首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) are essential for vesicle docking and fusion. SNAP-25, syntaxin 1A, and synaptobrevin/vesicle-associated membrane protein (VAMP) are SNARE proteins that mediate fusion of synaptic vesicles with the plasma membrane. It has been proposed that interactions of SNAP-25 with syntaxin 1A are required for initial membrane attachment of SNAP-25 (Vogel, K., Cabaniols, J.-P., and Roche, P. (2000) J. Biol. Chem. 275, 2959-2965). However, we have shown previously that residues 85-120 of the SNAP-25 interhelical domain, which do not interact with syntaxin, are necessary and sufficient for palmitoylation and plasma membrane localization of a green fluorescent protein reporter molecule (Gonzalo, S., Greentree, W. K., and Linder, M. E. (1999) J. Biol. Chem. 274, 21313-21318). To clarify the role of syntaxin in membrane targeting of SNAP-25, we studied a SNAP-25 point mutant (G43D) that does not interact with syntaxin. SNAP-25 G43D/green fluorescent protein was palmitoylated and localized at the plasma membrane. Newly synthesized SNAP-25 G43D had the same kinetics of membrane association as the wild-type protein. Furthermore, expression of a cytosolic mutant syntaxin 1A did not interfere with SNAP-25 membrane interactions or palmitoylation in the neuronal cell line NG108-15. Exogenously expressed SNAP-25 targets efficiently to the plasma membrane in cells of neuronal origin but only partially in HeLa cells, a neurosecretion-incompetent line. This phenotype was not rescued when syntaxin 1A was co-expressed with SNAP-25. Our data support a syntaxin-independent mechanism of membrane targeting for SNAP-25.  相似文献   

2.
Ras proteins must be localized to the inner surface of the plasma membrane to be biologically active. The motifs that effect Ras plasma membrane targeting consist of a C-terminal CAAX motif plus a second signal comprising palmitoylation of adjacent cysteine residues or the presence of a polybasic domain. In this study, we examined how Ras proteins access the cell surface after processing of the CAAX motif is completed in the endoplasmic reticulum (ER). We show that palmitoylated CAAX proteins, in addition to being localized at the plasma membrane, are found throughout the exocytic pathway and accumulate in the Golgi region when cells are incubated at 15 degrees C. In contrast, polybasic CAAX proteins are found only at the cell surface and not in the exocytic pathway. CAAX proteins which lack a second signal for plasma membrane targeting accumulate in the ER and Golgi. Brefeldin A (BFA) significantly inhibits the plasma membrane accumulation of newly synthesized, palmitoylated CAAX proteins without inhibiting their palmitoylation. BFA has no effect on the trafficking of polybasic CAAX proteins. We conclude that H-ras and K-ras traffic to the cell surface through different routes and that the polybasic domain is a sorting signal diverting K-Ras out of the classical exocytic pathway proximal to the Golgi. Farnesylated Ras proteins that lack a polybasic domain reach the Golgi but require palmitoylation in order to traffic further to the cell surface. These data also indicate that a Ras palmitoyltransferase is present in an early compartment of the exocytic pathway.  相似文献   

3.
Adenosine triphosphate (ATP)-sensitive K^* (KATP) channels regulate many cellular functions by coupling the metabolic state of the cell to the changes in membrane potential. Truncation of C-terminal 26 amino acid residues of Kir6.2 protein (Kir6.2ΔC26) deletes its endoplasmic reticulum retention signal, allowing functional expression of Kit6.2 in the absence of sulfonylurea receptor subunit, pEGFP-Kir6.2ΔC26 and pKir6.2ΔC26-IRES2-EGFP expression plasmids were constructed and transfected into HEK293 cells. We identified that Kir6.2ΔC26 was localized on the plasma membrane and trafficked to the plasmalemma by means of constitutive exocytosis of Kir6.2ΔC26 transport vesicles, using epi-fluorescence and total intemal reflection fluorescence microscopy. Our electrophysiological data showed that Kir6.2ΔC26 alone expressed KATP currents, whereas EGFP-Kir6.2ΔC26 fusion protein displayed no KATP channel activity.  相似文献   

