首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A simple and selective assay for the determination of the alkylating cyclophosphamide metabolite phosphoramide mustard (PM) in plasma was developed and validated. PM was determined after derivatisation by high-performance liquid chromatography (HPLC) with ultraviolet detection at 276 nm. Sample pre-treatment consisted of derivatisation of PM with diethyldithiocarbamate (DDTC) at 70°C for 10 min, followed by extraction with acetonitrile in the presence of 0.7 M sodium chloride. Phase separation occurred due to the high salt content of the aqueous phase. The HPLC system consisted of a C8 column with acetonitrile–0.025 M potassium phosphate buffer, pH 8.0, (32:68, v/v) as the mobile phase. The entire sample handling procedure, from collection at the clinical ward until analysis in the laboratory, was optimised and validated. Calibration curves were linear from 50 to 10 000 ng/ml. The lower limit of quantification and the limit of detection (using a signal-to-noise ratio of 3) were 50 and 40 ng/ml, respectively, using 500 μl of plasma. Within-day and between-day precisions were below 11% over the entire concentration range and the accuracies were between 100 and 106%. PM was found to be stable at −30°C for at least 10 weeks both in plasma and as a DDTC-derivative in a dry sample. A pharmacokinetic pilot study in two patients receiving 1000 mg/m2 CP in a 1-h infusion demonstrated the applicability of the assay.  相似文献   

2.
A sensitive, robust gas chromatographic–mass spectrometric assay suitable for use in pharmacokinetic or bioequivalence studies is presented for the selective serotonin reuptake inhibitor, fluoxetine, and its major metabolite, norfluoxetine (N-desmethylfluoxetine). This method employs solid-phase extraction followed by acetylation with trifluoroacetic anhydride and analysis of the derivatives using selected ion monitoring. The lower limit of quantification was 1.0 ng/ml, and the assay was linear for both analytes from 1 to 100 ng/ml. Mean recoveries following solid-phase extraction at concentrations of 5.0, 20 and 100 ng/ml were 91% (fluoxetine) and 87% (norfluoxetine). Assay precision (as mean RSD) and accuracy (as mean relative error) for both analytes were tested at the same three nominal concentrations and were found to be within 10% in all cases. Analysis of fluoxetine concentrations in plasma samples from 18 volunteers following administration of a single 40 mg dose of fluoxetine provided the following pharmacokinetic data (mean±SD): Cmax, 32.73±9.21 ng/ml; AUC0–∞, 1627±1372 ng/ml h; Tmax, 3.08 h (median); ke, 0.022±0.007 h−1; elimination half-life, 37.69±21.70 h.  相似文献   

3.
An improved method suitable for the determination of 8-methoxypsoralen in the range 50–1500 ng/ml in the plasma of psoriatic patients undergoing PUVA (psoralens and long-wave ultraviolet light) therapy is proposed. A 5-ml aliquot of plasma containing sodium citrate as anticoagulant was centrifuged, griseofulvin was added as internal standard and the sample was denatured with acetonitrile. The supernatant was applied to C18 cartridges and 8-methoxypsoralen was eluted with methanol. The evaporated eluate was reconstituted in the mobile phase for high-performance liquid chromatography (HPLC) and applied to the HPLC column: mobile phase, acetonitrile—0.01 M phosphoric acid (34:66); flow-rate, 1 ml/min; temperature, 40°C; column, Spherisorb 5 ODS, 100 mm × 4.6 mm I.D., 5 μm particle size; UV detection at 248 nm; detection limit, 15 ng/ml of plasma.  相似文献   

