首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microcyst formation inPolysphondylium pallidum WS320 was accompanied by a decrease in intracellular cysteine proteinase activity measured with the peptide nitroanilides Z-Arg-Arg-Nan and Bz-Pro-Phe-Arg-Nan. Some activity was released into the buffer, and secretion of that towards Z-Arg-Arg-Nan continued until encystment occurred. Cells grown in association withEscherichia coli had an electrophoretic proteinase pattern different from cells grown axenically. Microcysts formed from the two cell populations also had distinct proteinase patterns; those from bacterially grown cells retained significant quantities of proteinase ppCP22, whereas those derived from axenic cells were devoid of detectable proteinases. No significant changes in cysteine proteinase activities were observed during microcyst germination, although some changes in activity occurred subsequent to emergence. The results indicate that there is not a close correlation between particular cysteine proteinases and specific stages of microcyst formation. Intracellular proteinase loss and concomitant secretion are, however, processes typical of cellular slime molds developing in response to starvation.  相似文献   

2.
Abstract Polysphondylium pallidum strain PPHU8 grown in association with bacteria contains aspartic and cysteine proteinases. When myxamoebae were grown in axenic medium the contribution of cysteine proteinases was much lower. The proteinase activity could be altered by addition of heat-killed bacteria to axenically growing cells. This was detected as an increase in the specific activity towards N -benzoyl-L-prolyl-L-phenylalanyl-L-arginine- p -nitroanilide, a cysteine proteinase substrate, and by the appearance of cysteine proteinase bands after electrophoretic analysis. The changes were inhibited by cycloheximide, azide and dinitrophenol. All the available evidence suggests that they are due to the de novo synthesis of cysteine proteinases.  相似文献   

3.
The term green island was first used to describe an area of living, green tissue surrounding a site of infection by an obligately biotrophic fungal pathogen, differentiated from neighbouring yellowing, senescent tissue. However, it has now been used to describe symptoms formed in response to necrotrophic fungal pathogens, virus infection and infestation by certain insects. In leaves infected by obligate biotrophs such as rust and powdery mildew pathogens, green islands are areas where senescence is retarded, photosynthetic activity is maintained and polyamines accumulate. We propose such areas, in which both host and pathogen cells are alive, be termed green bionissia. By contrast, we propose that green areas associated with leaf damage caused by toxins produced by necrotrophic fungal pathogens be termed green necronissia. A range of biotrophic/hemibiotrophic fungi and leaf-mining insects produce cytokinins and it has been suggested that this cytokinin secretion may be responsible for the green island formation. Indeed, localised cytokinin accumulation may be a common mechanism responsible for green island formation in interactions of plants with biotrophic fungi, viruses and insects. Models have been developed to study if green island formation is pathogen-mediated or host-mediated. They suggest that green bionissia on leaves infected by biotrophic fungal pathogens represent zones of host tissue, altered physiologically to allow the pathogen maximum access to nutrients early in the interaction, thus supporting early sporulation and increasing pathogen fitness. They lead to the suggestion that green islands are 'red herrings', representing no more than the consequence of the infection process and discrete changes in leaf senescence.  相似文献   

4.
The effect of the presence of Erysiphe graminis tritici on the reactions of each of five wheats, Malakoff, Democrat, Mediterranean, Hussar and Webster, to Puccinia triticina was studied. Under normal environmental conditions, mildew increased the susceptibility to rust of Malakoff and Democrat, though not, except in isolated instances, that of Mediterranean or Hussar. High light intensities enhanced the effect of mildew on the reaction of Democrat to P. triticina. The susceptibility of Webster to rust was unaffected or decreased by the presence of mildew.
In all varieties there was a decided tendency for rust and mildew to develop on different parts of the leaf, and when a leaf was heavily mildewed the development of P. triticina was sometimes almost entirely inhibited. The reason for this is obscure, since spores of P. triticina and E. g. tritici germinate well in each others presence, and cytological studies revealed several cases of the presence of both mildew and rust haustoria in a single living host cell. Anatomical investigations also showed that the effect of mildew on rust infection was confined to rust pustules within 1 mm. of mildew colonies.
The results obtained are in accordance with Gassner's theory that susceptibility to rust is due to the presence of certain specific proteins in the host leaf.  相似文献   