4.
The human cytomegalovirus (HCMV) UL16 gene encodes a glycoprotein that interferes with the immune response to the virus-infected cell. In vitro, UL16 interacts with MICB and ULBPs that are ligands for the stimulatory receptor NKG2D, expressed on NK cells and CD8(+)T cells. UL16 expression has been shown to promote intracellular accumulation of MICB, ULBP1 and 2 and thus, interfere with the immune response to HCMV-infected cells. The mechanism that has been suggested for UL16-mediated MICB downmodulation is retention in the ER. Here, we studied the intracellular localization and maturation of UL16 and MICB in HCMV-infected cells and transfectant systems. UL16 trafficked through the ER, TGN and progressed to the plasma membrane, after which the protein was internalized. Strikingly, UL16 was also observed in the inner nuclear membrane. MICB was also localized in the TGN in HCMV-infected cells. These data suggest that MICB trafficking might be affected after its transit through the ER.  相似文献   

5.
Hemojuvelin (HJV), encoded by the gene HFE2, is a critical upstream regulator of hepcidin expression. Hepcidin, the central iron regulatory hormone, is secreted from hepatocytes, whereas HFE2 is highly expressed in skeletal muscle and liver. Previous studies demonstrated that HJV is a GPI-anchored protein, binds the proteins neogenin and bone morphogenetic proteins (BMP2 and BMP4), and can be released from the cell membrane (shedding). In this study, we investigated the physiological significance and the underlying mechanism of HJV shedding. In acutely iron-deficient rats with markedly suppressed hepatic hepcidin expression, we detected an early phase increase of serum HJV with no significant change of either HFE2 mRNA or protein levels in gastrocnemius muscle. Studies in both C2C12 (a mouse myoblast cell line) and HepG2 (a human hepatoma cell line) cells showed active HJV shedding, implying that both skeletal muscle and liver could be the source of serum HJV. In agreement with the observations in iron-deficient rats, HJV shedding in these cell lines was down-regulated by holo-transferrin in a concentration-dependent manner. Our present study showing that knock-down of endogenous neogenin, a HJV receptor, in C2C12 cells suppresses HJV shedding and that overexpression of neogenin in HEK293 cells markedly enhances this process, suggests that membrane HJV shedding is mediated by neogenin. The finding that neither BMP4 nor its antagonist, noggin, was able to alter HJV shedding support the lack of involvement of BMP signaling pathway in this process.  相似文献   

6.
7.
The platelet plasma membrane is lined by a membrane skeleton that appears to contain short actin filaments cross-linked by actin-binding protein. Actin-binding protein is in turn associated with specific plasma membrane glycoproteins. The aim of this study was to determine whether the membrane skeleton regulates properties of the plasma membrane. Platelets were incubated with agents that disrupted the association of the membrane skeleton with membrane glycoproteins. The consequences of this change on plasma membrane properties were examined. The agents that were used were ionophore A23187 and dibucaine. Both agents activated calpain (the Ca2(+)-dependent protease), resulting in the hydrolysis of actin-binding protein and decreased association of actin with membrane glycoproteins. Disruption of actin-membrane interactions was accompanied by the shedding of procoagulant-rich microvesicles from the plasma membrane. The shedding of microvesicles correlated with the hydrolysis of actin-binding protein and the disruption of actin-membrane interactions. When the calpain-induced disruption of actin-membrane interactions was inhibited, the shedding of microvesicles was inhibited. These data are consistent with the hypothesis that association of the membrane skeleton with the plasma membrane maintains the integrity of the plasma membrane, preventing the shedding of procoagulant-rich microvesicles from the membrane of unstimulated platelets. They raise the possibility that the procoagulant-rich microvesicles that are released under a variety of physiological and pathological conditions may result from the dissociation of the platelet membrane skeleton from its membrane attachment sites.  相似文献   