4.
Synthetic vitamin K3 (VK3, 2-methyl-1,4-naphthoquinone, or menadione) has been found to exhibit antitumor activity against various human cancer cells at relative high dose. Parallel to our study on the mechanism of VK3 action and for future clinical trials in Taiwan, we developed a simple, sensitive and accurate high-performance liquid chromatographic method for the determination of VK3 in biological fluids. VK3 was extracted from the plasma samples with n-hexane. The chromatographic separation employed an ODS analytical column (5 μm, 250 × 4.6 mm I.D.) with a mobile phase of methanol-water (70:30 v/v) and UV detection at 265 nm. On completely drying of the extraction solution, n-hexane, by a stream of nitrogen, menadione was lost to a great extent. Methanol (70%, 200 μl) was added to the extraction solvent after extraction and centrifugation to prevent the loss of menadione. The absolute recovery was 82.4±7.69% (n = 7). The within-day and between-day calibration curves of VK3 in plasma in the ranges of interest (0.01–10.00 μg/ml; 0.01–5.00 μg/ml) showed good linearity (r>0.999) and acceptable precision. The limit of quantitation of VK3 was 10 ng/ml) showed good method has been succesfully applied to a pilot pharmacokinetic study of VK3 in rabbits receiving an intravenous high-dose bolus injection of 75 mg menadiol sodium diphosphate (Synkayvite). The pharmacokinetic properties of menadione could be described adequately by an open two-compartment model. The mean half-life of menadiol (transformation to menadione) was 2.60±0.12 min. The elimination half-life, volume of distribution and plasma clearance of menadione were 26.3±2.97 min, 25.7±0.78 1, and 0.68±0.10 1/min, respectively.  相似文献   

5.
A rapid clean-up procedure based on ion-pair solid-phase extraction (SPE) for the high-performance liquid chromatographic (HPLC) determination of spectinomycin in swine, calf and chicken plasma at a limit of detection of 50 ng/ml is described. After dilution with water and adjustment of the pH to approximately 5.6, the plasma is applied to a high-hydrophobic C18 SPE column treated with sodium dioctylsulphosuccinate. Spectinomycin is eluted with methanol and derivatized with 2-naphthalene sulphonyl chloride prior to chromatography. The HPLC set-up consists of a dual-column system using two Chromspher silica columns and dichloromethane—acetonitrile—ethyl acetate—acetic acid, in different ratios, as mobile phases. Detection is performed at 250 nm. Quantification is carried out using external standards prepared in blank cleaned plasma. Mean recoveries were 83 ± 3% (n = 5), 93 ± 6% (n = 5) and 92 ± 6% (n = 6) for swine, calf and chicken plasma, respectively, at the 0.1 μg/ml level.  相似文献   

6.
The stability of the experimental anti-tumour agent pancratistatin in human plasma has been investigated. A solid-phase extraction technique and an HPLC assay with external standards have been developed and validated. Extraction was performed using C18 cartridges and HPLC, analysis was performed on a 15 cm Hypersil BDS column using isocratic elution with 13% acetonitrile and aqueous solution of 1% (w/v) acetic acid. The lower limit of quantification for pancratistatin in 5% DMF–95% water was found to be 0.58 ng/ml (±10.58%) and 2.3 ng/ml (±9.2%) following extraction from human plasma. Mean recovery of 89.4% (±4.73%) was obtained over the concentration range 0.0023–9.45 μg/ml for a five day validation study. Pancratistatin was stable at room temperature in light or dark for at least 15 days, in the refrigerator at 4°C for at least 16 days and in the freezer at −20°C or −80°C for at least 28 days. Under all conditions monitored, % recovery of pancratistatin from human plasma was greater than 95% and no evidence of degradation had occurred. There also was no loss of pancratistatin after three cycles of freezing and thawing.  相似文献   

