首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Many natural populations are subdivided among partially isolated habitat patches, but the influence of habitat patchiness per se on species immigration, extinction, and the resulting patterns of species diversity, has received virtually no experimental study. In an experiment designed to test the effects of habitat subdivision on local community structure, we compare the diversity and annual turnover of flowering plant species in 3 treatments of the same total area, but subdivided to different degrees. We experimentally fragmented a California winter annual grassland into isolated plots, two of 32 m2, eight of 8 m2, and 32 of 2 m2, each treatment representing a combined area of 64 m2. Insularization of the experimental habitat fragments is provided by grazing sheep. The effects of plot area on species diversity, extinction, and turnover are consistent with the MacArthur-Wilson model. Species richness increases with the degree of habitat subdivision. Extinction, immigration, and turnover, however, are relatively independent of the degree of subdivision. These experimental results contrast with predictions that habitat subdivision necessarily results in greater rates of extinction accompanied by reduced species diversity.  相似文献   

2.
The effects of habitat fragmentation may include the loss of species from isolated fragments or changes in species abundances among habitats that differ in area, structure, or edge characteristics. We measured the species richness and abundance of ground‐dwelling insects in a 1.14‐ha old field that was mowed to produce patches of unmowed vegetation which differed in size, degree of isolation, and the amount of habitat edge. Four treatments – ranging from unfragmented (169‐m2) to highly fragmented (1‐m2) patches – were replicated four times in a Latin square design, and insects were sampled twice during 1995 using 177 pitfall traps. Species richness showed a non‐monotonic response to fragmentation, with the fewest species occurring in the slightly fragmented treatment. Responses of rove beetles and ants, the most species‐rich and abundant taxa, respectively, were similar to the overall insect community but ants had a stronger and more consistent treatment effect in both sample months. Ordinations of ant and rove‐beetle assemblages using nonmetric multidimensional scaling showed that the slightly fragmented treatment differed from other treatments in species occurrence and abundance. The lower species richness in the slightly fragmented treatment was primarily due to a subset of ant and rove beetle species that showed a lower abundance than in other treatments, possibly because this treatment had the greatest amount of habitat edge. We hypothesize that the non‐monotonic species response to fragmentation was due to the differential effects of habitat edge on species movements across the habitat boundary between unmowed patches and mowed areas. A greater effect due to the amount of habitat edge rather than total patch area, at least among the range of patch sizes studied, suggests that the length of habitat edge may be quite important to the distribution and abundance of ground‐dwelling animals in fragmented habitats.  相似文献   

3.
Ants are provided with a balanced system of reactions either to the original paucity of socia or to their secondary depopulation. This system can be defined as a strategy of population concentration. Both a successful reproduction of workers and queen fertilization are necessary conditions for ant communities' survival and development. Thus, the anthills must be large enough to ensure optimal conditions for reproduction. It is the strategy of population concentration that is directed to an accelerated attainment (or rehabilitation) by a socium of a state of stable development by way of concentrating the existent ant staff in an accessible number of viable nests. This strategy is realized throughout the life of ant communities by way of (a) fusing the starting family cells left by founder females, (b) fusing small anthills during artificial ant migrations, (c) uniting smaller socia or their joining other anthills, (d) reintegrating the secondary anthills (fragmentants) after an exogenous fragmentation of formicaries. Pooling and the attraction of deficient demographic resources from outside form the most efficient and quickest ways of reaching or restoring the threshold density levels. By realizing this strategy, the ants solve their paramount problems of anthill or settlement conservation at any particular time, as well as of providing some prospects for ant existence in the future. These problems are so vital for ant socia that they appear to hold priority over such other characteristics of utmost importance as genetic kinship or even species identity. The priority of social basics over genetic ones is unequivocally supported through mixed formicaries. A necessary condition for the realization of the strategy of population concentration is tolerance of highly developed social systems to the diversity of forms and to deviations from the norm. The use of one and the same mechanism at all stages of the life both of an individual socium and large ant settlements is evidence of the universality of this strategy, as well as of its unconditioned importance to the life of ant communities.  相似文献   

