首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Group B streptococci (GBS) remain the most significant bacterial pathogen causing neonatal sepsis, pneumonia and meningitis in the USA despite CDC-recommended chemoprophylaxis strategies for preventing infection. To cause infection pathogens such as GBS must evade recognition and clearance by the host's immune system. Strategies for avoidance of opsonization and phagocytic killing include elaboration of antiopsonophagocytic capsules and surface proteins. During screening for mutants of GBS that were attenuated for virulence in a neonatal rat sepsis model, we identified a mutant with a transposon insertion in the ponA gene. ponA encodes an extra-cytoplasmic penicillin-binding protein PBP1a, a newly identified virulence trait for GBS that promotes resistance to phagocytic killing independent of capsular polysaccharide. Complementation analysis in vivo and in vitro confirmed that the altered phenotypes observed in the mutant were due to the transposon insertion in ponA. Deletion of PBP1a does not affect C3 deposition on GBS suggesting that mechanism by which PBP1a protects GBS from phagocytic killing is distinct from the antiopsonic activity of capsular polysaccharide. This is the first report describing expression of an antiphagocytic surface protein by GBS and represents a novel mechanism for evasion of immune recognition and clearance that may explain the decreased virulence observed in Gram-positive bacterial species for penicillin-binding protein mutants.  相似文献   

3.
4.
The phylogenetic profile of a gene is a reflection of its evolutionary history and can be defined as the differential presence or absence of a gene in a set of reference genomes. It has been employed to facilitate the prediction of gene functions. However, the hypothesis that the application of this concept can also facilitate the discovery of bacterial virulence factors has not been fully examined. In this paper, we test this hypothesis and report a computational pipeline designed to identify previously unknown bacterial virulence genes using group B streptococcus (GBS) as an example. Phylogenetic profiles of all GBS genes across 467 bacterial reference genomes were determined by candidate-against-all BLAST searches,which were then used to identify candidate virulence genes by machine learning models. Evaluation experiments with known GBS virulence genes suggested good functional and model consistency in cross-validation analyses (areas under ROC curve, 0.80 and 0.98 respectively). Inspection of the top-10 genes in each of the 15 virulence functional groups revealed at least 15 (of 119) homologous genes implicated in virulence in other human pathogens but previously unrecognized as potential virulence genes in GBS. Among these highly-ranked genes, many encode hypothetical proteins with possible roles in GBS virulence. Thus, our approach has led to the identification of a set of genes potentially affecting the virulence potential of GBS, which are potential candidates for further in vitro and in vivo investigations. This computational pipeline can also be extended to in silico analysis of virulence determinants of other bacterial pathogens.  相似文献   

5.
Group B streptococcal (GBS) infections are the most common cause of bacterial sepsis in the immediate newborn period. Apart from the capsule, the factors required for survival of GBS in the host are not well defined. In this study, signature-tagged transposon mutagenesis (STM) was used to identify genes required for growth and survival of GBS in a neonatal rat sepsis infection model. Approximately 1600 transposon mutants were screened in pools of 80 mutants, and approximately 120 mutants defective for survival in the animal host were identified. We successfully cloned and sequenced DNA flanking the transposon insertions from 92 of the mutants. Fifty per cent of the mutants had transposon insertions in genes with homologues in the public databases, whereas the remaining 50% had transposon insertions in genes with unknown function. A significant proportion of the avirulent mutants had transposon insertions in genes encoding transport-associated or regulatory proteins or in genes involved in cell surface metabolism, emphasizing the significance of these functions for in vivo survival of GBS. Overall, STM analysis revealed GBS genomic loci that encode a wide variety of functional gene classes, underscoring the diversity of bacterial processes required for the infection process. Currently, the function of the genes identified during the screening can only be inferred by homology to previously described genes. However, a number of the genes identified in this study have been shown to correlate with virulence in other pathogens. A virulence of a subset of mutants identified during the screening was confirmed by performing competitive index assays and lethal dose assays. This represents the first report of a genome-wide scan for virulence factors in GBS. The identified genes will further our understanding of the pathogenesis of GBS infections and may represent targets for intervention or lead to the development of novel therapies.  相似文献   

