首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nef is an HIV-1 virulence factor that promotes viral pathogenicity by altering host cell signaling pathways. Nef binds several members of the Src kinase family, and these interactions have been implicated in the pathogenesis of HIV/AIDS. However, the direct effect of Nef interaction on Src family kinase (SFK) regulation and activity has not been systematically addressed. We explored this issue using Saccharomyces cerevisiae, a well defined model system for the study of SFK regulation. Previous studies have shown that ectopic expression of c-Src arrests yeast cell growth in a kinase-dependent manner. We expressed Fgr, Fyn, Hck, Lck, Lyn, and Yes as well as c-Src in yeast and found that each kinase was active and induced growth suppression. Co-expression of the negative regulatory kinase Csk suppressed SFK activity and reversed the growth-inhibitory effect. We then co-expressed each SFK with HIV-1 Nef in the presence of Csk. Nef strongly activated Hck, Lyn, and c-Src but did not detectably affect Fgr, Fyn, Lck, or Yes. Mutagenesis of the Nef PXXP motif essential for SH3 domain binding greatly reduced the effect of Nef on Hck, Lyn, and c-Src, suggesting that Nef activates these Src family members through allosteric displacement of intramolecular SH3-linker interactions. These data show that Nef selectively activates Hck, Lyn, and c-Src among SFKs, identifying these kinases as proximal effectors of Nef signaling and potential targets for anti-HIV drug discovery.  相似文献   

2.
3.
Src-family kinases (SFKs) are co-expressed with multiple combinations of each member in a single cell and involved in various signalings. Recently, we showed by sucrose-density gradient fractionation that the subcellular distribution of c-Src is distinct from that of Lyn. However, little is known about the trafficking of c-Src in living cells. Here, we show by time-lapse monitoring combined with photobleaching techniques that c-Src, a non-palmitoylated SFK, is rapidly exchanged between the plasma membrane and intracellular organelles representing late endosomes/lysosomes possibly through its cytosolic release. Although Lyn, a palmitoylated SFK, is exocytosed to the plasma membrane via the Golgi apparatus along the secretory pathway, lack of palmitoylation directs Lyn away from the exocytotic transport to the c-Src-type trafficking between the plasma membrane and late endosomes/lysosomes. Intriguingly, c-Src and a non-palmitoylated Lyn mutant are efficiently delivered and immobilized to focal adhesions when their SH2 domains are able to mediate protein-protein interactions in place of intramolecular bindings. However, palmitoylation of Lyn inhibits its recruitment to focal adhesions. These results suggest that palmitoylation of SFKs is critical for SFK localization and trafficking and implicate that two distinct trafficking pathways for SFKs may be involved in SFKs' specific functions.  相似文献   

4.
We have previously shown that the c-Src tyrosine kinase is activated four- to fivefold when cultured keratinocytes differentiate following the elevation of intracellular calcium levels. In contrast to c-Src, another Src family tyrosine kinase, c-Yes, was rapidly inactivated in these same cells, despite its marked similarity in structure and enzymatic activity to c-Src. The inactivation of c-Yes was independent of the protein kinase C pathway, which is usually activated by elevation of intracellular calcium levels. The protein levels of c-Src and c-Yes were not altered, but the phosphotyrosine content of both proteins was greatly reduced. As has been demonstrated for c-Src, in vitro dephosphorylation of c-Yes by incubation with protein tyrosine phosphatases also resulted in its activation, not inactivation. In vitro reconstitution experiments showed that c-Yes can be inactivated by preincubation with a Ca(2+)-supplemented cell extract and that this inhibition was reversed by the addition of EGTA [ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid]. Gradient sedimentation of cell lysates showed that in cells treated with calcium and ionophore, c-Yes formed complexes with two distinct cellular proteins, whereas similar complexes were not seen in c-Src immunoprecipitates. One of these two proteins has the ability to inhibit c-Yes kinase activity in vitro. Finally, the Ca(2+)-dependent inactivation of c-Yes was observed in kidney tubular cells and fibroblasts, suggesting that the Ca(2+)-dependent regulation of c-Yes tyrosine kinase is not unique to keratinocytes. We postulate that c-Yes is inactivated through a Ca2+ -dependent association with cellular proteins, which seems to override its activation resulting from tyrosine dephosphorylation.  相似文献   

