflammatory skin lesions. We have shown previously that melanocytes, which provide photoprotection to keratinocytes through the production of melanin, express several receptors for prostaglandins, including the PGE2 receptors EP1 and EP3 and the PGF2alpha receptor FP, and that PGF2alpha stimulates melanocyte dendricity. We now show that PGF2alpha stimulates the activity and expression of tyrosinase, the rate-limiting enzyme in melanin synthesis. Analysis of FP receptor regulation showed that the FP receptor is regulated by ultraviolet radiation in melanocytes in vitro and in human skin in vivo. We also show that ultraviolet irradiation stimulates production of PGF2alpha by melanocytes. These results show that PGF2alpha binding to the FP receptor activates signals that stimulate a differentiated phenotype (dendricity and pigmentation) in melanocytes. The regulation of the FP receptor and the stimulation of production of PGF2alpha in melanocytes in response to ultraviolet radiation suggest that PGF2alpha could act as an autocrine factor for melanocyte differentiation.  相似文献   

5.
Using chimeric human epidermal reconstructs, we previously demonstrated that epidermal pigmentation is dependent upon the phototype of melanocytes. We report here several lines of experimental evidence for dermal modulation of human epidermal pigmentation. First, phototype II-III epidermal reconstructs grafted on the back of immunotolerant Swiss nu/nu mice developed a patchy pigmentation dependent on the presence of colonizing human or mouse fibroblasts. Similarly, human white Caucasoid split-thickness skin xenografted on the same mouse strain became black within 3 months and histochemistry revealed a phototype VI pattern of melanin distribution. In vitro, human fibroblasts colonizing human dead de-epidermized dermis (DDD) induced a decrease in epidermal pigmentation whereas mouse (Swiss nu/nu) fibroblasts increased epidermal pigmentation. Conditioned medium from mice (Swiss nu/nu) fibroblasts also increased pigmentation whereas conditioned medium from human fibroblasts had no significant effect. Lastly, epidermal reconstructs made with normal or vitiligo keratinocytes and/or normal or vitiligo melanocytes from the same donor grown on DDD originating from several donors of the same clinical phototype did not pigment similarly and no specific dermal influence was noted for vitiligo. Thus, fibroblast secretion and acellular dermal connective tissue itself significantly influence melanocyte proliferation and melanin distribution/degradation. Our study suggests that murine fibroblasts are more potent than human fibroblasts in secreting soluble factors which can act directly on pigmentation, such as SCF, or activate keratinocytes to produce basement membrane proteins or melanogenic factors.  相似文献   

6.
A biological issue that has not been satisfactorily resolved is the role of melanin in skin and other animal tissues. A hypothesis is outlined here to account for the evolution of black skin and the ubiquity of melanin in vertebrate tissues. Evidence is presented that melanization of skin and other tissues forms an important component of the innate immune defense system. A major function of melanocytes, melanosomes and melanin in skin is to inhibit the proliferation of bacterial, fungal and other parasitic infections of the dermis and epidermis. This function can potentially explain (a) the latitudinal gradient in melanization of human skin; (b) the fact that melanocyte and melanization patterns among different parts of the vertebrate body do not reflect exposure to radiation; (c) provide a theoretical framework for recent empirical findings concerning the antimicrobial activity of melanocytes and melanosomes and their regulation by known mediators of inflammatory responses.  相似文献   

7.
Melanocytes are the melanin-producing cells by melanogenesis, and the pigment melanin is primarily responsible for the color of skin. These cells contain dendrites that are in close contact with neighboring keratinocytes. Keratinocytes produce and secrete factors that regulate the proliferation and melanogenesis of melanocytes in vitro. Therefore, adopting only melanocyte pure culture may not clearly reflect the skin physiology in vivo. In this study, we applied a two-culture model using melanocytes and keratinocytes from human skin, such as melanocyte pure culture and melanocyte co-culture with keratinocyte. And then, there was compared the responses of melanocytes under different culture conditions (treatment with arbutin, MSH-α and UV-B irradiation). The results show that there was no significant difference in melanocyte proliferation and melanogenesis between arbutin and MSH-α treatment. However, the co-culture model was more stable than the pure culture model in terms of melanocyte proliferation and melanogenesis upon UV-B irradiation. Therefore, the co-culture model was superior to the pure culture as a useful method for the study of melanocytes and epidermal melanin unit.  相似文献   