6.
Nearly two dozen microbial pathogens have surface polysaccharides or lipo-oligosaccharides that contain sialic acid (Sia), and several Sia-dependent virulence mechanisms are known to enhance bacterial survival or result in host tissue injury. Some pathogens are also known to O-acetylate their Sias, although the role of this modification in pathogenesis remains unclear. We report that neuD, a gene located within the Group B Streptococcus (GBS) Sia biosynthetic gene cluster, encodes a Sia O-acetyltransferase that is itself required for capsular polysaccharide (CPS) sialylation. Homology modeling and site-directed mutagenesis identified Lys-123 as a critical residue for Sia O-acetyltransferase activity. Moreover, a single nucleotide polymorphism in neuD can determine whether GBS displays a "high" or "low" Sia O-acetylation phenotype. Complementation analysis revealed that Escherichia coli K1 NeuD also functions as a Sia O-acetyltransferase in GBS. In fact, NeuD homologs are commonly found within Sia biosynthetic gene clusters. A bioinformatic approach identified 18 bacterial species with a Sia biosynthetic gene cluster that included neuD. Included in this list are the sialylated human pathogens Legionella pneumophila, Vibrio parahemeolyticus, Pseudomonas aeruginosa, and Campylobacter jejuni, as well as an additional 12 bacterial species never before analyzed for Sia expression. Phylogenetic analysis shows that NeuD homologs of sialylated pathogens share a common evolutionary lineage distinct from the poly-Sia O-acetyltransferase of E. coli K1. These studies define a molecular genetic approach for the selective elimination of GBS Sia O-acetylation without concurrent loss of sialylation, a key to further studies addressing the role(s) of this modification in bacterial virulence.  相似文献   

7.
单核细胞增生李斯特菌(Listeria monocytogenes LM)属于典型的细胞内寄生革兰氏阳性菌,是WHO公布的四大食源性致病菌之一.LM不仅是人畜共患传染病李斯特菌病(listeriosis)的主要病原菌,也是研究胞内感染和细胞介导的免疫应答的模式细菌.绝大多数LM毒力基因的转录表达受到PrfA蛋白的调控.本文简单介绍了LM侵染宿主细胞必需的毒力基因及其产物;重点对毒力基因调节蛋白PrfA的结构和功能,PrfA调节毒力基因表达的主要方式最新进展进行了综述和讨论.  相似文献   

8.
罗勤  张晓莉  李兵  冯爱平  钱跃 《微生物学报》2008,35(2):0275-0280
单核细胞增生李斯特菌 (Listeria monocytogenes LM) 属于典型的细胞内寄生革兰氏阳性菌, 是WHO公布的四大食源性致病菌之一。LM不仅是人畜共患传染病李斯特菌病 (listeriosis) 的主要病原菌, 也是研究胞内感染和细胞介导的免疫应答的模式细菌。绝大多数LM毒力基因的转录表达受到PrfA蛋白的调控。本文简单介绍了LM侵染宿主细胞必需的毒力基因及其产物; 重点对毒力基因调节蛋白PrfA的结构和功能, PrfA调节毒力基因表达的主要方式最新进展进行了综述和讨论。  相似文献   

9.
Group B streptococci (GBS) are an important cause of neonatal sepsis and meningitis, and maternal infection. Although the pathogenesis of GBS infection is not well understood, several virulence factors have been identified. Two prevention strategies have been proposed: chemoprophylaxis and immunoprophylaxis. Implementation of selective intrapartum chemoprophylaxis on the basis of either screening or risk assessment has led to a substantial decrease in the morbidity and mortality of GBS disease in both mothers and infants. Penicillin remains the antibiotic of choice with no reported resistant GBS so far, whereas resistance of 10-20% of GBS to erythromycin and clindamycin has been reported in North America. Chemoprophylaxis based on screening requires optimal detection methods for GBS, which involve selective broth culture of combined vaginal and anal samples. Other conventional methods are useful for rapid identification of heavily colonised women, but are unreliable for the detection of light GBS colonisation because of poor sensitivity. GBS-specific polymerase chain reaction (PCR) assays using real-time PCR coupled with fluorescence-labelling technology offer powerful tools for sensitive and specific, yet rapid (less than 1 h), detection of GBS directly from clinical specimens at the time of delivery. The application of these assays to the current prevention strategies will simplify the prevention practice and rationalise the use of antibiotics. Immunoprophylaxis relies on the development of new vaccines against GBS, and active research is being conducted in this area.  相似文献   