5.
Src family kinases (SFK) play a central signaling role for growth factors, cytokines, G-protein-coupled receptors and other stimuli. SFKs play important roles in pancreatic acinar cell secretion, endocytosis, growth, cytoskeletal integrity and apoptosis, although little is known of the specific SFKs involved. In this study we demonstrate the SFK, Lyn, is present in rat pancreatic acini and investigate its activation/signaling. Ca(2+)-mobilizing agents, cAMP-mobilizing agents and pancreatic growth factors activated Lyn. CCK, a physiological regulator of pancreatic function, rapidly activated Lyn. The specific SFK inhibitor, PP2, decreased Lyn activation; however, the inactive analogue, PP3, had no effect. Inhibition of CCK-stimulated changes in [Ca(2+)](i) decreased Lyn activation by 55%; GFX, a PKC inhibitor by 36%; and the combination by 95%. CCK activation of Lyn required stimulation of high and low affinity CCK(A) receptor states. CCK stimulated an association of Lyn with PKC-delta, Shc, p125(FAK) and PYK2 as well as with their autophosphorylated forms, but not with Cbl, p85, p130(CAS) or ERK 1/2. These results show Lyn is activated by diverse pancreatic stimulants. CCK's activation of Lyn is likely an important mediator of its ability to cause tyrosine phosphorylation of numerous important cellular mediators such as p125(FAK), PYK2, PKC-delta and Shc, which play central roles in CCK's effects on acinar cell function.  相似文献   

6.
Nectins are Ca2+-independent immunoglobulin-like cell-cell adhesion molecules that form homo- and hetero-trans-dimers (trans-interactions). Nectins first form cell-cell contact and then recruit cadherins to the nectin-based cell-cell contact sites to form adherens junctions cooperatively with cadherins. In addition, the trans-interactions of nectins induce the activation of Cdc42 and Rac small G proteins, which enhances the formation of adherens junctions by forming filopodia and lamellipodia, respectively. The trans-interactions of nectins first recruit and activate c-Src at the nectin-based cell-cell contact sites. c-Src then phosphorylates and activates FRG, a Cdc42-GDP/GTP exchange factor (GEF) for Cdc42. The activation of both c-Src and Cdc42 by FRG is necessary for the activation of Rac, but the Rac-GEF responsible for this activation of Rac remains unknown. We showed here that the nectin-induced activation of Rac was inhibited by a dominant negative mutant of Vav2, a Rac-GEF. Nectins recruited and tyrosine-phosphorylated Vav2 through c-Src at the nectin-based cell-cell contact sites, whereas Cdc42 was not necessary for the nectin-induced recruitment of Vav2 or the nectin-induced, c-Src-mediated tyrosine phosphorylation of Vav2. Cdc42 activated through c-Src then enhanced the GEF activity of tyrosine-phosphorylated Vav2 on Rac1. These results indicate that Vav2 is a GEF responsible for the nectin-induced, c-Src-, and Cdc42-mediated activation of Rac.  相似文献   

