首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipases are versatile biocatalists showing multiple applications in a wide range of biotechnological processes. The gene lipA coding for Lipase A from Bacillus subtilis was isolated by PCR amplification, cloned and expressed in Escherichia coli, Saccharomyces cerevisiae and Bacillus subtilis strains, using pBR322, YEplac112 and pUB110-derived vectors, respectively. Lipase activity analysis of the recombinant strains showed that the gene can be properly expressed in all hosts assayed, this being the first time a lipase from bacterial origin can be expressed in baker's S. cerevisiae strains. An important increase of lipase production was obtained in heterologous hosts with respect to that of parental strains, indicating that the described systems can represent a useful tool to enhance productivity of the enzyme for biotechnological applications, including the use of the lipase in bread making, or as a technological additive.  相似文献   

2.
Bioorganic reactions in microemulsions: the case of lipases   总被引:4,自引:0,他引:4  
Water-in-oil microemulsions, or reverse micelles, are being evaluated as a reaction medium for a variety of enzymatic reactions. These systems have many potential biotechnological applications. Important examples are the use of various lipase microemulsion systems for hydrolytic or synthetic reactions. This review illustrates the biotechnological applications of microemulsions as media for bioorganic reactions. The principal focus is on lipase catalyzed processes.  相似文献   

3.
An extracellular lipase producing isolate Staphylococcus sp. MS1 was optimized for lipase production and its biocatalytic potential was assessed. Medium with tributyrin (0.25 %) and without any exogenous inorganic nitrogen source was found to be optimum for lipase production from Staphylococcus sp. MS1. The optimum pH and temperature for lipase production were found to be pH 7 and 37 °C respectively, showing lipase activity of 37.91 U. It showed good lipase production at pH 6–8. The lipase was found to be stable in organic solvents like hexane and petroleum ether, showing 98 and 88 % residual activity respectively. The biotransformation using the concentrated enzyme in petroleum ether resulted in the synthesis of fatty acid methyl esters like methyl oleate, methyl palmitate and methyl stearate. Thus, the lipase under study has got the potential to bring about transesterification of oils into methyl esters which can be exploited for various biotechnological applications.  相似文献   

4.
An isolate exhibiting high extracellular lipolytic activity was identified as Pseudomonas gessardii by 16S rDNA gene sequence analysis. The slaughterhouse waste, goat tallow, was used as a lipid substrate for the production of acidic lipase by P. gessardii. The maximum lipase activity of 156 U/ml was observed at an acidic pH of 3.5 and at 0.31 g substrate concentration. The purification steps resulted in the isolation of acidic lipase with a specific activity of 1,473 U/mg and a molecular weight of 94 kDa. One interesting feature of this purified lipase is its stability at highly acidic pH ranging from 2.0 to 5.5 with a high molecular weight. The amino acid composition was determined using HPLC. This acidic lipase has potential applications in the medicinal field as a substitute for pancreatic lipases for enzyme therapy, oleochemical and in biotechnological industries.  相似文献   

5.
Recombinant microbial lipases for biotechnological applications   总被引:7,自引:0,他引:7  
Lipases, mainly of microbial origin, represent the most widely used class of enzymes in biotechnological applications and organic chemistry. Modern methods of genetic engineering combined with an increasing knowledge of structure and function will allow further adaptation to industrial needs and exploration of novel applications. Production of such tailored lipases requires their functional overexpression in a suitable host. Hence, this article describes the functional heterologous production of commercially important microbial lipases. Based on the knowledge of different lipases' substrate binding sites, the most suitable lipase for a particular application may be selected.  相似文献   

6.
Lipases (EC 3.1.1.3) have received increased attention recently, evidenced by the increasing amount of information about lipases in the current literature. The renewed interest in this enzyme class is due primarily to investigations of their role in pathogenesis and their increasing use in biotechnological applications [38]. Also, many microbial lipases are available as commercial products, the majority of which are used in detergents, cosmetic production, food flavoring, and organic synthesis. Lipases are valued biocatalysts because they act under mild conditions, are highly stable in organic solvents, show broad substrate specificity, and usually show high regio- and/or stereo-selectivity in catalysis. A number of lipolytic strains of Acinetobacter have been isolated from a variety of sources and their lipases possess many biochemical properties similar to those that have been developed for biotechnological applications. This review discusses the biology of lipase expression in Acinetobacter, with emphasis on those aspects relevant to potential biotechnology applications.  相似文献   