4.
Rapid deforestation has fragmented habitat across the landscape of Madagascar. To determine the effect of fragmentation on seed banks and the potential for forest regeneration, we sampled seed viability, density and diversity in 40 plots of 1 m2 in three habitat types: forest fragments, the near edge of continuous forest, and deforested savanna in a highly fragmented dry deciduous forest landscape in northwestern Madagascar. While seed species diversity was not different between forest fragments and continuous forest edge, the number of animal‐dispersed seeds was significantly higher in forest fragments than in continuous forest edge, and this pattern was driven by a single, small‐seeded species. In the savanna, seeds were absent from all but three of the 40 plots, indicating that regeneration potential is low in these areas. Several pre‐ and post‐dispersal biotic and abiotic factors, including variation in the seed predator communities and edge effects could explain these findings. Understanding the extent to which seed dispersal and seed banks influence the regeneration potential of fragmented landscapes is critical as these fragments are the potential sources of forest expansion and re‐connectivity.  相似文献   

5.
The establishment of commercial tree plantations is a common cause of habitat fragmentation globally, yet the influence of this land use on plant species density in fragmented native forests requires further understanding. Theory predicts species density will be highest in large areas of habitat, and should decline as area is reduced, but whether these effects are scale‐dependent is largely unknown. We assessed plant species density (total, common and uncommon species) in experimentally fragmented eucalypt forest remnants (0.25, 0.88, 3.06 ha) surrounded by a pine plantation, at three spatial scales using nested quadrats. Specifically, we consider how plant species density varies across three different sized fragments, and whether the response of species density is magnified in common or uncommon species. Species density in small fragments was higher than continuous forest for all species groupings at the smallest spatial scale (1 m2), and for total and common species at the next smallest spatial scale (16 m2). No species groupings responded to reductions in habitat area at the largest spatial scale (144 m2). We suggest that pine plantations may cause higher species density in small fragments via two mechanisms, either by allowing species to infill unoccupied areas within small fragments, or by buffering small fragments from species losses during a severe and prolonged drought. In both cases we suspect reduced moisture stress (e.g. increased soil moisture, higher shading and reduced temperature) in small fragments has led to the observed changes in species density.  相似文献   

6.
Joshi J  Stoll P  Rusterholz HP  Schmid B  Dolt C  Baur B 《Oecologia》2006,148(1):144-152
Habitat fragmentation is one of the most important threats to biodiversity. Decreasing patch size may lead to a reduction in the size of populations and to an increased extinction risk of remnant populations. Furthermore, colonization rates may be reduced in isolated patches. To investigate the effects of isolation and patch size on extinction and colonization rates of plant species, calcareous grasslands at three sites in the Swiss Jura Mountains were experimentally fragmented into patches of 0.25, 2.25, and 20.25 m2 by frequent mowing of the surrounding area from 1993 to 1999. Species richness in the fragment plots and adjacent control plots of the same sizes was recorded during these 7 years. In agreement with the theory of island biogeography, colonization rate was reduced by 30% in fragments versus non-isolated controls, and extinction increased in small versus large plots. Habitat specialists, in contrast to generalists, were less likely to invade fragments. In the last 4 years of the experiment, extinction rates tended to be higher in fragment than in control plots at two of the three sites. Despite reduced colonization rates and a tendency of increased extinction rates in fragments, fragmented plots had only marginally fewer species than control plots after 7 years. Hence, rates were a more sensitive measure for community change than changes in species richness per se. From a conservation point of view, the detected reduced colonization rates are particularly problematic in small fragments, which are more likely to suffer from high extinction rates in the long run.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