7.
A method was developed for the separation and quantification of the insecticide chlorpyrifos (O,O-diethyl-O[3,5,6-trichloro-2-pyridinyl] phosphorothioate), its metabolites chlorpyrifos-oxon (O,O-diethyl-O[3,5,6-trichloro-2-pyridinyl] phosphate) and TCP (3,5,6-trichloro-2-pyridinol), the anti-nerve agent drug pyridostigmine bromide (PB; 3-dimethylaminocarbonyloxy-N-methyl pyridinium bromide), its metabolite N-methyl-3-hydroxypyridinium bromide, the insect repellent DEET (N,N-diethyl-m-toluamide), and its metabolites m-toluamide and m-toluic acid in rat plasma and urine. The method is based on using solid-phase extraction and high-performance liquid chromatography (HPLC) with reversed-phase C18 column, and gradient UV detection ranging between 210 and 280 nm. The compounds were separated using a gradient of 1–85% acetonitrile in water (pH 3.20) at a flow-rate ranging between 1 and 1.7 ml/min over a period of 15 min. The retention times ranged from 5.4 to 13.2 min. The limits of detection ranged between 20 and 150 ng/ml, while the limits of quantitation were between 150 and 200 ng/ml. Average percentage recovery of five spiked plasma samples was 80.2±7.9, 74.9±8.5, 81.7±6.9, 73.1±7.8, 74.3±8.3, 80.8±6.6, 81.6±7.3 and 81.4±6.5, and from urine 79.4±6.9, 77.8±8.4, 83.3±6.6, 72.8±9.0, 76.3±7.7, 83.4±7.9, 81.6±7.9 and 81.8±6.8 for chlorpyrifos, chlorpyrifos-oxon, TCP, pyridostigmine bromide, N-methyl-3-hydroxypyridinium bromide, DEET, m-toluamide and m-toluic acid, respectively. The relationship between peak areas and concentration was linear over a range between 200 and 2000 ng/ml.  相似文献   

8.
A rapid and simple method was developed for the separation and quantification of the anti nerve agent drug pyridostignmine bromide (PB; 3-dimethylaminocarbonyloxy-N-methyl pyridinium bromide) its metabolite N-methyl-3-hydroxypyridinium bromide, the insect repellent DEET (N,N-diethyl-m-toluamide), its metabolites m-toluamide and m-toluic acid, the insecticide permethrin (3-(2,2-dichloro-ethenyl)-2,2-dimethylcyclopropanecarboxylic acid(3-phenoxyphenyl)methylester), and two of its metabolites m-phenoxybenzyl alcohol, and m-phenoxybenzoic acid in rat plasma and urine. The method is based on using C18 Sep-Pak® cartridges for solid-phase extraction (SPE) and high-performance liquid chromatography (HPLC) with reversed-phase C18 column, and gradient UV detection ranging between 208 and 230 nm. The compounds were separated using gradient of 1 to 99% acetonitrile in water (pH 3.20) at a flow-rate ranging between 0.5 and 1.7 ml/min in a period of 17 min. The retention times ranged from 5.7 to 14.5 min. The limits of detection were ranged between 20 and 100 ng/ml, while limits of quantitation were 150–200 ng/ml. Average percentage recovery of five spiked plasma samples were 51.4±10.6, 71.1±11.0, 82.3±6.7, 60.4±11.8, 63.6±10.1, 69.3±8.5, 68.3±12.0, 82.6±8.1, and from urine 55.9±9.8, 60.3±7.4, 77.9±9.1, 61.7±13.5, 68.6±8.9, 62.0±9.5, 72.9±9.1, and 72.1±8.0, for pyridostigmine bromide, DEET, permethrin, N-methyl-3-hydroxypyridinium bromide, m-toluamide, m-toluic acid, m-phenoxybenzyl alcohol and m-phenoxybenzoic acid, respectively. The relationship between peak areas and concentration was linear over the range between 100 and 5000 ng/ml. This method was applied to analyze the above chemicals and metabolites following their administration in rats.  相似文献   

