首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of coated vesicles during the absorption of horseradish peroxidase was investigated in the epithelium of the rat vas deferens by electron microscopy and cytochemistry. Peroxidase was introduced into the vas lumen in vivo. Tissue was excised at selected intervals, fixed in formaldehyde-glutaraldehyde, sectioned without freezing, incubated in Karnovsky's medium, postfixed in OsO4, and processed for electron microscopy. Some controls and peroxidase-perfused specimens were incubated with TPP,1 GP, and CMP. Attention was focused on the Golgi complex, apical multivesicular bodies, and two populations of coated vesicles; large (> 1000 A) ones concentrated in the apical cytoplasm and small (<750 A) ones found primarily in the Golgi region. 10 min after peroxidase injection, the tracer is found adhering to the surface plasmalemma, concentrated in bristle-coated invaginations, and within large coated vesicles. After 20–45 min, it is present in large smooth vesicles, apical multivesicular bodies, and dense bodies. Peroxidase is not seen in small coated vesicles at any interval. Counts of small coated vesicles reveal that during peroxidase absorption they first increase in number in the Golgi region and later, in the apical cytoplasm. In both control and peroxidase-perfused specimens incubated with TPP, reaction product is seen in several Golgi cisternae and in small coated vesicles in the Golgi region. With GP, reaction product is seen in one to two Golgi cisternae, multivesicular bodies, dense bodies, and small coated vesicles present in the Golgi region or near multivesicular bodies. The results demonstrate that (a) this epithelium functions in the absorption of protein from the duct lumen, (b) large coated vesicles serve as heterophagosomes to transport absorbed protein to lysosomes, and (c) some small coated vesicles serve as primary lysosomes to transport hydrolytic enzymes from the Golgi complex to multivesicular bodies.  相似文献   

2.
The distribution of phenoloxidases and polyphenols during cuticle formation   总被引:1,自引:0,他引:1  
Locke M  Krishnan N 《Tissue & cell》1971,3(1):103-126
The distribution of phenoloxidase and polyphenols have been studied during cuticle formation at the 4th to 5th molt in Colpodes ethius. Cuticular phenoloxidases arise in the epidermis in cisternae of the rough endoplasmic reticulum, pass through the Golgi complex and are transported to the apical face in secretory vesicles. From the cuticular environment some enzyme is pinocytosed and broken down in the apical multivesicular bodies. Phenoloxidase and polyphenols are present during the formation of the cuticulin layer which also reacts as if it were at least partly composed of a phenoloxidase. The rest of the epicuticle incorporates phenoloxidase as it is deposited, particularly that over the dorsal tubercles which later melanize. Polyphenols do not appear until shortly before ecdysis. They are associated with the epicuticular filaments in both epicuticle and presumptive epocuticle. It is proposed that the epicuticular filaments may arise as liquid crystals with a protein component which becomes stabilized like the rest of the cuticle. These structures could provide a channel for the movement of both lipids and quinones to the surface. Phenoloxidases may pass through fibrous cuticle to be deposited as part of the epicuticle but are incorporated in fibrous cuticle scheduled for sclerotization. The time of stabilization is determined by the availability of polyphenols.  相似文献   

3.
Summary Tarsal glands are located in the 6th tarsomere of adult honeybee queens, workers and drones. Their structural features are not cast or sex specific. The glandular epithelium is lined by a thin endocuticular layer. A cuticular pocket is formed from a postimaginal delamination of the cuticle secreted by the glandular epithelium. The apical plasma membrane of the glandular cells shows numerous cristae and microvilli lining large crypts that communicate with the subcuticular space. Pinocytotic vesicles, multivesicular bodies and residual dense bodies are present in the apical part of the glandular cells. The RER is well developed in perinuclear and basal parts of the glandular cells, but the Golgi apparatus is a discrete organelle without secretory granules. No exocytotic secretory structures were observed. To reach the glandular pocket, the non-proteinaceous secretory product must pass across the subcuticular space, the cuticular intima, the space between the intima and the cuticular wall, and the cuticular wall of the glandular pocket.  相似文献   