7.
Nectins, Ca2+ -independent immunoglobulin-like cell-cell adhesion molecules, initiate cell-cell adhesion by their trans interactions and recruit cadherins to cooperatively form adherens junctions (AJs). In addition, the trans interactions of nectins induce the activation of Cdc42 and Rac small G proteins, which increases the velocity of the formation of AJs. We examined here how nectins induce the activation of Cdc42 in MDCK epithelial cells and L fibroblasts. Nectins recruited and activated c-Src at the nectin-based cell-cell adhesion sites. FRG, a GDP/GTP exchange factor specific for Cdc42, was then recruited there, tyrosine phosphorylated by c-Src, and activated, causing an increase in the GTP-bound active form of Cdc42. Inhibition of the nectin-induced activation of c-Src suppressed the nectin-induced activation of FRG and Cdc42. Inhibition of the nectin-induced activation of FRG or depletion of FRG by RNA interference suppressed the nectin-induced activation of Cdc42. These results indicate that nectins induce the activation of Cdc42 through c-Src and FRG locally at the nectin-based cell-cell adhesion sites.  相似文献   

8.
9.
In this study, the synthesis and potential enzyme interactions of new Pyrrolo[2,3-d]pyrimidine derivatives along with their inhibitory activity against SFK enzymes such as Fyn, Lyn, Hck, and c-Src were reported. The results indicated that compounds were slightly active of tested SFK enzymes in comparison with PP2 for Fyn, A-419259 for Lyn and CGP77675 for c-Src. Compound N-((2-amino-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidin-5-yl)methyl)-4-(3,4-dimethoxyphenyl)butanamide (5) was identified as a non-selective slight inhibitor against Fyn, Lyn and c-Src. However, compounds did not show any inhibitory effects on Hck. Docking studies were performed to analyze the binding mode of compounds against SFKs. The best interaction was obtained between compound 5 and the active site of Fyn and c-Src enzymes in comparison with reference compounds PP2 and CGP77675, respectively.  相似文献   

10.
The HIV-1 accessory factor Nef is essential for high-titer viral replication and AIDS progression. Nef function requires interaction with many host cell proteins, including specific members of the Src kinase family. Here we explored whether Src-family kinase activation is a conserved property of Nef alleles from a wide range of primary HIV-1 isolates and their sensitivity to selective pharmacological inhibitors. Representative Nef proteins from the major HIV-1 subtypes A1, A2, B, C, F1, F2, G, H, J and K strongly activated Hck and Lyn as well as c-Src to a lesser extent, demonstrating for the first time that Src-family kinase activation is a highly conserved property of primary M-group HIV-1 Nef isolates. Recently, we identified 4-amino substituted diphenylfuropyrimidines (DFPs) that selectively inhibit Nef-dependent activation of Src-family kinases as well as HIV replication. To determine whether DFP compounds exhibit broad-spectrum Nef-dependent antiretroviral activity against HIV-1, we first constructed chimeric forms of the HIV-1 strain NL4-3 expressing each of the primary Nef alleles. The infectivity and replication of these Nef chimeras was indistinguishable from that of wild-type virus in two distinct cell lines (U87MG astroglial cells and CEM-T4 lymphoblasts). Importantly, the 4-aminopropanol and 4-aminobutanol derivatives of DFP potently inhibited the replication of all chimeric forms of HIV-1 in both U87MG and CEM-T4 cells in a Nef-dependent manner. The antiretroviral effects of these compounds correlated with inhibition of Nef-dependent activation of endogenous Src-family kinases in the HIV-infected cells. Our results demonstrate that the activation of Hck, Lyn and c-Src by Nef is highly conserved among all major clades of HIV-1 and that selective targeting of this pathway uniformly inhibits HIV-1 replication.  相似文献   

11.
The Src-family tyrosine kinases (SFKs) are oncogenic enzymes that contribute to the initiation and progression of many types of cancer. In normal cells, SFKs are kept in an inactive state mainly by phosphorylation of a consensus regulatory tyrosine near the C-terminus (Tyr530 in the SFK c-Src). As recent data indicate that tyrosine modification enhances binding of metal ions, the hypothesis that SFKs might be regulated by metal ions was investigated. The c-Src C-terminal peptide bound two Fe3 + ions with affinities at pH 4.0 of 33 and 252 μM, and phosphorylation increased the affinities at least 10-fold to 1.4 and 23 μM, as measured by absorbance spectroscopy. The corresponding phosphorylated peptide from the SFK Lyn bound two Fe3 + ions with much higher affinities (1.2 pM and 160 nM) than the Src C-terminal peptide. Furthermore, when Lyn or Hck kinases, which had been stabilised in the inactive state by phosphorylation of the C-terminal regulatory tyrosine, were incubated with Fe3 + ions, a significant enhancement of kinase activity was observed. In contrast Lyn or Hck kinases in the unphosphorylated active state were significantly inhibited by Fe3 + ions. These results suggest that Fe3 + ions can regulate SFK activity by binding to the phosphorylated C-terminal regulatory tyrosine.  相似文献   

