首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three newly isolated phages, K1, K2, and C1, specific for A. cicer rhizobia were characterized by their morphology, host range, rate of adsorption, restriction endonuclease patterns, and DNA molecular weights. All three phages were classified to the morphological group B of Bradley's (Siphoviridae family) on the basis of presence of hexagonal in outline heads and long noncontractile tails. Phages K1, K2, and C1 are related by host range and restriction endonuclease patterns. The molecular weights of phage DNAs estimated from restriction enzyme digests were in the range from 64.6 kb to 68.5 kb. Received: 21 July 1999 / Accepted: 25 August 1999  相似文献   

2.
FiveRhizobium meliloti bacteriophages isolated from soil or lysogenic bacteria and belonging to Bradley's group B or theSiphoviridae family of tailed phaes were studied. They are of identical morphology, showing isometric heads and long, noncontractile tails with transverse bars. They are temperate and closely related by host range, DNA restriction endonuclease patterns and homology, DNA mass, serological properties, adsorption velocity, and latent period. However, the phages can be divided into three groups on the basis of burst size and frequency of lysogenization.  相似文献   

3.
4.
Fifty bacteriophage isolates of Erwinia amylovora, the causal agent of fire blight, were collected from sites in and around the Niagara region of southern Ontario and the Royal Botanical Gardens, Hamilton, Ontario. Forty-two phages survived the isolation, purification, and storage processes. The majority of the phages in the collection were isolated from the soil surrounding trees exhibiting fire blight symptoms. Only five phages were isolated from infected aerial tissue in pear and apple orchards. To avoid any single-host selection bias, six bacterial host strains were used in the initial isolation and enrichment processes. Molecular characterization of the phages with a combination of PCR and restriction endonuclease digestions showed that six distinct phage types, described as groups 1 to 6, were recovered. Ten phage isolates were related to the previously characterized E. amylovora PEa1, with some divergence of molecular markers between phages isolated from different sites. A study of the host ranges of the phages revealed that certain types were unable to efficiently lyse some E. amylovora strains and that some isolates were able to lyse the epiphytic bacterium Pantoea agglomerans. Representatives from the six molecular groups were studied by electron microscopy to determine their morphology. The phages exhibited distinct morphologies when examined by an electron microscope. Group 1 and 2 phages were tailed and contractile, and phages belonging to groups 3 to 6 had short tails or openings with thin appendages. Based on morphotypes, the bacteriophages of E. amylovora were placed in the order Caudovirales, in the families Myoviridae and Podoviridae.  相似文献   

5.
Thirteen virulent phages and two temperate phages of two closely related bacterial species (Lactobacillus lactis and L. bulgaricus) were compared for their protein composition, their antigenic properties, their restriction endonuclease patterns, and their DNA homology. The immunoblotting studies and the DNA-DNA hybridizations showed that the phages could be differentiated into two groups. One group contained 2 temperate phages of L. bulgaricus and 11 virulent phages of L. lactis. Inside each group, at least two common proteins of identical sizes could be detected for each phage. These proteins were able to cross-react in immunoblotting experiments with an antiserum raised against one phage of the same group. Temperate phage DNAs showed partial homology with DNAs from some virulent phages. These homologies seem to be located on the region coding for the structural proteins since recombinant plasmids coding for one of the major phage proteins of one phage were able to hybridize with the DNAs from phages of the same group. These results suggest that temperate and virulent phages may be related to one another.  相似文献   

6.
Nine bacteriophages (phages) infective for members of the genus Gordonia were isolated from wastewater and other natural water environments using standard enrichment techniques. The majority were broad host range phages targeting more than one Gordonia species. When their genomes were sequenced, they all emerged as double stranded DNA Siphoviridae phages, ranging from 17,562 to 103,424 bp in size, and containing between 27 and 127 genes, many of which were detailed for the first time. Many of these phage genomes diverged from the expected modular genome architecture of other characterized Siphoviridae phages and contained unusual lysis gene arrangements. Whole genome sequencing also revealed that infection with lytic phages does not appear to prevent spontaneous prophage induction in Gordonia malaquae lysogen strain BEN700. TEM sample preparation techniques were developed to view both attachment and replication stages of phage infection.  相似文献   