4.
Integument fine structure of H. asiaticum nymphs during their feeding and starvation has been studied. In hungry nymphs hypoderma has an ultrastructure typical for hypodermal cells of arthropods in the intermoulting period and is characterized by a poor development of granular endoplasmic reticulum, small number of mitochondrial and absence of Golgi complexes. The apical surface of the cells is covered with short irregularly scattered microvilli. The cuticle consists of the procuticle, which has a homogenous fine-granular structure, and four-layered epicuticle. During the feeding period hypodermal cells greatly increase in volume and the elements of granular endoplasmic reticulum and metachondria increase in number. Golgi complexes and a variety of apical vesicles have been observed. The number of microvilli on the apical surface increases that is accompanied by a cuticle growth. Procuticle, which is being formed within this period, has a lamellar structure.  相似文献   

5.
We examined the uptake and fate of four horseradish peroxidase (HRP) isozymes (Type VI, VII, VIII, and IX) in isolated pancreatic acinar cells. The pattern of uptake was similar for all the isozymes examined, with the exception of Type IX. Very little Type IX HRP was internalized by the cells, and what endocytosis did occur was primarily from the apical cell surface in coated vesicles. In contrast, HRP Type VI, VII, and VIII appeared to be endocytosed largely at the basolateral cell surface. Initially, the tracer was found in smooth vesicles and tubules near the plasma membrane. The tubules resembled the basal lysosomes known to be present in these cells. At the early time points, HRP reaction product was also present in multivesicular bodies (MVBs). By 60 min, the HRP was localized in MVBs, vesicles, and tubules adjacent to the Golgi apparatus. By 12 hr after exposure to the isozymes, the tracer was present in small apical vesicles. At no time could reaction product be localized in the rough endoplasmic reticulum, Golgi saccules, or secretory granules. The results of this study suggest that the charge of a soluble-phase marker has little effect on its uptake or intracellular distribution.  相似文献   

6.
Summary Transport of ferritin and horseradish peroxidase from the 3rd ventricle to the median eminence was examined in rats during the perinatal life, the time when functional interrelations between hypothalamus and hypophysis are established. Protein tracers injected into the lateral ventricle are adsorbed on the apical surface of the tanycyte, mainly on its protrusions or in indentations. On the 18th day of prenatal life a few small bleblike protrusions are observed. After birth microvilli appear. In time their concentration increases to result in an increase of adsorbed substances. They are taken up by smooth and coated pinocytotic vesicles and transported to the basal portion of the cell or to the intercellular space bypassing junctional complexes. In addition to pinocytotic vesicles protein tracers fill channels of smooth ER or Golgi complex and multivesicular bodies illustrating a process probably involved in metabolic or secretory processes.  相似文献   

7.
M Locke  N Krishnan 《Tissue & cell》1973,5(3):441-450
Insect cuticle forms as a result of overlapping sequences of two kinds of process, those involving vesicles of the Golgi complex, and those related to transport through and/or assembly at the apical plasma membrane. The ecdysial droplets are the last layer of old cuticle to be deposited before ecdysis and form from the contents of secretory vesicles from Golgi complexes. Ecdysial droplets and secretory vesicles both stain with PTA and react with silver hexamine after oxidation with periodic acid. The vesicles discharge in localized apical areas devoid of microvilli where they accumulate as droplets measuring about 3 [ x 1 [. The. droplets span the last few lamellae of the endocuticle which becomes the ecdysial membrane. They dissolve to leave the ecdysial membrane full of holes at the time that the rest of the old cuticle is digested.  相似文献   