5.
To exploit plants as living substrates, biotrophic fungi have evolved remarkable variations of their tubular cells, the hyphae. They form infection structures such as appressoria, penetration hyphae and infection hyphae to invade the plant with minimal damage to host cells. To establish compatibility with the host, controlled secretory activity and distinct interface layers appear to be essential. Colletotrichum species switch from initial biotrophic to necrotrophic growth and are amenable to mutant analysis and molecular studies. Obligate biotrophic rust fungi can form the most specialized hypha: the haustorium. Gene expression and immunocytological studies with rust fungi support the idea that the haustorium is a transfer apparatus for the long-term absorption of host nutrients.  相似文献   

6.
Only few fungal effectors have been described to be delivered into the host cell during obligate biotrophic interactions. RTP1p, from the rust fungi Uromyces fabae and U. striatus, was the first fungal protein for which localization within the host cytoplasm could be demonstrated directly. We investigated the occurrence of RTP1 homologues in rust fungi and examined the structural and biochemical characteristics of the corresponding gene products. The analysis of 28 homologues showed that members of the RTP family are most likely to occur ubiquitously in rust fungi and to be specific to the order Pucciniales. Sequence analyses indicated that the structure of the RTPp effectors is bipartite, consisting of a variable N‐terminus and a conserved and structured C‐terminus. The characterization of Uf‐RTP1p mutants showed that four conserved cysteine residues sustain structural stability. Furthermore, the C‐terminal domain exhibits similarities to that of cysteine protease inhibitors, and it was shown that Uf‐RTP1p and Us‐RTP1p are able to inhibit proteolytic activity in Pichia pastoris culture supernatants. We conclude that the RTP1p homologues constitute a rust fungi‐specific family of modular effector proteins comprising an unstructured N‐terminal domain and a structured C‐terminal domain, which exhibit protease inhibitory activity possibly associated with effector function during biotrophic interactions.  相似文献   

7.
A biotrophic parasite often depends on an intrinsic ability to suppress host defenses in a manner that will enable it to infect and successfully colonize a susceptible host. If the suppressed defenses otherwise would have been effective against alternative pathogens, it follows that primary infection by the "suppressive" biotroph potentially could enhance susceptibility of the host to secondary infection by avirulent pathogens. This phenomenon previously has been attributed to true fungi such as rust (basidiomycete) and powdery mildew (ascomycete) pathogens. In our study, we observed broad-spectrum suppression of host defense by the oomycete Albugo candida (white blister rust) in the wild crucifer Arabidopsis thaliana and a domesticated relative, Brassica juncea. A. candida subsp. arabidopsis suppressed the "runaway cell death" phenotype of the lesion mimic mutant lsd1 in Arabidopsis thaliana in a sustained manner even after subsequent inoculation with avirulent Hyaloperonospora arabidopsis (Arabidopsis thaliana downy mildew). In sequential inoculation experiments, we show that preinfection by virulent Albugo candida can suppress disease resistance in cotyledons to several downy mildew pathogens, including contrasting examples of genotype resistance to H. arabidopsis in Arabidopsis thaliana that differ in the R protein and modes of defense signaling used to confer the resistance; genotype specific resistance in B. juncea to H. parasitica (Brassica downy mildew; isolates derived from B. juncea); species level (nonhost) resistance in both crucifers to Bremia lactucae (lettuce downy mildew) and an isolate of the H. parasitica race derived from Brassica oleracea; and nonhost resistance in B. juncea to H. arabidopsis. Broad-spectrum powdery mildew resistance conferred by RPW8 also was suppressed in Arabidopsis thaliana to two morphotypes of Erysiphe spp. following pre-infection with A. candida subsp. arabidopsis.  相似文献   