8.
The skin pigment melanin is produced in melanocytes in highly specialized organelles known as melanosomes. Melanosomes are related to the organelles of the endosomal/lysosomal pathway and can have a low internal pH. In the present study we have shown that melanin synthesis in human pigment cell lysates is maximal at pH 6.8. We therefore investigated the role of intramelanosomal pH as a possible control mechanism for melanogenesis. To do this we examined the effect of neutralizing melanosomal pH on tyrosinase activity and melanogenesis in 11 human melanocyte cultures and in 3 melanoma lines. All melanocyte cultures (9 of 9) from Caucasian skin as well as two melanoma cell lines with comparable melanogenic activity showed rapid (within 24 h) increases in melanogenesis in response to neutralization of melanosomal pH. Chemical analysis of total melanin indicated a preferential increase in eumelanin production. Electron microscopy revealed an accumulation of melanin and increased maturation of melanosomes in response to pH neutralization. In summary, our findings show that: (i) near neutral melanosomal pH is optimal for human tyrosinase activity and melanogenesis; (ii) melanin production in Caucasian melanocytes is suppressed by low melanosomal pH; (iii) the ratio of eumelanin/phaeomelanin production and maturation rate of melanosomes can be regulated by melanosomal pH. We conclude that melanosomal pH is an essential factor which regulates multiple stages of melanin production. Furthermore, since we have recently identified that pink locus product (P protein) mediates neutralization of melanosomal pH, we propose that P protein is a key control point for skin pigmentation. We would further propose that the wide variations in both constitutive and facultative skin pigmentation seen in the human population could be associated with the high degree of P-locus polymorphism.  相似文献   

9.
10.
Role of light in human skin color viariation.   总被引:1,自引:0,他引:1  
The major source of color in human skin derives from the presence within the epidermis of specialized melanin-bearing organelles, the melanosomes. Tanning of human skin on exposure to ultraviolet light results from increased amounts of melanin within the epidermis. Melanosomes synthesized by melanocytes are acquired by keratinocytes and transported within them to the epidermal surface. In some cases, the melanosomes are catobolized en route. New information indicates that the multicellular epidermal melanin unit (melanocyte and associated pool of keratinocytes) rather than the melanocyte alone is the focal point for the control of melanin metabolism within mammalian epidermis. Gross human skin color derives from the visual impact of the summed melanin pigmentation of the many epidermal melanin units. In theory, constitutive skin color in man designates the genetically-determined levels of melanin pigmentation developed in the absence of exposure to solar radiation or other environmental influences; facultative skin color or "tan" characterizes the increases in melanin pigmentation above the constitutive level induced by ultraviolet light. The details of genetic regulation of pigment metabolism within the epidermal melanin units are being clarified. In some mammals at least, the function of epidermal melanin units is significantly influenced by hormones which may be regulated by radiations received through the eyes. Based on an evolutionary history of the human family which exceeds ten million years, it is proposed that melanin pigmentation may have played a number of roles in human adaptions to changing biologic and physical environments.  相似文献   