10.
BACKGROUND: Overproduction of pro-inflammatory cytokines may play a role in increased morbidity and mortality from neonatal sepsis. Objective of this study was to compare secretion of pro-inflammatory cytokines by the cord blood cells of healthy term neonates to the venous blood cells of healthy adults in vitro after stimulation with common neonatal pathogens. METHOD: Blood samples were cultured in the presence of heat-killed group B beta-hemolytic streptococci (GBS), Escherichia coli (E. coli) and Staphylococcus epidermidis (S. epi). Concentrations of secreted cytokines (interleukine-6, IL-6, tumor necrosis factor-alpha, TNF-alpha, interleukine-1 beta, IL-1beta and interleukine-8, IL-8) were measured after 0, 1, 2 and 4 h of incubation using chemiluminescent immunometric automated assay. RESULTS: Blood samples from 22 neonates and 16 adults were compared. After stimulation by GBS and E. coli, cord blood cells secreted significantly higher levels of IL-6 and IL-8 than blood cells of healthy adults. In cord blood, E. coli induced secretion of higher concentration of IL-6, TNF-alpha, IL-1beta and IL-8 than S. epi, and more IL-6 than GBS; GBS induced more IL-1beta than S.epi. CONCLUSIONS: Response of cord blood to microbial activators is different from that of adult controls. Each isolate of heat-killed bacteria induced different amount of pro-inflammatory cytokines in vitro. This may represent a useful in vitro virulence test.  相似文献   

11.
Numerous Streptococcaceae produce an H2O-forming NADH oxidase, Nox-2, which has been generally implicated in aerobic survival. We examined the roles of Nox-2 in Group B Streptococcus (GBS), a leading agent of neonatal infections. While nox2 inactivation caused an aerobic growth arrest, no improvement was seen by addition of antioxidants to cultures, suggesting that this defect was not due to accumulation of toxic oxygen species. Using several approaches, we show that the observed inability of the nox2 mutant to grow aerobically is mainly due to an underlying defect in fatty acid (FA) biosynthesis: (i) the nox2 aerobic growth defect is fully and rapidly complemented by adding oleic acid to culture medium, and (ii) direct assimilation of this unsaturated FA in both wild type (WT) and nox2 GBS membranes is demonstrated and correlated with mutant growth rescue. We propose that NAD+ depletion in the nox2 mutant results in reduced acetyl-CoA production, which perturbs FA biosynthesis and hence blocks growth in aerobiosis. The nox2 aerobic growth defect was also complemented when GBS respiration metabolism was activated by exogenous haem and menaquinone. The membrane NADH oxidase activity generated by the functional respiratory chain thus compensates the cytoplasmic NADH oxidase deficiency. The nox2 mutant was attenuated for virulence, as assessed in lung, intraperitoneal and intravenous murine infection models. As the nox2 defect seems only to affect aerobic growth of GBS, its reduced virulence supports the suggestion that aerobic conditions and NADH oxidase activities are relevant to the GBS infection process.  相似文献   

12.
Group B Streptococcus (GBS) is the leading cause of neonatal pneumonia, septicemia, and meningitis. We have previously shown that in adult mice GBS glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an extracellular virulence factor that induces production of the immunosuppressive cytokine interleukin-10 (IL-10) by the host early upon bacterial infection. Here, we investigate whether immunity to neonatal GBS infection could be achieved through maternal vaccination against bacterial GAPDH. Female BALB/c mice were immunized with rGAPDH and the progeny was infected with a lethal inoculum of GBS strains. Neonatal mice born from mothers immunized with rGAPDH were protected against infection with GBS strains, including the ST-17 highly virulent clone. A similar protective effect was observed in newborns passively immunized with anti-rGAPDH IgG antibodies, or F(ab')(2) fragments, indicating that protection achieved with rGAPDH vaccination is independent of opsonophagocytic killing of bacteria. Protection against lethal GBS infection through rGAPDH maternal vaccination was due to neutralization of IL-10 production soon after infection. Consequently, IL-10 deficient (IL-10(-/-)) mice pups were as resistant to GBS infection as pups born from vaccinated mothers. We observed that protection was correlated with increased neutrophil trafficking to infected organs. Thus, anti-rGAPDH or anti-IL-10R treatment of mice pups before GBS infection resulted in increased neutrophil numbers and lower bacterial load in infected organs, as compared to newborn mice treated with the respective control antibodies. We showed that mothers immunized with rGAPDH produce neutralizing antibodies that are sufficient to decrease IL-10 production and induce neutrophil recruitment into infected tissues in newborn mice. These results uncover a novel mechanism for GBS virulence in a neonatal host that could be neutralized by vaccination or immunotherapy. As GBS GAPDH is a structurally conserved enzyme that is metabolically essential for bacterial growth in media containing glucose as the sole carbon source (i.e., the blood), this protein constitutes a powerful candidate for the development of a human vaccine against this pathogen.  相似文献   