12.
Gram-negative bacteria release lipopolysaccharide (LPS) into the bloodstream. Here, it engages Toll-like receptor (TLR) 4 expressed in human lung microvascular endothelia (HMVEC-Ls) to open the paracellular pathway through Src family kinase (SFK) activation. The signaling molecules that couple TLR4 to the SFK-driven barrier disruption are unknown. In HMVEC-Ls, siRNA-induced silencing of TIRAP/Mal and overexpression of dominant-negative TIRAP/Mal each blocked LPS-induced SFK activation and increases in transendothelial [(14)C]albumin flux, implicating the MyD88-dependent pathway. LPS increased TRAF6 autoubiquitination and binding to IRAK1. Silencing of TRAF6, TRAF6-dominant-negative overexpression, or preincubation of HMVEC-Ls with a cell-permeable TRAF6 decoy peptide decreased both LPS-induced SFK activation and barrier disruption. LPS increased binding of both c-Src and Fyn to GST-TRAF6 but not to a GST-TRAF6 mutant in which the three prolines in the putative Src homology 3 domain-binding motif (amino acids 461-469) were substituted with alanines. A cell-permeable decoy peptide corresponding to the same proline-rich motif reduced SFK binding to WT GST-TRAF6 compared with the Pro → Ala-substituted peptide. Finally, LPS increased binding of activated Tyr(P)(416)-SFK to GST-TRAF6, and preincubation of HMVEC-Ls with SFK-selective tyrosine kinase inhibitors, PP2 and SU6656, diminished TRAF6 binding to c-Src and Fyn. During the TRAF6-SFK association, TRAF6 catalyzed Lys(63)-linked ubiquitination of c-Src and Fyn, whereas SFK activation increased tyrosine phosphorylation of TRAF6. The TRAF6 decoy peptide blocked both LPS-induced SFK ubiquitination and TRAF6 phosphorylation. Together, these data indicate that the proline-rich Src homology 3 domain-binding motif in TRAF6 interacts directly with activated SFKs to couple LPS engagement of TLR4 to SFK activation and loss of barrier integrity in HMVEC-Ls.  相似文献   