11.
12.
Acid ceramidase (AC) is a lysosomal cysteine amidase that controls sphingolipid signaling by lowering the levels of ceramides and concomitantly increasing those of sphingosine and its bioactive metabolite, sphingosine 1-phosphate. In the present study, we evaluated the role of AC-regulated sphingolipid signaling in melanoma. We found that AC expression is markedly elevated in normal human melanocytes and proliferative melanoma cell lines, compared with other skin cells (keratinocytes and fibroblasts) and non-melanoma cancer cells. High AC expression was also observed in biopsies from human subjects with Stage II melanoma. Immunofluorescence studies revealed that the subcellular localization of AC differs between melanocytes (where it is found in both cytosol and nucleus) and melanoma cells (where it is primarily localized to cytosol). In addition to having high AC levels, melanoma cells generate lower amounts of ceramides than normal melanocytes do. This down-regulation in ceramide production appears to result from suppression of the de novo biosynthesis pathway. To test whether AC might contribute to melanoma cell proliferation, we blocked AC activity using a new potent (IC50 = 12 nm) and stable inhibitor. AC inhibition increased cellular ceramide levels, decreased sphingosine 1-phosphate levels, and acted synergistically with several, albeit not all, antitumoral agents. The results suggest that AC-controlled sphingolipid metabolism may play an important role in the control of melanoma proliferation.  相似文献   

13.
14.
Skin color results from the production and distribution of melanin in the epidermis. The protease-activated receptor-2 (PAR-2), expressed on keratinocytes but not on melanocytes, is involved in melanosome uptake via phagocytosis, and modulation of PAR-2 activation affects skin color. The pattern of melanosome distribution within the epidermis is skin color-dependent. In vitro, this distribution pattern is regulated by the ethnic origin of the keratinocytes, not the melanocytes. Therefore, we hypothesized that PAR-2 may play a role in the modulation of pigmentation in a skin type-dependent manner. We examined the expression of PAR-2 and its activator, trypsin, in human skins with different pigmentary levels. Here we show that PAR-2 and trypsin are expressed in higher levels, and are differentially localized in highly pigmented, relative to lightly pigmented skins. Moreover, highly pigmented skins exhibit an increase in PAR-2-specific protease cleavage ability. Microsphere phagocytosis was more efficient in keratinocytes from highly pigmented skins, and PAR-2 induced phagocytosis resulted in more efficient microsphere ingestion and more compacted microsphere organization in dark skin-derived keratinocytes. These results demonstrate that PAR-2 expression and activity correlate with skin color, suggesting the involvement of PAR-2 in ethnic skin color phenotypes.  相似文献   

15.
16.
Skin color results from the production and distribution of melanin in the epidermis. The protease‐activated receptor‐2 (PAR‐2), expressed on keratinocytes but not on melanocytes, is involved in melanosome uptake via phagocytosis, and modulation of PAR‐2 activation affects skin color. The pattern of melanosome distribution within the epidermis is skin color‐dependent. In vitro, this distribution pattern is regulated by the ethnic origin of the keratinocytes, not the melanocytes. Therefore, we hypothesized that PAR‐2 may play a role in the modulation of pigmentation in a skin type‐dependent manner. We examined the expression of PAR‐2 and its activator, trypsin, in human skins with different pigmentary levels. Here we show that PAR‐2 and trypsin are expressed in higher levels, and are differentially localized in highly pigmented, relative to lightly pigmented skins. Moreover, highly pigmented skins exhibit an increase in PAR‐2‐specific protease cleavage ability. Microsphere phagocytosis was more efficient in keratinocytes from highly pigmented skins, and PAR‐2 induced phagocytosis resulted in more efficient microsphere ingestion and more compacted microsphere organization in dark skin‐derived keratinocytes. These results demonstrate that PAR‐2 expression and activity correlate with skin color, suggesting the involvement of PAR‐2 in ethnic skin color phenotypes.  相似文献   