7.
We studied the influence of vegetation growing on red wood ant, Formica polyctena, hills and its removal, by cutting, on the temperature and moisture content of the nests. Vegetation was removed from half of nests (n = 10) in June and August. Generally, ant hills were small (0.1–1.1 m3) and their daily temperature fluctuations and moisture (16–38%) were low. The centre temperature of ant hills was positively correlated with ambient air temperature. Daily temperatures peaked at 13:00 and slowly decreased until 09:00 then increased again until 13:00. Nest moisture content was not related to nest volume. All the ant hills were covered with Reed Grass (Calamagrostis arundinacea) that grows through nests and reaches about 185–1085 g/dcm2 of dry matter. Dry vegetation matter (g/dcm2 of anthill surface) was the same on cut and uncut nests as well because all ant hills were under long-term management (vegetation removal) for at least 10 years. Although vegetation removal did not result in an immediate increase in the temperature of denuded ant hills removal did results in higher daily and night temperatures during the July-September period. The moisture content of nests with undisturbed and intact vegetation was the same. The dry matter content of vegetation strongly affected their moisture content. However, temperature at the inside centre of nests decreased as vegetation dry matter increased, i.e. there was a statistically negative correlation between temperature and moisture. The results support removing grass as a suitable management tool to facilitate the survival of wood ants. Received 30 December 2007; revised 22 April 2008; accepted 10 June 2008.  相似文献   

8.
Habitat fragmentation has a marked impact on the functional composition of tropical forest tree assemblages, and such change is likely to cascade through other trophic levels. Here, we investigate how habitat fragmentation affects extrafloral nectary (EFN)‐bearing plants and ant functional groups known to attend EFNs in a fragmented landscape of the Atlantic Forest. Extrafloral nectary‐bearing trees were identified in 50 0.1‐ha plots located in forest fragments, edge and interior patches. Ants were surveyed in 30 1‐m2 litter samples in each of 17 forest fragments and in forest interior. Extrafloral nectary‐bearing plants accounted for 19.9% of individuals and 10.5% of species and included both pioneer and shade‐tolerant species similarly rich in the three habitat types. However, shade‐tolerant individuals accounted for >80% of EFN‐bearing plants in forest interior, compared with 2% in forest edge and 29% in fragments. Forest edge and fragment plots had a third fewer EFN‐bearing individuals and species compared with forest interior. This appeared to have important implications for local ant communities as the density of EFN‐bearing trees was the most important variable explaining the species richness of arboreal dominant ants. Our results show that plant loser–winner replacements promoted by forest fragmentation can cascade through higher trophic levels, with implications for forest dynamics and biodiversity conservation.  相似文献   

9.
Aim To analyse the effects of forest fragmentation on ant communities in an Amazonian landscape that has been fragmented for over a century. Location The region surrounding the village of Alter do Chão in the Brazilian Amazonian state of Pará (2°30′ S, 54°57′ W). Methods Collection of ants and measurements of tree density were performed along transects established in eight sites in continuous forest and in 24 forest fragments surrounded by savanna vegetation. Data on size, perimeter, and degree of isolation (distance to continuous forest and distance to nearest area of forest > 5 ha) of each fragment were obtained from a georeferenced Landsat image of the study area. Results There were significant differences in species richness and composition between fragments and continuous forest, and these differences were not related to intersite variation in vegetation structure (tree density). Fragments supported fewer ant species per plot, and these species tended to represent a nested subset of those found in continuous forests. Fragments had significantly fewer rare species and fewer ant genera. However, fragments and continuous forest had similar numbers of species that also occur in the savanna matrix (i.e. that are not forest specialists). Multiple linear regression analyses indicated that species richness and composition in the fragments are significantly affected by fragment area, but not by fragment shape and degree of isolation. More species were found in larger fragments. Main conclusions Forest fragmentation influences the organization of ant communities in Amazonian savanna/forest landscapes. Forest fragments harboured, on average, 85% of the species found in continuous forest. That these fragments, despite their long history of isolation, support a relatively large complement of the species found in continuous forest is surprising, especially given that in some recently fragmented landscapes the proportion of species surviving in the fragments is lower. Differences in inter‐fragment distance and type of matrix between Alter do Chão and these other landscapes may be involved. The fact that fragments at Alter do Chão are surrounded by a natural (rather than an anthropogenic) habitat, and that most of them are less than 300 m from another forest area, may have helped to ameliorate the adverse effects of forest fragmentation.  相似文献   