13.
c‐Src and Lyn are the only Src family kinases (SFKs) with established activity in osteoclasts (OCs). c‐Src promotes function via cytoskeletal organization of the mature resorptive cell while Lyn is a negative regulator of osteoclastogenesis. We establish that Fyn, another SFK, also impacts the OC, but in a manner distinctly different than c‐Src and Lyn. Fyn deficiency principally alters cells throughout the osteoclastogenic process, resulting in diminished numbers of resorptive polykaryons. Arrested OC formation in the face of insufficient Fyn reflects reduced proliferation of precursors, in response to M‐CSF and retarded RANK ligand (RANKL)‐induced differentiation, attended by suppressed activation of the osteoclastogenic signaling molecules, c‐Jun, and NF‐κB. The anti‐apoptotic properties of RANKL are also compromised in cells deleted of Fyn, an event mediated by increased Bim expression and failed activation of Akt. The defective osteoclastogenesis of Fyn?/? OCs dampens bone resorption, in vitro. Finally, while Fyn deficiency does not regulate basal osteoclastogenesis, in vivo, it reduces that stimulated by RANKL by ~2/3. Thus, Fyn is a pro‐resorptive SFK, which exerts its effects by prompting proliferation and differentiation while attenuating apoptosis of OC lineage cells. J. Cell. Biochem. 111: 1107–1113, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
Tyrosine phosphorylation of several cellular proteins is one of the earliest signaling events induced by cross-linking of the high-affinity receptor for immunoglobulin E (Fc epsilon RI) on mast cells or basophils. Tyrosine kinases activated during this process include the Src family kinases, Lyn, c-Yes, and c-Src, and members of another subfamily, Syk and PTK72 (identical or highly related to Syk). Recently, some of us described two novel tyrosine kinases, Emb and Emt, whose expression was limited to subsets of hematopoietic cells, including mast cells. Emb turned out to be identical to Btk, a gene product defective in human X-linked agammaglobulinemia and in X-linked immunodeficient (xid) mice. Here we report that Fc epsilon RI cross-linking induced rapid phosphorylation on tyrosine, serine, and threonine residues and activation of Btk in mouse bone marrow-derived mast cells. A small fraction of Btk translocated from the cytosol to the membrane compartment following receptor cross-linking. Tyrosine phosphorylation of Btk was not induced by either a Ca2+ ionophore (A23187), phorbol 12-myristate 13-acetate, or a combination of the two reagents. Co-immunoprecipitation between Btk and receptor subunit beta or gamma was not detected. The data collectively suggest that Btk is not associated with Fc epsilon but that its activation takes place prior to protein kinase C activation and plays a novel role in the Fc epsilon RI signaling pathway.  相似文献   

15.
While the Src family of protein tyrosine kinases (SFK), and the main ancillary molecules involved in their regulation, have been studied for many years, the details of their interplay are not fully understood and thus remain under active investigation. Additionally, new players that coordinate their regulation and direct their signalling cascades are also being uncovered, shedding new light on the complexity of these signalling networks. Through the utilization of novel interaction assays, several new interconnecting mediators that are helping to show the elegance of Src family kinase regulation have been discovered. This review outlines SFK regulation, the discovery of the Csk binding protein (Phosphoprotein Associated with Glycosphingolipid-enriched microdomains, Cbp/PAG), and its role in regulating SFK kinase activity status, as well as protein levels. Further, details of the methods used to identify this dual mode of regulation can be applied to delineate the full gamut of SH2/SH3-directed SFK pathways and, indeed, those of any tyrosine kinase. Using Lyn as a model SFK, we and others have shown that Cbp recruits negative regulators of COOH-terminal Src kinase (Csk)/Csk-like protein-tyrosine kinase (Ctk) after Lyn is activated and bound to Cbp. Lyn phosphorylates Cbp on multiple tyrosine residues, including two that can bind Lyn's SH2 domain with high affinity. Lyn also phosphorylates Y314, which recruits Csk/Ctk to phosphorylate Lyn at its Y508 negative site, allowing an inactive conformation to form. However, the pY508 site has a low affinity for Lyn's SH2 domain, while the Cbp sites have high affinity. Thus, until these Cbp sites are dephosphorylated, Lyn can remain active. Intriguingly, phosphorylated Y314 also binds the suppressor of cytokine signalling 1 (SOCS1), resulting in elevated ubiquitination and degradation of Lyn. Thus, a single phosphotyrosine residue within Cbp co-ordinates a two-phase process involving distinct negative regulatory pathways that allow inactivation, followed by degradation, of SFKs.  相似文献   

16.
Tissue injury can lead to scar formation or tissue regeneration. How regenerative animals sense initial tissue injury and transform wound signals into regenerative growth is an unresolved question. Previously, we found that the Src family kinase (SFK) Lyn functions as a redox sensor in leukocytes that detects H2O2 at wounds in zebrafish larvae. In this paper, using zebrafish larval tail fins as a model, we find that wounding rapidly activated SFK and calcium signaling in epithelia. The immediate SFK and calcium signaling in epithelia was important for late epimorphic regeneration of amputated fins. Wound-induced activation of SFKs in epithelia was dependent on injury-generated H2O2. A SFK member, Fynb, was responsible for fin regeneration. This work provides a new link between early wound responses and late regeneration and suggests that redox, SFK, and calcium signaling are immediate “wound signals” that integrate early wound responses and late epimorphic regeneration.  相似文献   