8.
Two spermidine analogues were synthesised and examined for antifungal activity. Both compounds used as 1 mM post-inoculation sprays reduced infection of barley seedlings by the powdery mildew fungus, Erysiphe graminis f.sp. hordei, infection of broad bean seedlings by the rust fungus, Uromyces viciae-fabae, and infection of apple seedlings by the powdery mildew fungus, Podosphaera leucotricha. Since these fungal pathogens cannot be cultured axenically, the effects of the two spermidine analogues on mycelial growth in vitro, as well as preliminary investigations on polyamine biosynthesis, were undertaken using the oat stripe pathogen, Pyrenophora avenae. Although neither compound affected radial growth of the fungus on plates, both analogues reduced fungal biomass in liquid culture substantially. The two spermidine analogues, used at a concentration of 1 mM, had no significant effect on the conversion of labelled ornithine into polyamines in P. avenae.  相似文献   

9.
The changes in the activity of the pentose phosphate cycle produced by the activation or inhibition of different NADPH-consuming pathways have been studied. The inhibition of fatty acid synthesis by kynurenate produced to the same extent, inhibition of the pentose phosphate cycle activity and an increase (about twofold) in the NADPH/NADP ratio. The addition of ter-butyl-hydroperoxide or paraquat, which is metabolized via NADPH-consuming pathways, produced the activation of the pentose phosphate cycle and a decrease in the NADPH/NADP ratio (about threefold). The plot of the NADPH/NADP ratio versus the pentose phosphate cycle activity gave a straight line with a regression index of 0.999. The regulation of the pentose phosphate cycle mainly by the intracellular NADPH/NADP ratio is discussed.  相似文献   

10.
11.
Schizaea pusilla is a rare and threatened fern restricted in North America to acidic bogs of Nova Scotia, Newfoundland, and New Jersey. The gametophyte lives in close association with two endophytic fungi. To characterize the nature of this fern's relationship with these fungi, we introduced axenic gametophytes to bog soil for colonization. Following colonization, the endophytic fungi were isolated and reintroduced to axenic gametophytes. The gametophytes introduced to bog soil were colonized by an aseptate fungus that formed vesicles and arbuscules within the gametophyte. However, culture of colonized gametophytes produced two fungal isolates: an aseptate fungus (fungus B) and a septate fungus (fungus A). Upon reintroduction of fungal isolates to axenically grown gametophytes, the aseptate fungus demonstrated a positive growth response to the presence of the gametophytes and colonized the gametophytes without harm to the host. The septate fungus did not exhibit any specific recognition but contacted the gametophytes randomly, leaving a large percentage of the host nonviable. We propose that the relationship of the septate fungus to the gametophyte of S. pusilla is nonmycorrhizal while the relationship of the aseptate fungus to the gametophyte is mycorrhizal. Furthermore, based on lack of nutrient availability in local soils, formation of specialized structures in the gametophyte for harboring fungi, and dependence of the fern on fungal presence for completion of its life cycle, we propose that S. pusilla maintains an obligatory relationship with the aseptate mycorrhizal fungus.  相似文献   

12.
1. The DNA, RNA, protein and carbohydrate contents of myxamoebae of Dictyostelium discoideum strain Ax-2 were measured after growth on bacteria or in various axenic media. 2. Myxamoebae grown in the different axenic media have similar DNA, RNA and protein contents, but there are marked differences in the contents of glycogen and free sugars. The DNA and protein contents of myxamoebae grown on bacteria are different from those in myxamoebae grown axenically. 3. Approximately half the DNA found in myxamoebae grown on bacteria is of bacterial rather than of slime-mould origin. 4. The specific activities of some enzymes (including UDP-glucose pyrophosphorylase) are higher in myxamoebae grown axenically than in myxamoebae grown on bacteria. Nevertheless the characteristic increase in the specific activity of UDP-glucose pyrophosphorylase occurring during differentiation of cells of the wild-type strain NC-4 is also found in cells grown axenically. 5. The rate of amino acid oxidation during axenic growth of the myxamoebae is decreased when the cells are supplied with glucose.  相似文献   