8.
We have studied the transport of ferritin that was internalized by coated micropinocytic vesicles at the apical surface of the choroid plexus epithelium in situ. After ventriculocisternal perfusion of native ferritin (NF) or cationized ferritin (CF), three routes followed by the tracers are revealed: (a) to lysosomes, (b) to cisternal compartments, and (c) to the basolateral cell surface. (a) NF is micropinocytosed to a very limited degree and appears in a few lysosomal elements whereas CF is taken up in large amounts and can be followed, via endocytic vacuoles and light multivesicular bodies, to dark multivesicular bodies and dense bodies. (b) Occasionally, CF particles are found in cisterns that may represent GERL or trans-Golgi elements, whereas stacked Golgi cisterns never contain CF. (c) Transepithelial vesicular transport of CF is distinctly revealed. The intercellular spaces of the epithelium, below the apical tight junctions, contain numerous clusters of CF particles, often associated with surface-connected, coated vesicles. Vesicles in the process of exocytosis of CF are also present at the basal epithelial surface, whereas connective tissue elements below the epithelium are unlabeled. Our conclusion is that fluid and solutes removed from the cerebrospinal fluid by endocytosis either become sequestered in the lysosomal apparatus of the choroidal epithelium or are transported to the basolateral surface. However, our results do not indicate any significant recycling via Golgi complexes of internalized apical cell membrane.  相似文献   

9.
In the terminal segment of the hamster epididymidis there was some evidence of micro-merocrine protein secretion a the level of the principal cells and clear evidence of granular secretion in the light cells, presumable of glycoproteins. The PAS and protein cytochemistry reactivities observed in both these cells, of the ductus epithelial lining, but especially in the light cells, are suggestive of mucopolysaccharides and protein complexes synthesis and secretion. This secretion is carried out to the epididymal epithelium from the lumen and luminal content. A complex of small vacuoles and vesicles appeared to form from the Golgi complex is showed in the principal cells. It was suggested that this complex may represented merocrine secretory vacuoles and vesicles in these cells. Dense granules, at the TEM level, are observed in all the cytoplasm of the light cells, with correspondence to similar PAS-positive granules observed in these cells, at the light microscope level. These granules, at the TEM level, are actually secreted to the epididymal duct lumen, by the apical cytoplasms of the light cells. Signs of absorption were suggested to the principal and light columnar cells through the ultrastructural observations of micropinocytosis, apical multivesicular bodies or great membrane-bounded vacuoles in the adluminal cytoplasms.  相似文献   

10.
CYTOCHEMICAL STAINING OF MULTIVESICULAR BODY AND GOLGI VESICLES   总被引:19,自引:10,他引:9       下载免费PDF全文
To investigate the origin and nature of vesicles found within multivesicular bodies (mvb), the cytochemical staining properties of mvb vesicles were compared with those of other cytoplasmic vesicles, i.e. those associated with the Golgi complex and endocytic vesicles found near the apical cell surface. Rat epididymal tissue was stained in unbuffered OsO4 for 40–48 hr, and the distribution of stain was compared to that of reaction products for acid phosphatase (AcPase) to mark lysosomal vesicles, or thiamine pyrophosphatase (TPPase) to mark certain Golgi vesicles, or infused with peroxidase (HRPase) to demonstrate endocytic vesicles. Mvb vesicles were stained only by OsO4; AcPase, TPPase, and HRPase reaction products stained the mvb matrix. OsO4 also stained certain vesicles along the convex surface of the Golgi complex. The findings suggest that mvb vesicles in epididymal epithelium are not lysosomes and are not involved in protein uptake. The majority of these vesicles have cytochemical reactions in common with vesicles located along the convex surface of the Golgi complex and may be derived therefrom. A minority are derived from the mvb-limiting membrane.  相似文献   