7.
Direct electron microscopy of bacteriophages adsorbed to a carbon film without prior enrichment by specific host strains or concentration by physical or chemical methods was used to study the morphological diversity of natural bacteriophage assemblages in a North German lake. All samples contained a mixture of morphologically different tailed viruses, which were regarded as bacteriophages. Most of them had isometric heads and long noncontractile tails, belonging to morphotype B1 (Siphoviridae). In addition, members of morphotypes A1 (Myoviridae), B2 (Siphoviridae with elongated heads), and C1 (Podoviridae) were present in lower numbers. Only one cubic virus was detected, while no filamentous or pleomorphic phages were found. Up to 11 different phages per sample, and a total of 39 phages when all samples were considered together, could be distinguished by morphological criteria. The total number of phages was estimated to be on the order of 108/ml.  相似文献   

8.
Three lytic phages (ΦRP1, ΦRP2, and ΦRP3) specific for Robinia pseudoacacia rhizobia were isolated from the soil under black locust. They were characterized by their morphology, host range, and some other properties including DNA molecular weights. Studied phages have been found to belong to Siphoviridae family that comprises viruses with long, and noncontractile tails. They had broad host ranges and effectively lysed not only Robinia pseudoacacia microsymbionts but also different Mesorhizobium species. The phages were homogenous in latent periods (300 min) but heterogeneous in burst sizes (100–200 phage particles per one infected cell) and rise periods (90–120 min). They showed a distinct adsorption rate to Robinia pseudoacacia rhizobia (70.4–93.94%). The molecular weights of phage DNAs estimated from restriction enzyme digests were in the range from ca. 82 kb to ca. 105 kb.  相似文献   

9.
Bacteriophage Ecology in Commercial Sauerkraut Fermentations   总被引:4,自引:2,他引:2       下载免费PDF全文
Knowledge of bacteriophage ecology in vegetable fermentations is essential for developing phage control strategies for consistent and high quality of fermented vegetable products. The ecology of phages infecting lactic acid bacteria (LAB) in commercial sauerkraut fermentations was investigated. Brine samples were taken from four commercial sauerkraut fermentation tanks over a 60- or 100-day period in 2000 and 2001. A total of 171 phage isolates, including at least 26 distinct phages, were obtained. In addition, 28 distinct host strains were isolated and identified as LAB by restriction analysis of the intergenic transcribed spacer region and 16S rRNA sequence analysis. These host strains included Leuconostoc, Weissella, and Lactobacillus species. It was found that there were two phage-host systems in the fermentations corresponding to the population shift from heterofermentative to homofermentative LAB between 3 and 7 days after the start of the fermentations. The data suggested that phages may play an important role in the microbial ecology and succession of LAB species in vegetable fermentations. Eight phage isolates, which were independently obtained two or more times, were further characterized. They belonged to the family Myoviridae or Siphoviridae and showed distinct host ranges and DNA fingerprints. Two of the phage isolates were found to be capable of infecting two Lactobacillus species. The results from this study demonstrated for the first time the complex phage ecology present in commercial sauerkraut fermentations, providing new insights into the bioprocess of vegetable fermentations.  相似文献   

10.
Epsilonproteobacteria are among the predominant primary producers in deep-sea hydrothermal vent ecosystems. However, phages infecting deep-sea vent Epsilonproteobacteria have never been isolated and characterized. Here, we successfully isolated a novel temperate phage, NrS-1, that infected a deep-sea vent chemolithoautotrophic isolate of Epsilonproteobacteria, Nitratiruptor sp. SB155-2, and its entire genome sequence was obtained and analyzed. The NrS-1 genome is linear, circularly permuted, and terminally redundant. The NrS-1 genome is 37,159 bp in length and contains 51 coding sequences. Five major structural proteins including major capsid protein and tape measure protein were identified by SDS-PAGE and mass spectrometry analysis. NrS-1 belongs to the family Siphoviridae, but its sequence and genomic organization are distinct from those of any other previously known Siphoviridae phages. Homologues of genes encoded in the NrS-1 genome were widely distributed among the genomes of diverse Epsilonproteobacteria. The distribution patterns had little relation to the evolutionary traits and ecological and physiological differentiation of the host epsilonproteobacterial species. The widespread occurrence of phage genes in diverse Epsilonproteobacteria supports early co-evolution between temperate phages and Epsilonproteobacteria prior to the divergence of their habitats and physiological adaptation.  相似文献   

11.

Background

A rapid worldwide increase in the number of human infections caused by the extremely antibiotic resistant bacterium Stenotrophomonas maltophilia is prompting alarm. One potential treatment solution to the current antibiotic resistance dilemma is “phage therapy”, the clinical application of bacteriophages to selectively kill bacteria.

