首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Msx2 is a homeobox gene expressed in multiple embryonic tissues which functions as a key mediator of numerous developmental processes. YY1 is a bi-functional zinc finger protein that serves as a repressor or activator to a variety of promoters. The role of YY1 during embryogenesis remains unknown. In this study, we report that Msx2 is regulated by YY1 through protein–DNA interactions. During embryogenesis, the expression pattern of YY1 was observed to overlap in part with that of Msx2. Most notably, during first branchial arch and limb development, both YY1 and Msx2 were highly expressed, and their patterns were complementary. To test the hypothesis that YY1 regulates Msx2 gene expression, P19 embryonal cells were used in a number of expression and binding assays. We discovered that, in these cells, YY1 activated endogenous Msx2 gene expression as well as Msx2 promoter–luciferase fusion gene activity. These biological activities were dependent on both the DNA binding and activation domains of YY1. In addition, YY1 bound specifically to three YY1 binding sites on the proximal promoter of Msx2 that accounted for this transactivation. Mutations introduced to these sites reduced the level of YY1 transactivation. As bone morphogenetic protein type 4 (BMP4) regulates Msx2 expression in embryonic tissues and in P19 cells, we further tested whether YY1 is the mediator of this BMP4 activity. BMP4 did not induce the expression of YY1 in early mouse mandibular explants, nor in P19 cells, suggesting that YY1 is not a required mediator of the BMP4 pathway in these tissues at this developmental stage. Taken together, these findings suggest that YY1 functions as an activator for the Msx2 gene, and that this regulation, which is independent of the BMP4 pathway, may be required during early mouse craniofacial and limb morphogenesis.  相似文献   

6.
7.
Convincing evidence indicates that apoptosis contributes to the unfavorable prognosis of subarachnoid hemorrhage (SAH), a significant cause of morbidity and case fatality throughout the world. Gelsolin (GSN) is a Ca2+-dependent actin filament severing, capping, and nucleating protein, as well as multifunctional regulator of cell structure and metabolism, including apoptosis. In the present study, we intended to investigate the expression pattern and cell distribution of GSN in rat brain after experimental SAH. GSN expression was examined in sham group and at 3, 6, 12 h, day 1 (1 day), 2, 3, 5, and 7 days after SAH by Western blot analysis as well as real-time polymerase chain reaction. Immunohistochemistry and immunofluorescence were performed to detect the localization of GSN. The level of GSN protein expression was significantly decreased in SAH group and reached a bottoming point on 1 day after SAH. GSN mRNA level was significantly decreased in SAH groups in comparison with the sham group, and reached a minimum value at 12 h after SAH. Immunohistochemistry showed that GSN was constitutively and obviously expressed in the cortex of the normal rat brain and significantly decreased in the rat cortex after SAH. In addition, immunofluorescence results revealed that GSN expression could be found in both neurons and microglias, as well as in glialfibrillary acidic protein-positive astrocytes. The decreased expression of GSN could mainly be found in neurons and astrocytes as well, and GSN-positive microglias showed different cell morphological characteristics. Interestingly, the protein and gene levels of GSN seemed to be constant in the rat hippocampus of sham and SAH groups. These findings suggested a potential role of GSN in the pathophysiology of the brain at the early stage of SAH.  相似文献   

8.
Among all K2P channels, TASK-3 shows the most widespread expression in rat brain, regulating neuronal excitability and transmitter release. Using a recently purified and characterized polyclonal monospecific antibody against TASK-3, the entire rat brain was immunocytochemically analyzed for expression of TASK-3 protein. Besides its well-known strong expression in motoneurons and monoaminergic and cholinergic neurons, TASK-3 expression was found in most neurons throughout the brain. However, it was not detected in certain neuronal populations, and neuropil staining was restricted to few areas. Also, it was absent in adult glial cells. In hypothalamic areas, TASK-3 was particularly strongly expressed in the supraoptic and suprachiasmatic nuclei, whereas other hypothalamic nuclei showed lower protein levels. Immunostaining of hippocampal CA1 and CA3 pyramidal neurons showed strongest expression, together with clear staining of CA3 mossy fibers and marked staining also in the dentate gyrus granule cells. In neocortical areas, most neurons expressed TASK-3 with a somatodendritic localization, most obvious in layer V pyramidal neurons. In the cerebellum, TASK-3 protein was found mainly in neurons and neuropil of the granular cell layer, whereas Purkinje cells were only faintly positive. Particularly weak expression was demonstrated in the forebrain. This report provides a comprehensive overview of TASK-3 protein expression in the rat brain.  相似文献   