10.
Question: What is the role of mound‐building ants (Lasius flavus) in successional changes of a grassland ecosystem towards a spruce forest? Location: Slovenské Rudohorie Mountains, Slovakia; ca. 950 m a.s.l. near the Obrubovanec point (1020 m a.s.l.; 48°41′N, 19°39′E). Methods: Both chronosequence data along a successional gradient and temporal data from long‐term permanent plots were collected on ants, spruce establishment, and vegetation structure, together with additional data on spruce growth. Results: There are more spruce seedlings on ant mounds (4.72 m?2) than in the surrounding vegetation (0.81 m?2). Spruce seedlings grow faster on these mounds compared to surrounding areas. The first colonization wave of seedlings was rapid and probably occurred when grazing prevailed over mowing. Ant colony presence, mound volume, and plant species composition change along the successional gradient. Mounds become bigger when partly shaded but shrink in closed forest, when ant colonies disappear. Shade‐tolerant acidophylic species replace grassland plants both on the mounds and in surrounding areas. Conclusions: The massive occurrence of Lasius flavus anthills contributes to a runaway feedback process that accelerates succession towards forest. The effect of ants as ecosystem engineers is scale‐dependent: although they stabilize the system at the scale of an individual mound, they may destabilize the whole grassland system over a longer time scale if combined with changes in mowing regime.  相似文献   

11.
This study highlights spatial characterization of evergreen forests of the Western Ghats – an ecological hotspot in Tamil Nadu, India – using remote sensing and GIS-based analysis in conjunction with ground-based phytosociological data. The evergreen forests of Tamil Nadu are distributed in four distinct hill ranges, Nilgiri, Anamalai, Palni and Tirunelveli, having different topographic, bioclimatic and disturbance levels. The evergreen forests in these four hill ranges are characterized for their uniqueness in terms of patch characteristics and phytosociology. A vegetation type map was prepared using IRS LISS III satellite data and was used to study the patch characteristics in terms of patch size, number, shape, porosity and landcover diversity (LD). The phytosociological characteristics, namely species richness, diversity, similarity and community assemblages, were studied using ground data collected from 95 sample points of 0.1 ha size. Patch size and number revealed distinct intactness and disturbance levels in these four hill ranges. Evergreen forests in the Tirunelveli hills comprising 216.09 km2 are distributed in 306 patches, and in the Palni hills, with 285 km2, forests are distributed in 1029 patches, indicating a high level of fragmentation. LD, indicating the spatial heterogeneity of landcover, was very high in the Nilgiri hills and low in the Tirunelveli hills. The spatial analysis helped to delineate homogenous large patches of evergreen forest, which can be adopted for appropriate conservation strategies. A total of 342 tree species belonging to 4490 stems were evaluated for phytosociology. Only 15–28% of similarity in terms of species distribution was found across the hill ranges. Conjunctive analysis of patch characteristics and species distribution showed high species richness in less fragmented evergreen forests and vice versa. The study identified the areas of prioritization in terms of ecorestoration and conservation based on patch and phytosociological characteristics.  相似文献   

12.
Formica aquilonia wood ants are forest specialists which play a key role in the ecology of forests in Europe. Many of the Scottish populations at the edge of the species distribution range occur in highly fragmented landscapes. We used ten microsatellite loci to study the genetic diversity and structure of populations from two contrasting regions (Inverpolly and the Trossachs) to set the Scottish populations in the context of conspecific populations in mainland Europe. Historically, both study regions have experienced extreme habitat loss and fragmentation over several centuries. Inverpolly has remained fragmented whereas large scale reforestation over the last century has greatly increased the forested area in the Trossachs. Despite the long history of fragmentation, genetic diversity in the Scottish populations was greater than in the populations in mainland Europe. Genetic diversity was similar in the two Scottish regions and no evidence of inbreeding was detected. However, the populations in Inverpolly showed more evidence of genetic bottlenecks, possibly due to more frequent stochastic events such as moorland fires. The ant populations in individual forests were genetically distinct and we detected no contemporary gene flow between forests. The most intensively studied forest where non-native conifer plantations now occupy the matrix between the remaining ancient woodland fragments showed evidence that admixture and gene flow between nests was reducing the past differentiation. This may reflect a dynamic response to the reconnection of previously isolated populations in forest fragments by recent reforestation.  相似文献   