Results

Towards that end, phages DLP1 and DLP2 (vB_SmaS-DLP_1 and vB_SmaS-DLP_2, respectively) were isolated against S. maltophilia strain D1585. Host range analysis for each phage was conducted using 27 clinical S. maltophilia isolates and 11 Pseudomonas aeruginosa strains. Both phages exhibit unusually broad host ranges capable of infecting bacteria across taxonomic orders. Transmission electron microscopy of the phage DLP1 and DLP2 morphology reveals that they belong to the Siphoviridae family of bacteriophages. Restriction fragment length polymorphism analysis and complete genome sequencing and analysis indicates that phages DLP1 and DLP2 are closely related but different phages, sharing 96.7 % identity over 97.2 % of their genomes. These two phages are also related to P. aeruginosa phages vB_Pae-Kakheti_25 (PA25), PA73, and vB_PaeS_SCH_Ab26 (Ab26) and more distantly related to Burkholderia cepacia complex phage KL1, which together make up a taxonomic sub-family. Phages DLP1 and DLP2 exhibited significant differences in host ranges and growth kinetics.

Conclusions

The isolation and characterization of phages able to infect two completely different species of bacteria is an exciting discovery, as phages typically can only infect related bacterial species, and rarely infect bacteria across taxonomic families, let alone across taxonomic orders.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1848-y) contains supplementary material, which is available to authorized users.  相似文献   

12.
Six bacteriophages active against Leuconostoc fallax strains were isolated from industrial sauerkraut fermentation brines. These phages were characterized as to host range, morphology, structural proteins, and genome fingerprint. They were exclusively lytic against the species L. fallax and had different host ranges among the strains of this species tested. Morphologically, three of the phages were assigned to the family Siphoviridae, and the three others were assigned to the family Myoviridae. Major capsid proteins detected by electrophoresis were distinct for each of the two morphotypes. Restriction fragment length polymorphism analysis and randomly amplified polymorphic DNA fingerprinting showed that all six phages were genetically distinct. These results revealed for the first time the existence of bacteriophages that are active against L. fallax and confirmed the presence and diversity of bacteriophages in a sauerkraut fermentation. Since a variety of L. fallax strains have been shown to be present in sauerkraut fermentation, bacteriophages active against L. fallax are likely to contribute to the microbial ecology of sauerkraut fermentation and could be responsible for some of the variability observed in this type of fermentation.  相似文献   

13.
The clinical relevance of nosocomially acquired infections caused by multi-resistant Achromobacter strains is rapidly increasing. Here, a diverse set of 61 Achromobacter xylosoxidans strains was characterized by MultiLocus Sequence Typing and Phenotype MicroArray technology. The strains were further analyzed in regard to their susceptibility to 35 antibiotics and to 34 different and newly isolated bacteriophages from the environment. A large proportion of strains were resistant against numerous antibiotics such as cephalosporines, aminoglycosides and quinolones, whereas piperacillin-tazobactam, ticarcillin, mezlocillin and imipenem were still inhibitory. We also present the first expanded study on bacteriophages of the genus Achromobacter that has been so far a blank slate with respect to phage research. The phages were isolated mainly from several waste water treatment plants in Germany. Morphological analysis of all of these phages by electron microscopy revealed a broad diversity with different members of the order Caudovirales, including the families Siphoviridae, Myoviridae, and Podoviridae. A broad spectrum of different host ranges could be determined for several phages that lysed up to 24 different and in part highly antibiotic resistant strains. Molecular characterisation by DNA restriction analysis revealed that all phages contain linear double-stranded DNA. Their restriction patterns display distinct differences underlining their broad diversity.  相似文献   

14.
A set of 83 lytic dairy bacteriophages (phages) infecting flavor-producing mesophilic starter strains of the Leuconostoc genus was characterized, and the first in-depth taxonomic scheme was established for this phage group. Phages were obtained from different sources, i.e., from dairy samples originating from 11 German dairies (50 Leuconostoc pseudomesenteroides [Ln. pseudomesenteroides] phages, 4 Ln. mesenteroides phages) and from 3 external phage collections (17 Ln. pseudomesenteroides phages, 12 Ln. mesenteroides phages). All phages belonged to the Siphoviridae family of phages with isometric heads (diameter, 55 nm) and noncontractile tails (length, 140 nm). With the exception of one phage (i.e., phage ΦLN25), all Ln. mesenteroides phages lysed the same host strains and revealed characteristic globular baseplate appendages. Phage ΦLN25, with different Y-shaped appendages, had a unique host range. Apart from two phages (i.e., phages P792 and P793), all Ln. pseudomesenteroides phages shared the same host range and had plain baseplates without distinguishable appendages. They were further characterized by the presence or absence of a collar below the phage head or by unique tails with straight striations. Phages P792 and P793 with characteristic fluffy baseplate appendages could propagate only on other specific hosts. All Ln. mesenteroides and all Ln. pseudomesenteroides phages were members of two (host species-specific) distinct genotypes but shared a limited conserved DNA region specifying their structural genes. A PCR detection system was established and was shown to be reliable for the detection of all Leuconostoc phage types.  相似文献   