11.
The formation and fate of apical endocytic vesicles in resting and isoproterenol-stimulated rat parotid acinar cells were studied using luminally administered horseradish peroxidase (HRP) to mark the vesicles. The tracer was taken up from the lumen by endocytosis in small, smooth-surfaces "c"- or ring-shaped vesicles. About 1 h after HRP administration the vesicles could be found adjacent to the Golgi apparatus. At later times HRP reaction product was localized in multivesicular bodies and lysosomes; in isoproterenol-stimulated cells it was also present in autophagic vacuoles. HRP reaction product was never localized in any structure associated with secretory granule formation. These results suggest that the apical endocytic vesicles play a role in membrane recovery, but that they are degraded and not reutilized directly in secretory granule formation. Additionally, it was found that when isoproterenol was injected before HRP administration, the apical junctional complexes became permeable to the tracer, allowing it to gain access to the lateral and basal intercellular spaces. This permeability may provide an additional route whereby substances in the extracellular fluid could reach the saliva.  相似文献   

12.
Summary Stimulation of secretion by pilocarpine results in a 70% loss of zymogen granules from pancreatic acinar cell during the first hr after injection of the drug. In previous work (Geuze and Poort, 1973), we found that the amount of membrane stored in the surface of the microvilli and of the numerous infoldings present in highly stimulated cells, increases during the first 2 hr and then decreases again during the 3rd hr after stimulation, concurrently with maximal endocytosis of sorbitol-[su14C].Further observations on the fine structure of stimulated cells at various time intervals after injection of pilocarpine showed that during the first hr numerous smooth vesicles and multivesicular bodies (mvb's) appear in the apical cytoplasm, while the number of coated vesicles and their relative total volume increase significantly 3 hr after stimulation.By infusion of ferritin in the pancreatic duct system in vivo and application of cytochemical techniques (osmium impregnation, electron microscope autoradiography and acid phosphatase cytochemistry) it could be established that after stimulated exocytotic secretion, redundant apical cell membrane is withdrawn by at least two routes: 1) During the initial rapid increase of the amount of apical cell membrane, withdrawal is accomplished by interiorization of luminal invaginations into smooth endocytotic vesicles, which in turn give rise to mvb's by infolding and subsequent fission of their limiting membrane. 2) Once the bulk of stored secretion granules has been discharged, endocytotic coated vesicles become gradually more prominent as carriers for redundant cell membrane. The contents of endocytotic structures ultimately become incorporated in residual bodies, suggesting lysosomal degradation of cell membrane prior to eventual reutilization.Coated vesicles also originate by pinching off from mature Golgi cisternae and condensing vacuoles. A possible function of the coated membranes in the concentration of exportable protein within forming secretory granules is discussed.  相似文献   

13.
Labeling of the Golgi complex with the lectin conjugate wheat germ agglutinin-horseradish peroxidase (WGA-HRP), which binds to cell surface membrane and enters cells by adsorptive endocytosis, was analyzed in secretory cells of the anterior, intermediate, and posterior lobes of mouse pituitary gland in vivo. WGA-HRP was administered intravenously or by ventriculo-cisternal perfusion to control and salt-stressed mice; post-injection survival times were 30 min-24 hr. Peroxidase reaction product was identified within the extracellular clefts of anterior and posterior pituitary lobes through 24 hr but was absent in intermediate lobe. Endocytic vesicles, spherical endosomes, tubules, dense and multivesicular bodies, the trans-most saccule of the Golgi complex, and dense-core secretory granules attached or unattached to the trans Golgi saccule were peroxidase-positive in the different types of anterior pituitary cells and in perikarya of supraoptico-neurohypophyseal neurons; endoplasmic reticulum and the cis and intermediate Golgi saccules in the same cell types were consistently devoid of peroxidase reaction product. Dense-core secretory granules derived from cis and intermediate Golgi saccules in salt-stressed supraoptic perikarya likewise failed to exhibit peroxidase reaction product. The results suggest that in secretory cells of anterior and posterior pituitary lobes, WGA-HRP, initially internalized with cell surface membrane, is eventually conveyed to the trans-most Golgi saccule, in which the lectin conjugate and associated membrane are packaged in dense-core secretory granules for export and potential exocytosis of the tracer. Endoplasmic reticulum and the cis and intermediate Golgi saccules appear not to be involved in the endocytic/exocytic pathways of pituitary cells exposed to WGA-HRP.  相似文献   