7.
The lipases produced by Pseudomonas have a wide range of potential biotechnological applications. Pseudomonas aeruginosa IGB83 was isolated as a highly lipolytic strain which produced a thermotolerant and alkaline lipase. In the present work, we have characterized the P. aeruginosa IGB83 gene (lipA) encoding this enzyme. We describe the construction of a lipA mutant and report on the effect of two carbon sources on lipase expression.  相似文献   

8.
Lipases are widely used for a variety of biotechnological applications. Screening these industrial enzymes directly from environmental microorganisms is a more efficient and practical approach than conventional cultivation-dependent methods. Combined with activity-based functional screening, six clones with lipase activity were detected and a gene (termed lipZ01) isolated from a target clone with the highest lipase activity was cloned from an oil-contaminated soil-derived metagenomic library and then sequenced. Gene lipZ01 was expressed in Pichia pastoris GS115 and the molecular weight of the recombinant lipase LipZ01 was estimated by electrophoresis analysis to be approximately 50 kDa. The maximum activity of the purified lipase was 42 U/mL, and the optimum reaction temperature and pH value were 45 °C and 8.0, respectively. The enzyme was highly stable in the temperature range 35–60 °C and under alkaline conditions (pH 7–10). The presence of Ca2+ and Mn2+ ions could significantly enhance the activity of the lipase. The purified lipase preferentially hydrolysed triacylglycerols with acyl chain lengths ≥8 carbon atoms, and the conversion degree of biodiesel production was nearly 92% in a transesterification reaction using olive oil and methanol. Some attractive properties suggested that the recombinant lipase may be valuable in industrial applications.  相似文献   

9.
Lipases are an important class of enzymes which catalyze the hydrolysis of long chain triglycerides and constitute the most prominent group of biocatalysts for biotechnological applications. There are a number of lipases, produced by some halophilic microorganisms. In this study, some lipase producing bacteria from the Maharla salt lake located in south of Iran were isolated. All isolates were screened for true lipase activity on plates containing olive oil. The lipase activity was measured using titrimetric methods. Among thirty three isolates, thirteen strains demonstrating orange zone around colonies under UV light, were selected for identification using the molecular methods and some morphological characteristics. The bacterium Bacillus vallismortis BCCS 007 with 3.41 ± 0.14 U/mL lipase activity was selected as the highest lipase producing isolate. This is the first report of isolation and molecular identification of lipase producing bacteria from the Maharla lake.  相似文献   

10.
The production of enantiopure compounds is of steadily increasing importance to the chemical and biotechnological industries. In principal, the application of directed evolution in combination with newly developed screening methods enables the generation of enzymes with improved enantioselectivity. The first and most advanced example relates to a bacterial lipase from Pseudomonas aeruginosa. This enzyme was evolved towards a model substrate to yield in a lipase mutant showing > 90% enantiomeric excess as compared to 2% for the wild-type lipase. The creation of enantioselective enzymes by directed evolution will become an important technology in the near future.  相似文献   

11.
In addition to their physiological importance, microbial lipases, like staphylococcal ones, are of considerable commercial interest for biotechnological applications such as detergents, food production, and pharmaceuticals and industrial synthesis of fine chemicals. The gene encoding the extracellular lipase of Staphylococcus simulans (SSL) was subcloned in the pET-14b expression vector and expressed in Esherichia coli BL21 (DE3). The wild-type SSL was expressed as amino terminal His6-tagged recombinant protein. One-step purification of the recombinant lipase was achieved with nickel metal affinity column. The purified His-tagged SSL (His6-SSL) is able to hydrolyse triacylglycerols without chain length selectivity. The major differences among lipases are reflected in their chemical specificity in the hydrolysis of peculiar ester bonds, and their respective capacity to hydrolyse substrates having different physico-chemical properties. It has been proposed, using homology alignment, that the region around the residue 290 of Staphylococcus hyicus lipase could be involved in the selection of the substrate. To evaluate the importance of this environment, the residue Asp290 of Staphylococcus simulans lipase was mutated to Ala using site-directed mutagenesis. The mutant expression plasmid was also overexpressed in Esherichia coli and purified with a nickel metal affinity column. The substitution of Asp290 by Ala was accompanied by a significant shift of the acyl-chain length specificity of the mutant towards short chain fatty acid esters. Kinetic studies of wild-type SSL and its mutant D290A were carried out, and show essentially that the catalytic efficiency (k cat /K M ) of the mutant was affected. Our results confirmed that Asp290 is important for the chain length selectivity and catalytic efficiency of Staphylococcus simulans lipase.  相似文献   