9.
10.
Notch信号通路是肿瘤形成过程中一种重要的信号通路,其中心分子为Notch受体. Notch受体为细胞膜上的单次跨膜蛋白,介导细胞间信号转导,哺乳动物细胞内包括Notch1、Notch2、Notch3和Notch4的4个成员. Notch家族4个蛋白质在结构和功能上存在差异.前期研究显示,Notch1信号通路与转录因子YY1(YING-YANG 1)、表皮生长因子受体(EGFR)间存在调控作用. 本研究在人胰腺癌细胞HPAC中,采用RNA干扰技术,分别降低细胞中Notch家族4个蛋白质的表达,检测YY1和EGFR在mRNA和蛋白质水平上的表达;并构建相应的激活形式的Notch受体--Notch胞内结构域(Notch intracellular domain,NICD)真核表达质粒,在HPAC细胞中分别过表达4种NICD,检测其对YY1和EGFR表达水平的影响. 结果显示,降低细胞中Notch1或Notch3的表达,均使HPAC细胞中EGFR mRNA和蛋白质水平升高(P<0.05),而降低Notch2和Notch4后,EGFR mRNA和蛋白质水平没有改变(P>0.05).分别降低4个Notch的表达,对YY1的蛋白质和mRNA表达水平均没有改变(P>0.05). 在HPAC细胞中过表达N1ICD和N3ICD后,YY1和EGFR的蛋白质水平降低(P<0.05),而过表达N2ICD和N4ICD后,YY1和EGFR蛋白质水平没有改变(P>0.05).分别过表达4种NICD均没有改变YY1和EGFR的mRNA表达水平(P>0.05).初步得出结论是,在HPAC细胞中,Notch信号通路经Notch1和Notch3影响EGFR的表达. Notch1和Notch3对EGFR的表达可能具有负调控作用. 在Notch1和Notch3过度激活时,这种调控作用通过YY1介导. 本文可为深入研究Notch信号通路对胰腺癌发生发展的作用机制提供有意义的参考.  相似文献   

11.
12.
Hong DJ  Pei AL  Sun FY  Zhu CQ 《生理学报》2003,55(2):142-146
近年来研究发现,阿尔茨海默病(Alzheimer′s disease,AD)病人脑内神经元细胞周期相关蛋白的异常表达与AD相关病理改变存在关联。为探讨β-淀粉样蛋白(β—amyloid,Aβ)的毒性作用能否导致成年脑神经元表达细胞周期相关蛋白,以及细胞周期相关蛋白表达与神经损伤之间的关系,我们运用免疫组化、积分光密度分析等方法对Aβ25-35多肽片段单侧杏仁核注射的大鼠脑进行了研究。结果显示,Aβ25-35注射的大鼠脑内除了有与神经纤维缠结相关的磷酸化tau蛋白和凋亡相关蛋白Bax蛋白水平增加外,术后7d细胞周期相关蛋白cyclin A和cyclin B1蛋白在神经元内异常表达,但术后21d时cyclin A的表达有所降低,而cyclin B1在脑内神经元中已检测不到;免疫荧光双标结果显示Aβ25-35注射后7d的大鼠脑内有较多的cyclin B1和Bax、cyclin B1和磷酸化tau蛋白共存的神经元,而Bax与磷酸化tau蛋白阳性信号很少共存在同一细胞上。以上结果提示,Aβ可导致成年脑神经元表达细胞周期相关蛋白,这些神经元可能会通过与Bax相关的凋亡途径死亡,或首先导致与AD神经纤维缠结相关的tau蛋白磷酸化。  相似文献   

13.
The purpose of the present study was to clarify the expression, transport properties and regulation of ATP-binding cassette G2 (ABCG2) transporter at the rat blood-brain barrier (BBB). The rat homologue of ABCG2 (rABCG2) was cloned from rat brain capillary fraction. In rABCG2-transfected HEK293 cells, rABCG2 was detected as a glycoprotein complex bridged by disulfide bonds, possibly a homodimer. The protein transported mitoxantrone and BODIPY-prazosin. In rat brain capillary fraction, rABCG2 protein was also detected as a glycosylated and disulfide-linked complex. Immunohistochemical analysis revealed that rABCG2 was localized mainly on the luminal side of rat brain capillaries, suggesting that rABCG2 is involved in brain-to-blood efflux transport. For the regulation study, conditionally immortalized rat brain capillary endothelial (TR-BBB13), astrocyte (TR-AST4) and pericyte (TR-PCT1) cell lines were used as an in vitro BBB model. Following treatment of TR-BBB13 cells with conditioned medium of TR-AST4 cells, the Ko143 (an ABCG2-specific inhibitor)-sensitive transport activity and rABCG2 mRNA level were significantly increased, whereas conditioned medium of TR-PCT1 cells had no effect. These results suggest that rat brain capillaries express functional rABCG2 protein and that the transport activity of the protein is up-regulated by astrocyte-derived soluble factor(s) concomitantly with the induction of rABCG2 mRNA.  相似文献   