14.
15.
To improve the current knowledge about the digestive system in opisthobranchs, light and electron microscopy methods were used to characterize the epithelial cells in the mid‐intestine of Aplysia depilans. This epithelium is mainly formed by columnar cells intermingled with two types of secretory cells, named mucous cells and granular cells. Columnar cells bear microvilli on their apical surface and most of them are ciliated. Mitochondria, multivesicular bodies, lysosomes and lipid droplets are the main components of the cytoplasm in the region above the nucleus of these cells. Peroxisomes are mainly found in middle and basal regions, usually close to mitochondria. Mucous cells are filled with large secretory vesicles containing thin electron‐dense filaments surrounded by electron‐lucent material in which acidic mucopolysaccharides were detected. The basal region includes the nucleus, several Golgi stacks and many dilated rough endoplasmic reticulum cisternae containing tubular structures. The granular cells are characterized by very high amounts of flat rough endoplasmic reticulum cisternae and electron‐dense spherical secretory granules containing glycoproteins. Enteroendocrine cells containing small electron‐dense granules are occasionally present in the basal region of the epithelium. Intraepithelial nerve fibres are abundant and seem to establish contacts with secretory and enteroendocrine cells.  相似文献   

16.
Summary Correlative morphological and physiological analysis was carried out in order to clarify the role of somatostatin in the inhibition of the secretion of growth hormone (GH) from somatotrophs of the rat anterior pituitary gland in vivo. Transmission electron microscopy combined with immunogold labelling showed an increased number of exocytotic GH-containing secretory granules in somatotrophs fixed between 2 and 10 min after injection of GH-releasing factor (GRF). Injection of GRF also induced the appearance of immunopositive material in cisternae of the Golgi apparatus, many coated vesicles and multivesicular bodies. Microtubules were observed more frequently throughout the cytoplasm, particularly in and near the Golgi region. At 2 and 10 min after injection of somatostatin (SRIF), both the number of exocytotic figures in the somatotrophs previously stimulated by GRF and the amount of radioimmunoassayable GH in the plasma were clearly decreased. Undulation of the plasma membrane (PM) induced by GRF rapidly disappeared, and the number of granules just beneath the plasma membrane was significantly reduced. After injection of SRIF, parallel bundles of microfilaments were often observed in the space between the granules and the plasma membrane. SRIF did not cause a noticeable decrease in the amount of immunopositive material, coated vesicles and multivesicular bodies in the Golgi areas or any significant changes in the distribution of microtubules. SRIF therefore appears to inhibit hormone release mainly at the level of the plasma membrane, probably through changes in the distribution of microfilaments.  相似文献   

17.
Insulin was used to deplete the adrenalin stores of rat adrenal medulla cells. Release of secretion was observed to occur by exocytosis. In addition, during the stages of massive release of secretory granules, the insulin-treated preparations showed greatly enhanced endocytic uptake of horseradish peroxidase. The tracer was taken up within vesicles, tubules, multivesicular bodies, and dense bodies. From acid phosphatase studies and from previous work it appears that many of the structures in which peroxidase accumulates are lysosomes or are destined to fuse with lysosomes. Subsequent to the period of intense exocytosis and endocytosis, there is a transient accumulation of lipid droplets in the adrenalin cells. The cells then regranulate, with new granules forming near the Golgi region. These results suggest that under the conditions used, much of the membrane that initially surrounds secretory granules is degraded after release of the granules.  相似文献   