9.
A rapid, selective and very sensitive ion-pairing reversed-phase HPLC method was developed for the simultaneous determination of trimebutine (TMB) and its major metabolite, N-monodesmethyltrimebutine (NDTMB), in rat and human plasma. Heptanesulfonate was employed as the ion-pairing agent and verapamil was used as the internal standard. The method involved the extraction with a n-hexane–isopropylalcohol (IPA) mixture (99:1, v/v) followed by back-extraction into 0.1 M hydrochloric acid and evaporation to dryness. HPLC analysis was carried out using a 4-μm particle size, C18-bonded silica column and water–sodium acetate–heptanesulfonate–acetonitrile as the mobile phase and UV detection at 267 nm. The chromatograms showed good resolution and sensitivity and no interference of plasma. The mean recoveries for human plasma were 95.4±3.1% for TMB and 89.4±4.1% for NDTMB. The detection limits of TMB and its metabolite, NDTMB, in human plasma were 1 and 5 ng/ml, respectively. The calibration curves were linear over the concentration range 10–5000 ng/ml for TMB and 25–25000 ng/ml for NDTMB with correlation coefficients greater than 0.999 and with within-day or between-day coefficients of variation not exceeding 9.4%. This assay procedure was applied to the study of metabolite pharmacokinetics of TMB in rat and the human.  相似文献   

10.
Dilute solutions (50 ng/ml) of apomorphine in plasma are unstable at 37°C and pH 7.4. The chemical half-life is only 39 min. Mercaptoethanol (0.01%) is effective in stabilizing these samples while sodium metabisulphite (1%), which is generally used, is not effective. Biological samples are extracted with diethyl ether (recovery 96.5%) and analysed using HPLC with coulometric detection (oxidation potential 0.25 V). The stationary phase employed was C18 material (4 μm) and the mobile phase was phosphate buffer (pH 3)—acetonitrile (70:30, v/v). The flow-rate was 1.8 ml/min. This bioanalytical method presents a reliable tool for pharmacokinetic studies in man.  相似文献   

11.
An isocratic high-performance liquid chromatographic method has been developed to determine ciprofloxacin levels in chinchilla plasma and middle ear fluid. Ciprofloxacin and the internal standard, difloxacin, were separated on a Keystone ODS column (100 × 2.1 mm I.D., 5 μm Hypersil) using a mobile phase of 30 mM phosphate buffer (pH 3), 20 mM triethylamine, 20 mM sodium dodecyl sulphate—acetonitrile (60:40, v/v). The retention times were 3.0 min for ciprofloxacin and 5.2 min for difloxacin. This fast, efficient protein precipitation procedure together with fluorescence detection allows a quantification limit of 25 ng/ml with a 50 μl sample size. The detection limit is 5 ng/ml with a signal-to-noise ratio of 5:1. Recoveries (mean ± S.D., n = 5) at 100 ng/ml in plasma and middle ear fluid were 89.4 ± 1.2% and 91.4 ± 1.6%, respectively. The method was evaluated with biological samples taken from chinchillas with middle ear infections after administering ciprofloxacin.  相似文献   

12.
CPT-11 {I; 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin} is a new anticancer agent currently under clinical development. A sensitive high-performance liquid chromatographic assay suitable for the simultaneous determination of I and its active metabolite SN-38 (II) in human plasma, and their preliminary clinical pharmacokinetics, are described. Plasma samples were processed using a solid-phase (C18) extraction step allowing mean recoveries of I, II and the internal standard camptothecin (III) of 84, 99 and 72%, respectively. The extracts were chromatographed on a C18 reversed-phase column with a mobile phase composed of acetonitrile, phosphate buffer and heptanesulphonic acid, with fluorescence detection. The calibration graphs were linear over a wide range of concentrations (1 ng/ml–10 μg/ml), and the lower limit of determination was 1 ng/ml for both I and II. The method showed good precision: the within-day relative standard deviation (R.S.D.) (5–1000 ng/ml) was 13.0% (range 4.9–19.4%) for I and 12.8% (6.7–19.1%) for II; the between-day R.S.D. (5–10 000 ng/ml was 7.9% (5.4–17.5%) for I and 9.7% (3.5–15.1%) for II. Using this assay, plasma pharmacokinetics of both I and II were simultaneously determined in three patients receiving 100 mg/m2 I as a 30-min intravenous infusion. The mean peak plasma concentration of I at the end of the intravenous infusion was 2400 ± 285 ng/ml (mean ± standard error of the mean). Plasma decay was triphasic with half-lives α, β and γ of 5.4 ± 1.8 min, 2.5 ± 0.5 h and 20.2 ± 4.6 h, respectively. The volume of distribution at steady state was 105 ± 15 l/m2, and the total body clearance was 12.5 ± 1.9 l/h · m2. The maximum concentrations of the active metabolite II reached 36 ± 11 ng/ml.  相似文献   