12.
《Process Biochemistry》2010,45(10):1683-1691
Beef tallow, a slaughter house waste was used as a substrate for lipase production, employing Pseudomonas gessardii. The strain, P. gessardii was isolated from the beef tallow acclimatized soil. The crude lipase activity at 139 U/ml by volume was obtained at optimized conditions of pH 5.0 and temperature of 37 °C. After purification, a 7.59-fold purity of lipase with specific activity of 1120 U/mg protein and molecular mass of 92 kDa was obtained. The purified lipase showed maximum activity and stability at pH 5.0 and 30 °C. Ca2+ had a stimulatory effect on the lipase activity compared to the other metal ions studied. The relative activity was enhanced with the addition of Triton X-100 with lower hydrophilic–lipophilic balance (HLB) value as 13.0 and DMSO with the lowest partition coefficient (log P) value, as 1.378. The amino acid composition and the functional groups of lipase were confirmed by HPLC and FT-IR spectroscopy. The purified lipase had the highest hydrolytic activity towards slaughterhouse wastes and vegetable oils. This work provides a potential biocatalyst for the wide applications in oleochemical and biotechnological industries.  相似文献   

13.
Aims:  The objective of this work was to investigate the lipase production by a newly isolated Penicillium sp . , using experimental design technique, in submerged fermentation using a medium based on peptone, yeast extract, NaCl and olive oil, as well as to characterize the crude enzymatic extracts obtained.
Methods and Results:  Lipase activity values of 9·5 U ml−1 in 96 h of fermentation was obtained at the maximized operational conditions of peptone, yeast extract, NaCl and olive oil concentrations (g l−1) of 20·0, 5·0, 5·0 and of 10·0 respectively. The partial characterization of crude enzymatic extract obtained by submerged fermentation showed optimum activity at pH range from 4·9 to 5·5 and temperature from 37°C to 42°C. The crude extract maintained its initial activity at freezing temperatures up to 100 days.
Conclusions:  A newly isolated strain of Penicillium sp . used in this work yielded good lipase activities compared to the literature.
Significance and Impact of the Study:  The growing interest in lipase production is related to the potential biotechnological applications that these enzymes present. New lipase producers are relevant to finding enzymes with different catalytic properties of commercial interest could be obtained, without using genetically modified organisms (GMO).  相似文献   

14.
Recently there has been increasing interest in possible biotechnological applications of the bacterial genus Amycolatopsis. This genus originally attracted attention for its antibiotic producing capabilities; although it is actually a multifaceted genus and a more diverse range of studies involving biotechnological processes have now been undertaken. Several works have demonstrated that the versatility shown by these bacteria is valuable in industrial applications. Here, we provide a condensed overview of the most important biotechnological applications such as bioremediation, biodegradation and bioconversion, as well as aspects that need to be explored further in order to gain a fuller insight into this genus, including its possible potential in the production of biofuel. Antibiotic production is not discussed since this is well covered by the latest edition of Bergey’s Manual of Systematic Bacteriology. To our knowledge this is the first report highlighting the versatility and biotechnological potential of the genus Amycolatopsis.  相似文献   

15.
Production and activity of extracellular lipase from Luteibacter sp.   总被引:1,自引:0,他引:1  
Microbial lipases are widely used in industrial applications due to their versatility, and the characterization of new lipase-producing microorganisms could provide new sources of these enzymes, with different specificities and better activities. In this context, we have improved lipase production by Luteibacter sp. by using basal medium supplemented with 2 % olive oil, a pH of 6 and a growth temperature of 37 °C. The enzyme extraction process with the addition of 0.25 % Tween 80 increased lipase activity. Implementation of these modifications increased lipase activity by approximately 430 %. The lipase activities produced in the culture supernatant (LCS) and extracted with Tween 80 (LCST80) were characterized. Both extracts hydrolyzed ρ-nitrophenyl (ρNP) esters with different acyl chain lengths, with a preference for short acyl lengths, and had optimum activity at 45 °C. The LCS was stable at acidic and alkaline pH, but LCST80 was only stable at alkaline pH. Methanol, SDS, Triton X-100, EDTA, and EGTA did not affect lipase activity, while divalent cations (Ca2+, Zn2+, Mg2+) - with the exception of Co2+— increased lipase activity. Both extracts showed transesterification activity on ρNP ester substrates, and both were able to hydrolyze different natural lipids. The characterization of lipase produced by Luteibacter sp. introduces this recently described genus as a new source of lipases with great biotechnological potential.  相似文献   