13.
Questions: What is the relative influence of size, connectivity and disturbance history on plant species richness and assemblages of fragmented grasslands? What is the contribution of small fragments to the conservation of native species pool of the region? Location: Tandilia's Range, Southern Pampa, Argentina. Methods: Cover of plants was registered within 24 fragments of tall‐tussock grassland remnants within an agricultural landscape using modified Whittaker nested sampling. We analysed the influence of site variables related to disturbance history (canopy height, litter thickness) and fragment variables (size, connectivity) on species richness (asymptotic species richness, slope of the species–area curve) as well as on species assemblages by multiple regressions analysis and canonical correspondence analyses, respectively. Cumulative area was used for analysing whether small fragments or large fragments are more important to species diversity in the landscape. Results: Asymptotic species richness was significantly influenced by site variables, in particular by Paspalum quadrifarium's canopy height, but not by fragment variables. Species assemblages were also affected by site variables (12.2% of total variation), but no additional portion of the species assemblage variability was significantly explained by fragment size and connectivity. Sampling of several small fragments rendered more exotic and native species than sampling of few large fragments of the same total area. Conclusions: Our results agree with previous studies reporting low sensitivity of species diversity to size and isolation of grassland fragments in fragmented landscapes and high sensitivity of species diversity to local variables. The higher capture of regional native species pool by small grassland fragments than by few larger ones of equivalent accumulated area highlights the value of small fragments for conservation.  相似文献   

14.
Question: Is plant diversity in fragmented semi‐natural grasslands related to present and historical landscape context? Location: Southern Sweden. Methods: Plant diversity was described at 30 semi‐natural grassland sites in terms of total and specialist plant species richness at the site and species density at different scales (0.5–10 m2). These measures are commonly used to assess conservation value of semi‐natural grasslands. Landscape context was measured as contemporary connectivity to other semi‐natural grasslands, historical connectivity 50 years ago, amount of linear elements potentially suitable for dispersal (road verges, power line clearings), and amount of forest (inverse of the openness of the landscape). Results: The diversity measures were generally correlated with each other, implying that species richness in a subset of the grassland can predict the total richness. Plant species density at three scales (0.5 m2, 10 m2 and total) was related to the landscape context using an information theoretic approach. Results showed that total species richness increased with increased size of grasslands, contrary to earlier diversity studies in semi‐natural grasslands. Larger grasslands were more heterogeneous than smaller grasslands, and this is a likely reason for the species‐area relationship. Heterogeneity was also of high importance at the smaller scales (0.5 m2, 10 m2). With increased amount of forest, total species richness increased but species density on 10 m2 decreased. There was no influence of connectivity in either the contemporary or the historical landscape, contrary to previous studies. Conclusions: Grassland size and heterogeneity are of greater importance for plant diversity in semi‐natural grassland, than grassland connectivity in the landscape.  相似文献   

15.
Mutualistic interactions repeatedly preserved across fragmented landscapes can scale‐up to form a spatial metanetwork describing the distribution of interactions across patches. We explored the structure of a bird seed‐dispersal (BSD) metanetwork in 16 Neotropical forest fragments to test whether a distinct subset of BSD‐interactions may mediate landscape functional connectivity. The metanetwork is interaction‐rich, modular and poorly connected, showing high beta‐diversity and turnover of species and interactions. Interactions involving large‐sized species were lost in fragments < 10 000 ha, indicating a strong filtering by habitat fragmentation on the functional diversity of BSD‐interactions. Persistent interactions were performed by small‐seeded, fast growing plant species and by generalist, small‐bodied bird species able to cross the fragmented landscape. This reduced subset of interactions forms the metanetwork components persisting to defaunation and fragmentation, and may generate long‐term deficits of carbon storage while delaying forest regeneration at the landscape level.  相似文献   