13.
This study describes an expedient assay for the analysis of the asthma medication, montelukast sodium (Singulair, MK-0476), in human plasma samples. After a simple extraction of the plasma, the drug and internal standard, quinine bisulfate, were measured by HPLC. The chromatographic system consisted of a single pump, a refrigerated autosampler, a C8 4-μm particle size radial compression cartridge at 40°C and a fluorescence detector with the excitation and emission wavelengths set at 350 and 400 nm, respectively. The mobile phase which was delivered at 1.0 ml/min, was prepared by adding 200 ml of 0.025 M sodium acetate, pH adjusted to 4.0 with acetic acid, to 800 ml of acetonitrile, with 50 μl triethylamine. With a run time of only 10 min per sample, this assay had an overall recovery of >97% with a detection limit of 1 ng/ml. The inter- and intra-run relative standard deviations at 0.05, 0.2 and 1.0 μg/ml were all <9.2%, while the analytical recovery at the same concentrations were within 7.7% of the amount added.  相似文献   

14.
[Arg6, -Trp7,9, mePhe8]-substance P (6–11), code-named antagonist G, is a novel peptide currently undergoing early clinical trials as an anticancer drug. A sensitive, high efficiency high-performance liquid chromatography (HPLC) method is described for the determination in human plasma of antagonist G and its three major metabolites, deamidated-G (M1), G-minus Met11 (M2) and G[Met11(O)] (M3). Gradient elution was employed using 40 mM ammonium acetate in 0.15% trifluoroacetic acid as buffer A and acetonitrile as solvent B, with a linear gradient increasing from 30 to 100% B over 15 min, together with a microbore analytical column (μBondapak C18, 30 cm×2 mm I.D.). Detection was by UV at 280 nm and the column was maintained at 40°C. Retention times varied by <1% throughout the day and were as follows: G, 13.0 min; M1, 12.2 min; M2, 11.2 min; M3, 10.8 min, and 18.1 min for a pyrene conjugate of G (G–P). The limit of detection on column (LOD) was 2.5 ng for antagonist G, M1–3 and G–P and the limit of quantitation (LOQ) was 20 ng/ml for G and 100 ng/ml for M1–3. Sample clean-up by solid-phase extraction using C2-bonded 40 μm silica particles (Bond Elut, 1 ml reservoirs) resulted in elimination of interference from plasma constituents. Within-day and between-day precision and accuracy over a broad range of concentrations (100 ng/ml–100 μg/ml) normally varied by <10%, although at the highest concentrations of M1 and M2 studied (50 μg/ml), increased variability and reduced recovery were observed. The new assay will aid in the clinical development of antagonist G.  相似文献   

15.
A sensitive, selective, and reproducible GC–MS–SIM method was developed for determination of artemether (ARM) and dihydroartemisinin (DHA) in plasma using artemisinin (ART) as internal standard. Solid phase extraction was performed using C18 Bond Elut cartridges. The analysis was carried out using a HP-5MS 5% phenylmethylsiloxane capillary column. The recoveries of ARM, DHA and ART were 94.9±1.6%, 92.2±4.1% and 81.3±1.2%, respectively. The limit of quantification in plasma was 5 ng/ml (C.V.≤17.4% for ARM and 15.2% for DHA). Calibration curves were linear with R2≥0.988. Within day coefficients of variation were 3–10.4% for ARM and 7.7–14.5% for DHA. Between day coefficients of variations were 6.5–15.4% and 7.6–14.1% for ARM and DHA. The method is currently being used for pharmacokinetic studies. Preliminary data on pharmacokinetics showed Cmax of 245.2 and 35.6 ng/ml reached at 2 and 3 h and AUC0–8h of 2463.6 and 111.8 ngh/ml for ARM and DHA, respectively.  相似文献   