15.
Although fiveBacteroides fragilis bacteriophages isolated over a six-year period in Nebraska and Virginia had similar physical characteristics (morphology, temperature inactivation, and sensitivity to organic solvents and antisera), there were some statistically significant differences between the phages. In addition, restriction endonuclease analysis revealed that three of the five DNAs were not identical. However, the DNAs of the phages were closely related based on DNA-DNA hybridization, percent homologies, and possession of homologous regions of DNA. It appears that the five phages are strains of the same species of phage, although each phage has a unique host range spectrum.  相似文献   

16.
Three Tsukamurella phages, TIN2, TIN3, and TIN4, were isolated from activated sludge treatment plants located in Victoria, Australia, using conventional enrichment techniques. Illumina and 454 whole-genome sequencing of these Siphoviridae viruses revealed that they had similar genome sequences, ranging in size between 76,268 bp and 76,964 bp. All three phages shared 74% nucleotide sequence identity to the previously described Gordonia phage GTE7. Genome sequencing suggested that phage TIN3 had suffered a mutation in one of its lysis genes compared to the sequence of phage TIN4, to which it is genetically very similar. Mass spectroscopy data showed the unusual presence of a virion structural gene in the DNA replication module of phage TIN4, disrupting the characteristic modular genome architecture of Siphoviridae phages. All three phages appeared highly virulent on strains of Tsukamurella inchonensis and Tsukamurella paurometabola.  相似文献   

17.
Prophage Lrm1 was induced with mitomycin C from an industrial Lactobacillus rhamnosus starter culture, M1. Electron microscopy of the lysate revealed relatively few intact bacteriophage particles among empty heads and disassociated tails. The defective Siphoviridae phage had an isometric head of approximately 55 nm and noncontractile tail of about 275 nm with a small baseplate. In repeated attempts, the prophage could not be cured from L. rhamnosus M1, nor could a sensitive host be identified. Sequencing of the phage Lrm1 DNA revealed a genome of 39,989 bp and a G+C content of 45.5%. A similar genomic organization and mosaic pattern of identities align Lrm1 among the closely related Lactobacillus casei temperate phages A2, ΦAT3, and LcaI and with L. rhamnosus virulent phage Lu-Nu. Of the 54 open reading frames (ORFs) identified, all but 8 shared homology with other phages of this group. Five unknown ORFs were identified that had no homologies in the databases nor predicted functions. Notably, Lrm1 encodes a putative endonuclease and a putative DNA methylase with homology to a methylase in Lactococcus lactis phage Tuc2009. Possibly, the DNA methylase, endonuclease, or other Lrm1 genes provide a function crucial to L. rhamnosus M1 survival, resulting in the stability of the defective prophage in its lysogenic state. The presence of a defective prophage in an industrial strain could provide superinfection immunity to the host but could also contribute DNA in recombination events to produce new phages potentially infective for the host strain in a large-scale fermentation environment.  相似文献   

18.
H Shin  JH Lee  H Kim  Y Choi  S Heu  S Ryu 《PloS one》2012,7(8):e43392

Background

Salmonella enterica subspecies enterica serovar Typhimurium is a Gram-negative pathogen causing salmonellosis. Salmonella Typhimurium-targeting bacteriophages have been proposed as an alternative biocontrol agent to antibiotics. To further understand infection and interaction mechanisms between the host strains and the bacteriophages, the receptor diversity of these phages needs to be elucidated.

Methodology/Principal Findings

Twenty-five Salmonella phages were isolated and their receptors were identified by screening a Tn5 random mutant library of S. Typhimurium SL1344. Among them, three types of receptors were identified flagella (11 phages), vitamin B12 uptake outer membrane protein, BtuB (7 phages) and lipopolysaccharide-related O-antigen (7 phages). TEM observation revealed that the phages using flagella (group F) or BtuB (group B) as a receptor belong to Siphoviridae family, and the phages using O-antigen of LPS as a receptor (group L) belong to Podoviridae family. Interestingly, while some of group F phages (F-I) target FliC host receptor, others (F-II) target both FliC and FljB receptors, suggesting that two subgroups are present in group F phages. Cross-resistance assay of group B and L revealed that group L phages could not infect group B phage-resistant strains and reversely group B phages could not infect group L SPN9TCW-resistant strain.