13.
Streptococcus agalactiae or Group B Streptococcus (GBS) is a commensal bacterium of the human gastrointestinal and urogenital tracts as well as a leading cause of neonatal sepsis, pneumonia and meningitis. Maternal vaginal carriage is the main source for GBS transmission and thus the most important risk factor for neonatal disease. Several studies in eukaryotes identified a group of proteins natural resistance‐associated macrophage protein (NRAMP) that function as divalent cation transporters for Fe2+ and Mn2+ and confer on macrophages the ability to control replication of bacterial pathogens. Genome sequencing predicted potential NRAMP homologues in several prokaryotes. Here we describe for the first time, a pH‐regulated NRAMP Mn2+/Fe2+ transporter in GBS, designated MntH, which confers resistance to reactive oxygen species (ROS) and is crucial for bacterial growth and survival under low pH conditions. Our investigation implicates MntH as an important colonization determinant for GBS in the maternal vagina as it helps bacteria to adapt to the harsh acidic environment, facilitates bacterial adherence, contributes to the coexistence with the vaginal microbiota and plays a role in GBS intracellular survival inside macrophages.  相似文献   

14.
Group B Streptococcus (GBS) is a major cause of bacterial meningitis and neurological morbidity in newborn infants. The cellular and molecular mechanisms by which this common organism causes CNS injury are unknown. We show that both heat-inactivated whole GBS and a secreted proteinaceous factor from GBS (GBS-F) induce neuronal apoptosis via the activation of murine microglia through a TLR2-dependent and MyD88-dependent pathway in vitro. Microglia, astrocytes, and oligodendrocytes, but not neurons, express TLR2. GBS as well as GBS-F induce the synthesis of NO in microglia derived from wild-type but not TLR2(-/-) or MyD88(-/-) mice. Neuronal death in neuronal cultures complemented with wild-type microglia is NO-dependent. We show for the first time a TLR-mediated mechanism of neuronal injury induced by a clinically relevant bacterium. This study demonstrates a causal molecular relationship between infection with GBS, activation of the innate immune system in the CNS through TLR2, and neurodegeneration. We suggest that this process contributes substantially to the serious morbidity associated with neonatal GBS meningitis and may provide a potential therapeutic target.  相似文献   

15.
Streptococcus agalactiae or group B streptococcus (GBS) is the most common cause of neonatal sepsis and meningitis in neonates. One of the major questions is whether the GBS strains able to cause neonatal invasive disease have peculiar genetic features. A collection of S. agalactiae strains, isolated from cervix, vagina and rectum of 10 mothers and from throat, ear and umbilicus of their newborns was genetically characterized by pulsed-field gel electrophoresis (PFGE). This study demonstrated that the strains isolated from each mother and her child were all genetically identical but that the strains from the 10 mother/child pairs mutually were genetically heterogeneous and 10 different PFGE patterns were found. Although it has been suggested that PFGE would be able to identify virulence traits to direct decisions in antibiotic management, the heterogeneous feature of GBS strains does not support broad application.  相似文献   

16.
Group B streptococcus (GBS) is a major cause of neonatal pneumonia. The early interactions between innate airway defenses and this pathogen are likely to be a critical factor in determining the outcome for the host. The surface-localized penicillin-binding protein (PBP)1a, encoded by ponA, is known to be an important virulence trait in a sepsis model of GBS infection that promotes resistance to neutrophil killing and more specifically to neutrophil antimicrobial peptides (AMPs). In this study, we used an aerosolization model to explore the role of PBP1a in evasion of innate immune defenses in the neonatal lung. The ponA mutant strain was cleared more rapidly from the lungs of neonatal rat pups compared with the wild-type strain, which could be linked to a survival defect in the presence of alveolar macrophages (AM). Rat AM were found to secrete beta-defensin and cathelicidin AMP homologues, and the GBS ponA mutant was more susceptible than the wild-type strain to killing by these peptides in vitro. Collectively, our observations suggest that PBP1a-mediated resistance to AM AMPs promotes the survival of GBS in the neonatal lung. Additionally, AM are traditionally thought to clear bacteria through phagocytic uptake; our data indicate that secretion of AMPs may also participate in limiting bacterial replication in the airway.  相似文献   