16.
西双版纳片段化石灰岩森林附生兰科植物多样性研究   总被引:1,自引:0,他引:1  
西双版纳石灰岩地区拥有丰富的兰科植物资源,但近年来随着橡胶树的大面积种植,使得该地区很多石灰岩森林呈片段化。为了解片段化石灰岩森林中附生兰科植物多样性状况以及片段化对附生兰科植物的影响,该研究选取了生境片段化的青岩寨和曼纳览,以及连续生境的绿石林和巴卡新寨等4个样地的29个样方进行多样性调查和对比研究。结果表明:4个石灰岩森林样共记录到附生兰科植物34属76种1 528株(丛)。通过对坡向、坡度、海拔、地形、郁闭度和森林类型等6个环境因子与附生兰科植物丰富度进行CCA分析,发现石灰岩地区附生兰科植物的分布主要受海拔和森林类型2个因素的影响,在海拔较高的青岩寨和巴卡新寨附生兰科植物物种丰富度高于低海拔的绿石林和曼纳览,而片段化对附生兰科植物的物种多样性和多度均无显著影响,这可能与片段化的历史较短有关。虽然目前来看生境片段化对石灰岩地区的附生兰科植物多样性无显著影响,但生境脆弱的石灰岩森林植被的保护对于兰科植物多样性保护则更具重要性。  相似文献   

17.
Numerous studies have documented declines in plant diversity in response to habitat loss in fragmented landscapes. However, determining the mechanisms that lead to species loss is challenging using solely a correlative approach. Here we link correlative assessments of plant community composition with seed additions for a focal species to test the hypothesis that distributions of forests plants within a fragmented landscape are limited by seed dispersal. Woody plant species richness of fragments declined as fragments (n=26) became more isolated by agricultural fields. We predicted that if these isolation effects were driven by poor dispersal rather than other effects associated with habitat loss, then plants should vary in their response to isolation in relation to their seed size (i.e., stronger effects for plants with larger seeds). As predicted under this dispersal limitation hypothesis, sensitivity of bird-dispersed shrubs to isolation was related to their seed mass, with species with heavy seeds (e.g., Lindera benzoin) exhibiting stronger declines in presence across isolation gradients than species with light seeds. Seed addition experiments were performed for Lindera benzoin in two high isolation forest fragments (nearest neighbor mean distance=803 m) where Lindera was naturally absent, and two low isolation fragments (nearest neighbor mean distance=218 m) with naturally occurring Lindera populations. Seed addition and control plots (n=50 1 m2 plots per fragment) were monitored for 13 censuses over 3 years. Across all four fragments, seed additions resulted in significant increases in Lindera seedling recruitment with no differences in final seedling establishment among fragments. However, insect herbivory was higher on Lindera seedlings in high isolation compared to low isolation fragments and was negatively correlated with seedling survival over some years. Consistent with prior work, our results confirm that seed dispersal plays a significant role in affecting plant diversity in fragmented landscapes. However, results also suggest the need for a better understanding of how additional processes, such as herbivory, may be altered as habitat is lost and what effects such changes have for forest plants.  相似文献   