17.
Nectins, Ca(2+)-independent immunoglobulin-like cell-cell adhesion molecules, induce the activation of Cdc42 and Rac small G proteins, enhancing the formation of cadherin-based adherens junctions (AJs) and claudin-based tight junctions. Nectins recruit and activate c-Src at the nectin-based cell-cell contact sites. c-Src then activates Cdc42 through FRG, a Cdc42-GDP/GTP exchange factor. We showed here that Rap1 small G protein was involved in the nectin-induced activation of Cdc42 and formation of AJs. Rap1 was recruited to the nectin-based cell-cell contact sites and locally activated through the c-Src-Crk-C3G signaling there. The activation of either c-Src or Rap1 alone was insufficient for and the activation of both molecules was essential for the activation of FRG. The activation of Rap1 was not necessary for the c-Src-mediated phosphorylation or recruitment of FRG. The inhibition of the Crk, C3G, or Rap1 signaling reduced the formation of AJs. These results indicate that Rap1 is activated by nectins through the c-Src-Crk-C3G signaling and involved in the nectin-induced, c-Src- and FRG-mediated activation of Cdc42 and formation of AJs.  相似文献   

18.
c-Yes, a member of the Src tyrosine kinase family, is found highly activated in colon carcinoma but its importance relative to c-Src has remained unclear. Here we show that, in HT29 colon carcinoma cells, silencing of c-Yes, but not of c-Src, selectively leads to an increase of cell clustering associated with a localisation of β-catenin at cell membranes and a reduction of expression of β-catenin target genes. c-Yes silencing induced an increase in apoptosis, inhibition of growth in soft-agar and in mouse xenografts, inhibition of cell migration and loss of the capacity to generate liver metastases in mice. Re-introduction of c-Yes, but not c -Src, restores transforming properties of c-Yes depleted cells. Moreover, we found that c-Yes kinase activity is required for its role in β-catenin localisation and growth in soft agar, whereas kinase activity is dispensable for its role in cell migration. We conclude that c-Yes regulates specific oncogenic signalling pathways important for colon cancer progression that is not shared with c-Src.  相似文献   

19.
Mitotic entry and exit require activation and inactivation of the Cdk1-cyclin B kinase complex, respectively. The Cdc25 protein phosphatase family activates Cdk1-cyclin B at the G2/M transition by removing inhibitory phosphate groups. Cdc25 family members, held inactive during interphase, are activated during mitotic progression in an amplification loop involving Cdk1-cyclin B. While Cdc25 activation at the G2/M transition is required for the timely initiation of mitosis, recent evidence suggests that the inactivation of Cdc25 in late mitosis may play a role in supporting Cdk1-cyclin B inactivation. Here, we discuss the mechanisms of Cdc25 regulation and how they pertain to both mitotic entry and exit.  相似文献   

20.
Mitotic entry and exit require activation and inactivation of the Cdk1-cyclin B kinase complex, respectively. The Cdc25 protein phosphatase family activates Cdk1-cyclin B at the G2/M transition by removing inhibitory phosphate groups. Cdc25 family members, held inactive during interphase, are activated during mitotic progression in an amplification loop involving Cdk1-cyclin B. While Cdc25 activation at the G2/M transition is required for the timely initiation of mitosis, recent evidence suggests that the inactivation of Cdc25 in late mitosis may play a role in supporting Cdk1-cyclin B inactivation. Here, we discuss the mechanisms of Cdc25 regulation and how they pertain to both mitotic entry and exit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号