16.
A sensitive and quantitative reversed-phase HPLC method for the analysis of -sotalol in human atria, ventricles, blood and plasma was developed. Sotalol was determined in about 100 mg of human right atria, left ventricles, and in 500 μl of blood and plasma samples of patients undergoing coronary bypass surgery or heart transplantation. Patients were taking 80–160 mg of sotalol as an antiarrhythmic agent. Atenolol was used as an internal standard certifying high precision of measurement. Sotalol blood and plasma concentrations correlated linearly to the obtained signals from 26.5 ng/ml to 2.12 μg/ml. Sotalol tissue concentrations showed linearity between 0.27 ng/mg and 10.6 ng/mg wet weight. The limit of quantitation was 0.27 ng/mg at a signal-to-noise ratio of 10. Sotalol was extracted from homogenized tissue with a buffer solution (pH 9) and the remaining pellet was extracted with methanol. The methanol extract was evaporated under nitrogen and reconstituted in buffer (pH 3). The whole extract was cleaned by solid-phase column extraction, eluted with methanol, evaporated again, reconstituted in the mobile phase (acetonitrile-15 mM potassium phosphate buffer pH 3, 17:83, v/v) and injected onto the HPLC column (Spherisorb C6 column, 5 μm,, 150×4.6 mm I.D). For the detection of sotalol, the UV wavelength was set to 230 nm. Recoveries of sotalol and atenolol in atria and ventricles were 65.6 and 75.0%, respectively. Intra- and inter-assay coefficients of variation for tissue concentrations were 3.38 and 6.14%, respectively. Intra- and inter-assay accuracy for determined tissue sotalol concentrations were 94.9±6.3 and 99.6±4.1%.  相似文献   

17.
A simple and sensitive HPLC method has been developed for the determination of marbofloxacin (MAR) in plasma. Sample preparations were carried out by adding phosphate buffer (pH 7.4, 0.1 M), followed by extraction with trichloromethane. MAR and the internal standard, enrofloxacin (ENR), were separated on a reversed-phase column and eluted with aqueous solution–acetonitrile (80:20). The fluorescence of the column effluent was monitored at λex=338 and λem=425 nm. The retention times were 2.20 and 3.30 min for MAR and ENR, respectively. The method was shown to be linear from 15 to 1500 ng/ml (r2=0.999). The detection limit was 15 ng/ml. Mean recovery was determined as 90% by the analysis of plasma standards containing 150, 750, and 1500 ng/ml. Inter- and intra-assay precisions were 3.3% and 2.7%, respectively.  相似文献   

18.
A gradient eluent HPLC analysis in human plasma and urine was developed and validated for methylprednisolone (MP), its prodrug methylprednisolone-21-hemisuccinate (MPS) with the metabolites 6β-hydroxy-6α-methylprednisolone (MPA), 20-hydroxymethylprednisolone (MPC), 6β-hydroxy-20α-hydroxymethylprednisolone (MPB), 6β-hydroxy-20β-hydroxymethylprednisolone (MPE), 20-carboxymethylprednisolone (MPD), methylprednisolone-glucuronide (MPF) and 21-carboxymethylprednisolone (MPX). The column was Cp Spherisorb C8 5 μm, 250 mm×4.6 mm I.D. (Chrompack, Bergen op Zoom, The Netherlands) with a guard column 75 mm×2.1 mm, packed with pellicular reversed-phase. The eluent was a mixture of acetonitrile and 0.067 M KH2PO4 buffer, pH 4.5. At t=0, the eluent consisted of 2% acetonitrile and 98% buffer (v/v). Over the following 35 min the eluent changed linearly until it attained a composition of 50% acetonitrile and 50% buffer (v/v). At 37 min (t=37) the eluent was changed over 5 min to the initial composition, followed by equilibration over 3 min. The flow-rate was 1.5 ml/min and UV detection was achieved at 248 nm. Preliminary pharmacokinetic data were obtained from one patient who showed illustrative plasma concentration–time curves and renal excretion-time profiles after a short-lasting infusion (0.5 h) of 1 g of methylprednisolone hemisuccinate. The half-life of prodrug methylprednisolone-21-hemisuccinate (MPS) was 0.3 h, that of metabolite MPX (21-carboxy MP) was 0.4 h and that of the parent drug methylprednisolone (MP) was 1.4 h. The half-lives of the metabolites are almost similar (4 h). The main compounds in the urine are methylprednisolone hemisuccinate (prodrug, 15.0%), methylprednisolone (parent drug, 14.6%), metabolite MPD (20-carboxy, 11.7%), and metabolite MPB (13.2%). The renal clearance values of metabolites MPB, MPC and MPD are approximately 500 ml/min, that of MP is 100 ml/min.  相似文献   