Conclusions/Significance

In this report, three receptor groups of 25 newly isolated S. Typhimurium-targeting phages were determined. Among them, two subgroups of group F phages interact with their host receptors in different manner. In addition, the host receptors of group B or group L SPN9TCW phages hinder other group phage infection, probably due to interaction between receptors of their groups. This study provides novel insights into phage-host receptor interaction for Salmonella phages and will inform development of optimal phage therapy for protection against Salmonella.  相似文献   

19.
BackgroundMethicillin resistant Staphylococcus aureus (MRSA) is a pathogen to humans causing life-threatening infections. MRSA have the capability to grow resistance to many antibiotics, and phage therapy is one treatment option for this infection.ObjectivesThe aim of the present study was to isolate and characterize the lytic bacteriophages specific to MRSA from domestic sewage water at a tertiary care hospital in Egypt.MethodsThirty MRSA strains were isolated from different clinical samples admitted to the microbiology lab at Theodor Bilharz Research institute (TBRI) hospital, Giza, Egypt. They were confirmed to be MRSA through phenotypic detection and conventional PCR for mecA gene. They were used for the isolation of phages from sewage water of TBRI hospital. Plaque assay was applied to purify and quantify the titer of the isolated phages. The host range of the isolated phages was detected using the spot test assay. The morphology of phages was confirmed using transmission electron microscope (TEM). Digestion of DNA extracted from phages with endonuclease enzymes including EcoRI and SmaI was performed. SDS-PAGE was performed to analyze MRSA specific phage proteins. As a positive control prophages were isolated from a mitomycin C (MitC) treated culture of S. aureus strain ATCC25923. Further characterization using conventional polymerase chain reaction (PCR) was used to select three known Staphylophages by detecting the endolysin gene of phage K, the polymerase gene of phage 44AHJD, and the minor tail gene of phage P68.ResultsIsolated phages in this research displayed a wide host range against MRSA using the spot test, out of thirty tested MRSA isolates 24 were sensitive and got lysed (80%). The titer of the phages was estimated to be 1.04 × 106 pfu/ml using plaque test. Identification of head and tail morphology of the phages was achieved using TEM and they were designated to tailed phages of order Caudovirales, they composed an icosahedral capsid. Prophages were isolated through MitC induction. DNA of phages was digested by endonuclease enzymes. Conventional PCR yielded 341 bp of phage K endolysin gene and phage P68 minor tail protein gene 501 bp. Protein analysis using SDS-PAGE showed 4 proteins of sizes between 42 kDa and 140 kDa.ConclusionPhages isolated here are alike to others mentioned in previous studies. The high broad host range of the isolated phages is promising to control MRSA and can be in the future commercially suitable for treatment as lysate preparations. Animal models of phage-bacterial interaction will be our next step that may help in resolving the multidrug resistant crisis of MRSA in Egypt.  相似文献   

20.
Pseudomonas syringae pv. actinidiae is a reemerging pathogen which causes bacterial canker of kiwifruit (Actinidia sp.). Since 2008, a global outbreak of P. syringae pv. actinidiae has occurred, and in 2010 this pathogen was detected in New Zealand. The economic impact and the development of resistance in P. syringae pv. actinidiae and other pathovars against antibiotics and copper sprays have led to a search for alternative management strategies. We isolated 275 phages, 258 of which were active against P. syringae pv. actinidiae. Extensive host range testing on P. syringae pv. actinidiae, other pseudomonads, and bacteria isolated from kiwifruit orchards showed that most phages have a narrow host range. Twenty-four were analyzed by electron microscopy, pulse-field gel electrophoresis, and restriction digestion. Their suitability for biocontrol was tested by assessing stability and the absence of lysogeny and transduction. A detailed host range was performed, phage-resistant bacteria were isolated, and resistance to other phages was examined. The phages belonged to the Caudovirales and were analyzed based on morphology and genome size, which showed them to be representatives of Myoviridae, Podoviridae, and Siphoviridae. Twenty-one Myoviridae members have similar morphologies and genome sizes yet differ in restriction patterns, host range, and resistance, indicating a closely related group. Nine of these Myoviridae members were sequenced, and each was unique. The most closely related sequenced phages were a group infecting Pseudomonas aeruginosa and characterized by phages JG004 and PAK_P1. In summary, this study reports the isolation and characterization of P. syringae pv. actinidiae phages and provides a framework for the intelligent formulation of phage biocontrol agents against kiwifruit bacterial canker.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号