17.
18.
The production of melanin in the hair and skin is tightly regulated by the melanocortin 1 receptor (MC1R) whose activation is controlled by two secreted ligands, alpha-melanocyte stimulating hormone (alphaMSH) and agouti signal protein (ASP). As melanin is extremely stable, lasting years in biological tissues, the mechanism underlying the relatively rapid decrease in visible pigmentation elicited by ASP is of obvious interest. In this study, the effects of ASP and alphaMSH on the regulation of melanin synthesis and on visible pigmentation were assessed in normal murine melanocytes and were compared with the quick depigmenting effect of the tyrosinase inhibitor, phenylthiourea (PTU). alphaMSH increased pheomelanin levels prior to increasing eumelanin content over 4 days of treatment. Conversely, ASP switched off the pigment synthesis pathway, reducing eu- and pheo-melanin synthesis within 1 day of treatment that was proportional to the decrease in tyrosinase protein level and activity. These results demonstrate that the visible depigmentation of melanocytes induced by ASP does not require the degradation of existing melanin but rather is due to the dilution of existing melanin by melanocyte turnover, which emphasizes the importance of pigment distribution to visible color.  相似文献   

19.
Wnt signaling plays a role in the differentiation as well as the development of melanocytes. Using a microarray analysis, hyperpigmentary skin of melasma expressed high levels of Wnt inhibitory factor‐1 (WIF‐1) compared with perilesional normal skin. In this study, the expression and functional roles of WIF‐1 on melanocytes were investigated. WIF‐1 was expressed both in the melanocytes of normal human skin and in cultured melanocytes. The upregulation of WIF‐1 on cultured normal human melanocytes significantly induced expressions of MITF and tyrosinase, which were associated with increased melanin content and tyrosinase activity. Consistent with the stimulatory effect of WIF‐1, WIF‐1 siRNA reduced melanogenesis in the cells. Moreover, WIF‐1 increases pigmentation in melanocytes co‐cultured with WIF‐1‐overexpressed fibroblasts and of organ‐cultured human skin. These findings suggest that melanocytes express WIF‐1 constitutively in vivo and in vitro and that WIF‐1 promotes melanogenesis in normal human melanocytes.  相似文献   

20.
Dendrite formation and extension, which comprise a characteristic morphology of human normal melanocytes in the skin, represent one of the functional activities of melanocytes, the ability to transfer melanosomes into neighboring keratinocytes. However, the morphology of the melanocyte in vitro is usually quite different from that observed in vivo. it is probably due to the hyperproliferative condition of the melanocytes in culture. No studies have ever compared the effects of a single factor on both dendricity and proliferation at the same time. Therefore, we have compared the effects of six growth-promoting agents commonly used for melanocyte cultures on dendrite formation and proliferation. The addition of agents that increase the intracellular levels of cyclic adenosine monophosphate (cAMP)—dibutyryl cyclic adenosine monophosphate (db cAMP; 1 mM) or isobutylmethyl xanthine (IBMX; 0.1 mM)—had a strong effect on dendrite formation and a negative effect on proliferation. This was especially true with db cAMP. In the presence of 2% or 5% of heat-inactivated fetal bovine serum (FBS), dendrite formation was significantly increased as was proliferation. The number of dendrites was decreased in the culture with 12-o-tetradecanoylphorbol-13-acetate (TPA), but cell growth was slightly increased. With human recombinant basic fibroblast growth factor (bFGF) (0.5, 1.0 ng/ml) in the presence of bovine pituitary extract (BPE) (60 μg/ml), cell growth was increased. With 2 ng/ml of bFGF, however, a strong inhibitory effect on proliferation was observed. However, dendrite formation was constant at all concentrations of bFGF tested (0.5, 1.0 or 2.0 ng/ml) with BPE (30 or 60 μg/ml). In this study, we have demonstrated that dendrite formation was suppressed by the reagents that stimulate melanocyte proliferation, and vice versa, with the only exception being heat-inactivated FBS. Both dendrite formation and proliferation were induced by the heat-inactivated FBS. This approach is crucial to the development of an adequate culture system for proliferation and/or dendrite formation of normal human melanocytes. It is necessary to keep these aspects in mind as we further investigate the biology of melanocytes, especially the cell-to-cell interactions between melanocytes and keratinocytes, involved in melanogenesis and melanin pigmentation in vivo. This study also provides practical and important information for a future reconstitutive skin system composed of melanocytes, keratinocytes, and fibroblasts in a single culture medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号