16.
Lipases resistant to inhibition and denaturation by methanol are valuable tools for biotechnological applications, in particular for biofuel production. Microbial lipases have attracted a great deal of interest because of their stability at high concentrations of organic solvents. Burkholderia cepacia lipase (BCL) is tested here for robustness towards methanol in terms of conformational stability and catalytic activity in transesterification assays. This lipase turns out to be even more tolerant than the homologous and better characterized enzyme from Burkholderia glumae. BCL unfolding transition, as monitored by far‐UV circular dichroism (CD) and intrinsic fluorescence, displays a Tm above 60°C in the presence of 50% methanol. The protein unfolds at low pH, and the organic solvent affects the nature of the denatured state under acidic conditions. The protein performs well in transesterification assays upon prolonged incubations at high methanol concentrations. BCL is highly tolerant to methanol and displays particularly high conformational stability under conditions employed for transesterification reactions. These features depict BCL as a promising enzyme for biofuel industry.  相似文献   

17.
18.
Cordyceps militaris is a potential harborer of biometabolites for herbal drugs. For a long time, C. militaris has gained considerable significance in several clinical and biotechnological applications. Much knowledge has been gathered with regard to the C. militaris's importance in the genetic resources, nutritional and environmental requirements, mating behavior and biochemical pharmacological properties. The complete genome of C. militaris has recently been sequenced. This fungus has been the subject of many reviews, but few have focused on its biotechnological production of bioactive constituents. This mini-review focuses on the recent advances in the biotechnological production of bioactive compositions of C. militaris and the latest advances on novel applications from this laboratory and many others.  相似文献   

19.
Park J  Cho SY  Choi SJ 《BMB reports》2008,41(3):254-258
Lipase was purified from squid (Todarodes pacificus) liver in an attempt to investigate the possibility of applying the enzyme for biotechnological applications. Crude extract of squid liver was initially fractionated by the batch type ion exchange chromatography. The fraction containing lipase activity was further purified with an octyl-Sepharose column. Finally, lipase was purified by eluting active protein from a non-dissociating polyacrylamide gel after zymographic analysis. Molecular weight of the purified enzyme was determined to be 27 kDa by SDS-polyacrylamide gel electrophoresis. The enzyme showed the highest activity at a temperature range of 35-40 degrees C and at pH 8.0. The activity was almost completely inhibited at 1 mM concentration of Hg(2+) or Cu(2+) ion. Partial amino acid sequence of the enzyme was also determined.  相似文献   

20.
Lipases are versatile catalysts that hydrolyze ester bonds of water-insoluble glycerides or carry out reversible reactions at the water/lipid interface. The remarkable characteristics of lipases from the genus Rhizopus are their high sn-1,3-positional specificity, enantioselectivity and activity in nonaqueous media, which make them one of the most desirable enzymes for many applications, including lipid modification and biodiesel and chiral organic compound synthesis. sn-1,3-Position-specific Rhizopus lipases are particularly useful for the production of structured triacylglycerols. Significant progress has been made regarding lipases from the genus Rhizopus, including gene sequencing, elucidation of the protein structure and catalytic function, heterologous expression and redesigning Rhizopus lipases for valuable properties, which is receiving increasing academic and industrial attention. In this review, we present a comprehensive overview of Rhizopus lipases, focusing on (a) the characteristics of Rhizopus lipases, (b) Rhizopus lipase genes and structural features, (c) strategies for heterologous expression of Rhizopus lipase genes in yeast system, (d) progress in protein engineering for the improvement of the properties of Rhizopus lipases, and (e) development of biotechnological applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号