19.
We established a method for the detection of free and total (free and bound) malondialdehyde (MDA) in human plasma samples after derivatisation with 2,4-dinitrophenylhydrazine (DNPH). Free MDA was prepared by perchloric acid deproteinisation whereas an alkaline hydrolysation step for 30 min at 60°C was introduced prior to protein precipitation for the determination of total MDA. Derivatisation was accomplished in 10 min at room temperature subsequently chromatographed by HPLC on a reversed-phase 3 μm C18 column with UV detection (310 nm). The detection limit was 25 pmol/ml for free and 0.3 nmol/ml for total MDA. The recovery of MDA added to different human plasma samples was 93.6% (n=11; RSD 7.1%) for the hydrolysation procedure. In samples from 12 healthy volunteers who underwent a hypoxic treatment (13% O2 for 6 h) we estimated a baseline value of total MDA of 2.16 nmol/ml (SD 0.29) (ambient air) with a significant increase to 2.92 (nmol/ml, SD 0.57; P=0.01) after the end of this physiological oxidative stress challenge. Plasma values of free MDA in these samples were close to our detection limit. The presented technique can easily performed with an isocratic HPLC apparatus and provides highly specific results for MDA as do sophisticated GC–MS methods.  相似文献   

20.
Olanzapine is a commonly used atypical antipsychotic medication for which therapeutic drug monitoring has been proposed as clinically useful. A sensitive method was developed for the determination of olanzapine concentrations in plasma and urine by high-performance liquid chromatography with low-wavelength ultraviolet absorption detection (214 nm). A single-step liquid–liquid extraction procedure using heptane-iso-amyl alcohol (97.5:2.5 v/v) was employed to recover olanzapine and the internal standard (a 2-ethylated olanzapine derivative) from the biological matrices which were adjusted to pH 10 with 1 M carbonate buffer. Detector response was linear from 1–5000 ng (r2>0.98). The limit of detection of the assay (signal:noise=3:1) and the lower limit of quantitation were 0.75 ng and 1 ng/ml of olanzapine, respectively. Interday variation for olanzapine 50 ng/ml in plasma and urine was 5.2% and 7.1% (n=5), respectively, and 9.5 and 12.3% at 1 ng/ml (n=5). Intraday variation for olanzapine 50 ng/ml in plasma and urine was 8.1% and 9.6% (n=15), respectively, and 14.2 and 17.1% at 1 ng/ml (n=15). The recoveries of olanzapine (50 ng/ml) and the internal standard were 83±6 and 92±6% in plasma, respectively, and 79±7 and 89±7% in urine, respectively. Accuracy was 96% and 93% at 50 and 1 ng/ml, respectively. The applicability of the assay was demonstrated by determining plasma concentrations of olanzapine in a healthy male volunteer for 48 h following a single oral dose of 5 mg olanzapine. This method is suitable for studying olanzapine disposition in single or multiple-dose pharmacokinetic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号