13.
Members of the kingdom fungi comprise numerous plant pathogens, including the causal agents of many agriculturally relevant plant diseases such as rust, powdery mildew, rice blast and cereal head blight. Data from recent sequencing projects provide deep insight into the genomes of a range of fungi that infect different organs of monocotyledonous or dicotyledonous hosts and that have diverse pathogenic lifestyles. These studies have revealed that, similar to sequenced phytopathogenic oomycetes, these plant parasites possess very plastic and dynamic genomes, which typically encode several hundred candidate secreted effector proteins that can be highly divergent even among related species. A new insight is the presence of lineage-specific genes on mobile and partly dispensable chromosomes that are transferred intraspecifically and possibly interspecifically, thereby constituting pathogenicity and host range determinants. Convergent lifestyle-specific adaptations have shaped the parasite genomes to maximize pathogenic success according to the different infection strategies employed.  相似文献   

14.
Plants are resistant to most potentially pathogenic microbes. This forces plant pathogens to develop sophisticated strategies to overcome basic plant resistance, either by masking intrusion or by suppression of host defences. This is particularly true for fungal pathogens, which establish long lasting interactions with living host tissue, without causing visible damage to invaded cells. The interactions of cereal crops and Arabidopsis with powdery mildew fungi are model systems for understanding host resistance. Currently, these systems are also promoting the understanding of fungal infection by identifying fungal pathogenicity and virulence factors and host target sites. This minireview focuses on recent findings about host susceptibility and the way powdery mildew fungi might induce it.  相似文献   

15.
Rust fungi are obligate parasites, of plants, with complex and in many cases poorly known life cycles which may include host alteration and up to five spore types with haploid, diploid, and dikaryotic nuclear stages. This study supports that Thekopasora areolata, the causal agent of cherry‐spruce rust in Norway spruce, is a macrocyclic heteroecious fungus with all five spore stages which uses two host plants Prunus padus and Picea abies to complete its life cycle. High genotypic diversity without population structure was found, which suggests predominantly sexual reproduction, random mating and a high gene flow within and between the populations in Fennoscandia. There was no evidence for an autoecious life cycle resulting from aeciospore infection of pistillate cones that would explain the previously reported rust epidemics without the alternate host. However, within cones and scales identical multilocus genotypes were repeatedly sampled which can be explained by vegetative growth of the fertilized mycelia or repeated mating of mycelium by spermatia of the same genotype. The high genotypic diversity within cones and haplotype inference show that each pistillate cone is infected by several basidiospores. This study provides genetic evidence for high gene flow, sexual reproduction, and multiple infections of Norway spruce cone by the rust fungus T. areolata which expands the general understanding of the biology of rust fungi.  相似文献   

16.
Colletotrichum species infect several economically important crop plants. To establish a compatible parasitic interaction, a specialized infection cell, the melanized appressorium, is differentiated on the cuticle of the host. After penetration, an infection vesicle and primary hyphae are formed. These structures do not kill the host cell and show some similarities with haustoria formed by powdery mildews and rust fungi. Therefore, this stage of infection is called biotrophic. Later in the infection process, necrotrophic secondary hyphae spread within and kill the host tissue. The lifestyle of Colletotrichum species is called hemibiotrophic, as biotrophic and necrotrophic developmental stages are sequentially established. As most Colletotrichum species are accessible to molecular techniques, genes can be identified and functionally characterized. Here we demonstrate that Agrobacterium tumefaciens-mediated transformation is a well-suited method for tagging of genes mediating compatibility in the Colletotrichum graminicola-maize interaction.  相似文献   