17.
Group B Streptococcus (GBS) is a common constituent of the vaginal microflora, but its transmission to newborns can cause life-threatening sepsis, pneumonia and meningitis. Energy metabolism of this opportunist pathogen has been deduced to be strictly fermentative. We discovered that GBS undergoes respiration metabolism if its environment supplies two essential respiratory components: quinone and haem. Respiration metabolism led to significant changes in growth characteristics, including a doubling of biomass and an altered metabolite profile under the tested conditions. The GBS respiratory chain is inactivated by: (i) withdrawing haem and/or quinone, (ii) treating cultures with a respiration inhibitor or (iii) inactivating the cydA gene product, a subunit of cytochrome bd quinol oxidase, in all cases resulting in exclusively fermentative growth. cydA inactivation reduced GBS growth in human blood and strongly attenuated virulence in a neonatal rat sepsis model, suggesting that the animal host may supply the components that activate GBS respiration. These results suggest a role of respiration metabolism in GBS dissemination. Our findings show that environmental factors can increase the flexibility of GBS metabolism by activating a newly identified respiration chain. The need for two environmental factors may explain why GBS respiration metabolism was not found in previous studies.  相似文献   

18.
Group B streptococci (GBS) are important pathogens in neonatal sepsis and pneumonia. GBS stimulate alveolar macrophages to produce inflammatory cytokines and free oxygen radicals, which can damage the lungs. In several studies, use of exogenous surfactant in term babies has improved outcome related to sepsis and respiratory failure. The role(s) of exogenous surfactant in modulating the inflammatory response produced by this microbe was examined. Tumor necrosis factor alpha (TNF-alpha) production and luminol-enhanced chemiluminescence (LCL), a measure of respiratory burst, were investigated. For measuring TNF-alpha release, RAW 264.7 murine macrophages were pre-incubated with bovine surfactant and stimulated with either lipopolysaccharide, live or heat-killed GBS type Ia. LCL was measured after macrophages were pre-incubated with or without surfactant overnight, then stimulated with GBS or phorbol myristate acetate. Lipopolysaccharide and GBS stimulated TNF-alpha secretion from macrophages that was suppressed by exogenous surfactant in a dose-dependent fashion. GBS and phorbol myristate acetate also increased LCL from macrophages, which was significantly suppressed by pre-incubation of macrophages with exogenous surfactant. We conclude that GBS type Ia stimulates TNF-alpha release and LCL from RAW 264.7 cells and that these responses are suppressed by surfactant. Suppression of inflammatory mediators by exogenous surfactant might improve respiratory disease associated with GBS.  相似文献   

19.
Streptococcus agalactiae (Group B Streptococcus or GBS) is a leading cause of invasive infections in neonates whose virulence is dependent on its ability to interact with cells and host components. We here characterized a surface protein with a critical function in GBS pathophysiology. This adhesin, designated PbsP, possesses two Streptococcal Surface Repeat domains, a methionine and lysine‐rich region, and a LPXTG cell wall‐anchoring motif. PbsP mediates plasminogen (Plg) binding both in vitro and in vivo and we showed that cell surface‐bound Plg can be activated into plasmin by tissue plasminogen activator to increase the bacterial extracellular proteolytic activity. Absence of PbsP results in a decreased bacterial transmigration across brain endothelial cells and impaired virulence in a murine model of infection. PbsP is conserved among the main GBS lineages and is a major plasminogen adhesin in non‐CC17 GBS strains. Importantly, immunization of mice with recombinant PbsP confers protective immunity. Our results indicate that GBS have evolved different strategies to recruit Plg which indicates that the ability to acquire cell surface proteolytic activity is essential for the invasiveness of this bacterium.  相似文献   

20.
Most bacteria of the genus Streptococcus are opportunistic pathogens, and some of them produce extracellular DNases, which may be important for virulence. Genome analyses of Streptococcus agalactiae (GBS) neonate isolate NEM316 revealed the presence of seven genes putatively encoding secreted DNases, although their functions, if any, are unknown. In this study, we observed that respiration growth of GBS led to the extracellular accumulation of a putative nuclease, identified as being encoded by the gbs0661 gene. When overproduced in Lactococcus lactis, the protein was found to be a divalent cation‐requiring, pH‐stable and heat‐stable nuclease that we named Nuclease A (NucA). Substitution of the histidine148 by alanine reduced nuclease activity of the GBS wild‐type strain, indicating that NucA is the major nuclease ex vivo. We determined that GBS is able to degrade the DNA matrix comprising the neutrophil extracellular trap (NET). The nucAH148A mutant was impaired for this function, implicating NucA in the virulence of GBS. In vivo infection studies confirmed that NucA is required for full infection, as the mutant strain allowed increased bacterial clearance from lung tissue and decreased mortality in infected mice. These results show that NucA is involved in NET escape and is needed for full virulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号