18.
Internalization of cationized ferritin by isolated pancreatic acinar cells   总被引:2,自引:0,他引:2  
The internalization of cationized ferritin (CF) was studied in isolated pancreatic acinar cells in vitro. Horseradish peroxidase (HRP) was used in conjunction with CF to compare internalization of soluble-phase and membrane-bound tracers. The mode of internalization of CF was dependent upon tracer concentration and origin of the plasma membrane (apical vs. lateral-basal). At the lower tracer concentrations (0.19 and 0.38 mg/ml), internalization from the apical cell surface occurred via small vesicles. The tracer then appeared in multivesicular bodies, in tubules, and in irregular membrane-bound structures. After 15 min, CF particles were seen in many small vesicles near the Golgi apparatus, but not in the Golgi saccules. In contrast, at the lateral-basal cell surface the CF particles tended to form clusters. These clusters were more pronounced at higher CF concentrations (0.76 and 1.5 mg/ml) and were associated with elongated cellular processes, which seemed to engulf CF accumulations in a phagocytic manner. Once internalized, CF was found primarily in large irregular structures which appeared to migrate slowly toward the nucleus, reaching a juxtanuclear position after approximately 30 min. CF was observed in lysosomes after 30-45 min and by 90 min most of the CF was confined to large vacuoles and to trimetaphosphatase-positive lysosomes. Similar routes were observed when cells were double-labeled with CF and HRP, where endocytic structures showed co-localization of both tracers. The results of this study indicate the importance of the Golgi region in the intracellular sorting of internalized apical membrane. Furthermore, this work confirms the presence of distinct endocytic pathways at the apical and lateral-basal cell surfaces.  相似文献   

19.
Summary The transport of protein across the cells of the epididymal epithelium was studied using horseradish peroxidase. Transient vascular perfusion of the epididymis of the rat and golden hamster was achieved by pulsatile retrograde infusion into the testicular artery. Peroxidase was found in the interstitium and in the epithelium, located in vesicles, vacuoles and multivesicular bodies of principal, clear and apical cells. Similar findings were obtained in mice after systemic injection of the tracer. In the rat, discharge to the lumen was confirmed by the appearance of enzyme activity in luminal fluid from the caput epididymidis after local injection. The extent of transport amounted to no more than what has been considered leakage in physiological experiments, and the time-course of appearance complemented that found by electron microscopy. The level of transcytosis after pulsatile administration of peroxidase in vivo, as judged from the occurrence of tracer in the epithelium, was much less than that obtained during constant immersion in vitro. The protein was present in multivesicular bodies of principal cells and in vesicles of clear cells at short times after presentation in vitro, when it could not have arrived by endocytosis from the lumen. This suggests that routing of basal endocytic vesicles to the lysosomal apparatus occurs.  相似文献   

20.
Endocytosis was studied in the seminal vesicle secretory cells of castrated and control hamsters in order to investigate the effect of testosterone withdrawal in the endocytic activity of these cells. Horseradish peroxidase was injected into the glands lumen after removal of their contents, and tracer distribution was qualitatively studied, and the number of labeled endocytic vesicles quantitatively analyzed, following 5, 20, 40 and 60 min incubation. The following compartments are labeled both in castrate and control cells: 1), endocytic vesicles; 2), vacuoles with or without secretory material; 3), multivesicular bodies; 4), Golgi cisternae; 5), intercellular spaces; 6), sub-epithelial space. The pattern of labeling is lighter in castrate than in control cells and the labeling of Golgi cisternae, which correlates with a significant peak in the number of endocytic vesicles, is observed later in castrated animals than in controls: 40 min vs 20 min. Exocytosis, as evaluated through the fraction of secretory protein released in vitro, decreases following castration. Endocytosis performed in castrated, pilocarpine treated animals shows that the Golgi labeling, coinciding with numerous labeled endocytic vesicles, is advanced from 40 to 20 min after stimulation of exocytosis. The results show that, in the seminal vesicle secretory cells a) the endocytic pathway does not depend on testosterone; b) testosterone withdrawal decreases endocytosis and delays the kinetics of labeling and; c) endocytosis couples to exocytosis, probably so regulating the apical cell membrane area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号