17.
18.
Rust fungi are obligate biotrophic pathogens that cause considerable damage on crop plants. Puccinia graminis f. sp. tritici, the causal agent of wheat stem rust, and Melampsora larici-populina, the poplar leaf rust pathogen, have strong deleterious impacts on wheat and poplar wood production, respectively. Filamentous pathogens such as rust fungi secrete molecules called disease effectors that act as modulators of host cell physiology and can suppress or trigger host immunity. Current knowledge on effectors from other filamentous plant pathogens can be exploited for the characterisation of effectors in the genome of recently sequenced rust fungi. We designed a comprehensive in silico analysis pipeline to identify the putative effector repertoire from the genome of two plant pathogenic rust fungi. The pipeline is based on the observation that known effector proteins from filamentous pathogens have at least one of the following properties: (i) contain a secretion signal, (ii) are encoded by in planta induced genes, (iii) have similarity to haustorial proteins, (iv) are small and cysteine rich, (v) contain a known effector motif or a nuclear localization signal, (vi) are encoded by genes with long intergenic regions, (vii) contain internal repeats, and (viii) do not contain PFAM domains, except those associated with pathogenicity. We used Markov clustering and hierarchical clustering to classify protein families of rust pathogens and rank them according to their likelihood of being effectors. Using this approach, we identified eight families of candidate effectors that we consider of high value for functional characterization. This study revealed a diverse set of candidate effectors, including families of haustorial expressed secreted proteins and small cysteine-rich proteins. This comprehensive classification of candidate effectors from these devastating rust pathogens is an initial step towards probing plant germplasm for novel resistance components.  相似文献   

19.
Huppe HC  Farr TJ  Turpin DH 《Plant physiology》1994,105(4):1043-1048
The onset of photosynthetic NO3- assimilation in N-limited Chlamydomonas reinhardtii increased the initial extractable activity of the glucose-6-phosphate dehydrogenase (G6PDH), the key regulatory step of the oxidative pentose phosphate pathway. The total activated enzyme activity did not change upon NO3- resupply. The higher activity, therefore, represents activation of existing enzyme. No activation occurred during NH4+ assimilation. Incubation of extracts with DTT reversed the NO3- stimulation of G6PDH activity, indicating that the activation involved redox modulation of G6PDH. Phosphoribulosekinase, an enzyme activated by thioredoxin reduction, was inhibited at the onset of NO3- assimilation. A 2-fold stimulation of O2 evolution and a 70% decrease in the rate of photosynthetic CO2 assimilation accompanied the enzyme activity changes. There was an immediate drop in the NADPH and an increase in NADP upon addition of NO3-, whereas NH4+ caused only minor fluctuations in these pools. The response of C. reinhardtii to NO3- indicates that the oxidative pentose phosphate pathway was activated to oxidize carbon upon the onset of NO3- assimilation, whereas reduction of carbon via the reductive pentose phosphate pathway was inhibited. This demonstrates a possible role for the Fd-thioredoxin system in coordinating enzyme activity in response to the metabolic demands for reducing power and carbon during NO3- assimilation.  相似文献   

20.
Rust fungi (Pucciniales) are a diverse group of plant pathogens in natural and agricultural systems. They pose ongoing threats to the diversity of native flora and cause annual crop yield losses. Agricultural rusts are predominantly managed with fungicides and breeding for resistance, but new control strategies are needed on non-agricultural plants and in fragile ecosystems. RNA interference (RNAi) induced by exogenous double-stranded RNA (dsRNA) has promise as a sustainable approach for managing plant-pathogenic fungi, including rust fungi. We investigated the mechanisms and impact of exogenous dsRNA on rust fungi through in vitro and whole-plant assays using two species as models, Austropuccinia psidii (the cause of myrtle rust) and Coleosporium plumeriae (the cause of frangipani rust). In vitro, dsRNA either associates externally or is internalized by urediniospores during the early stages of germination. The impact of dsRNA on rust infection architecture was examined on artificial leaf surfaces. dsRNA targeting predicted essential genes significantly reduced germination and inhibited development of infection structures, namely appressoria and penetration pegs. Exogenous dsRNA sprayed onto 1-year-old trees significantly reduced myrtle rust symptoms. Furthermore, we used comparative genomics to assess the wide-scale amenability of dsRNA to control rust fungi. We sequenced genomes of six species of rust fungi, including three new families (Araucariomyceaceae, Phragmidiaceae, and Skierkaceae) and identified key genes of the RNAi pathway across 15 species in eight families of Pucciniales. Together, these findings indicate that dsRNA targeting essential genes has potential for broad-use management of rust fungi across natural and agricultural systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号