18.
Tree diversity (30 cm gbh) in undisturbed and human-impacted tropical evergreen forest sites was investigated in the Kolli hills, Eastern Ghats, India. Four 2-ha contiguous permanent plots were erected, one each in Perumakkai shola (site PS), Vengodai shola (VS), Kuzhivalavu shola (KS) and Mottukkadu shola (MS) at 1000, 1050, 1200 and 1250 m elevation, with increasing human disturbance, to evaluate the difference in tree species composition, stand structure and dynamics. This paper discusses the results of the first survey. A total of 3825 individuals and 78 species from 61 genera and 36 families were enumerated in the 8 ha area. Among the four 2-ha sites, species richness was greatest (58) in the undisturbed site PS and lowest (39) in the highly disturbed site MS. Shannon, Simpson, Hill diversity and evenness indexes revealed a progressive reduction in diversity with increasing disturbance. The asymptote species-area curves imply adequate site sampling. Tree density (1151 to 651 trees ha–2) and basal area (106 to 46.6 m2 ha–2) decreased from undisturbed to disturbed site, due to selective felling. Single species, Memecylon umbellatum dominated sites MS (39%) and VS (26%), while Nothopegia heyneana, Memecylon umbellatum and Diospyros ovalifolia were dominant in PS, and Meliosma simplicifolia, Myristica dactyloides and Phoebe wightii in KS. Based on species abundance, we classify the study area as Memecylon–Phoebe–Beilschmiedia association with Neolitsea and Myristica as codominants. Tree population structure revealed a step-wise decline in girth frequencies with increasing size class in undisturbed site PS, whereas tree density fell sharp (>50%) in medium girth class in the disturbed site MS. Population of the dominant species varied widely. The diversity values of this inventory are compared with similar studies in India and other tropical forests. Evidently, the reduction in species richness (by 52%), basal area (56%) and tree density (58%) in disturbed sites, with 57.6% of species rarity of this tropical evergreen forest, in secluded patches (sholas) of Kolli hills, underlines conservation need to prevent species loss.  相似文献   

19.
Biodiversity of woody species was investigated in Ialong and Raliangsacred groves of the Jaintia hills in Meghalaya, northeast India. These grovesrepresent the climax subtropical broad-leaved forest of the area. A total of 738individuals belonging to 82 species, 59 genera and 39 families was identified ina 0.5 ha plot of the Ialong sacred grove, whereas the same area in theRaliang sacred grove had 469 individuals of 80 species, 62 genera and 41families. About 32% species were common to both groves. Lauraceae, with10–17 species, was the dominant family. The canopy and subcanopy stratawere respectively composed of 28 and 33% of the total tree species in theforest. The number of species as well as stem density were greater for the treesof lower dbh (5–15 cm) class compared to the higher (> 66cm) dbh class. The majority of the species showed a contagiousdistribution pattern and low frequency. The basal area varied from 57.4 to 71.4m2 ha–1. Species richness within theforest varied from 3 to 15 per 100 m2 in Ialong and 3 to 12 per 100m2 in Raliang. The dominance–distribution curves showed highequitability and low dominance in both groves.  相似文献   

20.
Relationships between avian diversity and habitat area are assumed to be positive; however, often little attention has given to how these relationships can be influenced by the habitat structure or quality. In addition, other components of biodiversity, such as functional diversity, are often overlooked in assessing habitat patch value. In the Sandhills Ecoregion of Georgia, USA, we investigated the relationship between avian species richness and functional diversity, forest basal area, and patch size in pine forests using basal area as a surrogate for overstory structure which in turn impacts vegetation structure and determines habitat quality within a patch. We conducted bird surveys in planted mature pine stands, during breeding season of 2011. We used three classes of stand basal area (BA): OS, overstocked (BA ≥ 23 m2/ha); FS, fully/densely stocked (13.8 m2/ha ≤ BA < 23 m2/ha); and MS, moderately stocked (2.3 m2/ha ≤ BA < 13.8 m2/ha). MS patches showed more structural diversity due to higher herbaceous vegetation cover than other two pine stocking classes of patches. Total species richness and functional richness increased with the size of MS patches, whereas functional divergence decreased with the size of OS patches (< 0.05). Functional richness tended to be lower than expected as the size of OS patches increased. Greater richness of pine–grassland species was also found at MS patches. Percent cover of MS patches within a landscape influenced positively the richness of pine–grassland species (< 0.05). Our results suggest that (a) avian species–habitat area relationship can be affected by habitat quality (structural diversity) and varies depending on diversity indices considered, and (b) it is important to maintain moderate or low levels of pine basal area and to preserve large‐sized patches of the level of basal area to enhance both taxonomic and functional diversity in managed pine forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号