14.
15.
16.
Neuronal nitric oxide synthase (nNOS) is alternatively spliced. An nNOS splice variant form, nNOS-mu, was first found to be selectively expressed in rat skeletal muscle and heart. To date, the expression of nNOS-mu in the brain has not been well characterized. The aim of this study was to determine whether nNOS-mu is expressed in rat brain, and whether nNOS-mu exhibits a specific expression pattern. To analyze the expression of nNOS-mu, we generated a monoclonal antibody that is specific for nNOS-mu. An immunoblot analysis using this antibody showed that nNOS-mu is expressed in the rat brain at a measurable level, which was 10.3% of total nNOSs. In rat brain, the nNOS-mu expression was high in the mesencephalon and the cerebellum. nNOS-mu was immunohistochemically localized in neurites and perikarya of large neurons. In the cerebellum, granule cells showed marked staining, while weak staining was detected in basket and stellate cells. This expression pattern is different from that described for nNOS and suggests that nNOS-mu plays unique roles in different neurons.  相似文献   

17.
18.
19.
The ATP-binding cassette transporter A1 (ABCA1) is a major regulator of peripheral cholesterol efflux and plasma high density lipoprotein metabolism. In adult rat brain we found high expression of ABCA1 in neurons in the hypothalamus, thalamus, amygdala, cholinergic basal forebrain, and hippocampus. Large neurons of the cholinergic nucleus basalis together with CA1 and CA3 pyramidal neurons were among the most abundantly immunolabeled neurons. Glia cells were largely negative. Because cholesterol homeostasis may have an essential role in central nervous system function and neurodegeneration, we examined ABCA1 expression and function in different brain cell types using cultures of primary neurons, astrocytes, and microglia isolated from embryonic rat brain. The basal ABCA1 mRNA and protein levels detected in these cell types were increased markedly after exposure to oxysterols and 9-cis-retinoic acid, which are ligands for the nuclear hormone liver X receptors and retinoic X receptors, respectively. Functionally, the increased ABCA1 expression caused by these ligands was followed by elevated apoA-I- and apoE-specific cholesterol efflux in neurons and glia. In non-neuronal and neuronal cells overexpressing a human Swedish variant of amyloid precursor protein, 22R-hydroxycholesterol and 9-cis-retinoic acid induced ABCA1 expression and increased apoA-I-mediated cholesterol efflux consequently decreasing cellular cholesterol content. More importantly, we demonstrated that these ligands alone or in combination with apoA-I caused a substantial reduction in the stability of amyloid precursor protein C-terminal fragments and decreased amyloid beta production. These effects of 22R-hydroxycholesterol may provide a novel strategy to decrease amyloid beta secretion and consequently reduce the amyloid burden in the brain.  相似文献   

20.
After our initial report of a mammalian gene for arginine decarboxylase, an enzyme for the synthesis of agmatine from arginine, we have determined the regional expression of ADC in rat. We have analyzed the expression of ADC in rat brain regions by activity, protein and mRNA levels, and the regulation of expression in neuronal cells by RNA interference. In rat brain, ADC was widely expressed in major brain regions, with a substantial amount in hypothalamus, followed by cortex, and with least amounts in locus coeruleus and medulla. ADC mRNA was detected in primary astrocytes and C6 glioma cells. While no ADC message was detected in fresh neurons (3 days old), significant message appeared in differentiated neurons (3 weeks old). PC12 cells, treated with nerve growth factor, had higher ADC mRNA compared with naive cells. The siRNA mixture directed towards the N-terminal regions of ADC cDNA down-regulated the levels of mRNA and protein in cultured neurons/C6 glioma cells and these cells produced lower agmatine. Thus, this study demonstrates that ADC message is expressed in rat brain regions, that it is regulated in neuronal cells and that the down-regulation of ADC activity by specific siRNA leads to lower agmatine production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号