8.
Gangliosides, complex glycosphingolipids containing sialic acids, have been found to reside in glycosphingolipid-enriched microdomains (GEM) at the plasma membrane. They are synthesized in the lumen of the Golgi complex and appear unable to translocate from the lumenal toward the cytosolic surface of Golgi membrane to access the monomeric lipid transport. As a consequence, they can only leave the Golgi complex via the lumenal surface of transport vesicles. In this work we analyzed the exocytic transport of the disialo ganglioside GD3 from trans-Golgi network (TGN) to plasma membrane in CHO-K1 cells by immunodetection of endogenously synthesized GD3. We found that ganglioside GD3, unlike another luminal membrane-bounded lipid (glycosylphosphatidylinositol-anchored protein), did not partition into GEM domains in the Golgi complex and trafficked from TGN to plasma membrane by a brefeldin A-insensitive exocytic pathway. Moreover, a dominant negative form of Rab11, which prevents exit of vesicular stomatitis virus glycoprotein from the Golgi complex, did not influence the capacity of GD3 to reach the cell surface. Our results strongly support the notion that most ganglioside GD3 traffics from the TGN to the plasma membrane by a non-conventional vesicular pathway where lateral membrane segregation of vesicular stomatitis virus glycoprotein (non-GEM resident) and glycosylphosphatidylinositol-anchored proteins (GEM resident) from GD3 is required before exiting TGN.  相似文献   

9.
Vascular endothelial growth factor (VEGF) is a critical regulator of endothelial cell differentiation and vasculogenesis during both development and tumor vascularization. VEGF-165 is a major form that is secreted from the cells via a poorly characterized pathway. Here we use green fluorescent protein– and epitope-tagged VEGF-165 and find that its early trafficking between the endoplasmic reticulum and the Golgi requires the small GTP-binding proteins Sar1 and Arf1 and that its glycosylation in the Golgi compartment is necessary for efficient post-Golgi transport and secretion from the cells. The relative temperature insensitivity of VEGF secretion and its Sar1 and Arf1 inhibitory profiles distinguish it from other cargoes using the “constitutive” secretory pathway. Prominent features of VEGF secretion are the retention of the protein on the outer surface of the plasma membrane and the stimulation of its secretion by Ca2+ and protein kinase C. Of importance, shedding of VEGF-165 from the cell surface together with other membrane components appears to be a unique feature by which some VEGF is delivered to the surroundings to exert its known biological actions. Understanding VEGF trafficking can reveal additional means by which tumor vascularization can be inhibited by pharmacological interventions.  相似文献   

10.
Summary Clusters of luminal dense bodies, limited by a triple-layered membrane, were found in all follicle lumina in thyroid glands of mice. After thyroxine treatment the number of luminal dense bodies increased, especially in the periphery of the lumen, where the intraluminal bodies often displayed a striking resemblance to microvilli. In hyperplastic goiters, obtained by feeding mice with propylthiouracil, luminal dense bodies were replaced by intraluminal vesicles. During goiter involution the vesicles were gradually replaced by luminal dense bodies; the presence of intermediate forms suggests that vesicles and dense bodies are basically the same formations. Luminal dense bodies were observed in colloid droplets indicating their removal by endocytosis. As demonstrated by electron-microscopic cytochemistry, luminal dense bodies contain a membranebound peroxidase, and electron-microscopic autoradiography after administration of 125I indicate that they possess an iodinating capacity.Our observations on mouse thyroid glands suggest that the luminal dense bodies, which appear as vesicles in hyperplastic glands, are formed by shedding of the apical plasma membrane of the follicle cell. The shedding process might be of importance for the turnover of plasma-membrane material.This study was supported by Grant No. 12X-537 from the Swedish Medical Research Council.  相似文献   

11.
Folding and oligomerization of most plasma membrane glycoproteins, including those involved in ion transport, occur in the ER and are frequently required for their exit from this organelle. It is currently unknown, however, where or when in the biosynthetic pathway these proteins become functionally active. AE1 and AE2 are tissue-specific, plasma membrane anion transport proteins. Transient expression of AE2 in a eukaryotic cell line leads to an increase in stilbene inhibitable whole cell 35SO4(2-)-efflux consistent with its function as a plasma membrane anion exchanger. No such increased transport activity was observed in AE1 transfectants, despite the fact that the two proteins were synthesized in roughly equal portions. In contrast, both AE1 and AE2 expression resulted in significant increase in Cl-/SO4(2-)-exchange in crude microsomes demonstrating that both AE1 and AE2 cDNAs encode functional proteins. Immunofluorescence staining and pulse-chase labeling experiments revealed that while 60% of AE2 is processed to the cell surface of transfectants, AE1 is restricted to an intracellular compartment and never acquires mature oligosaccharides. Crude microsomes from transfected cells were fractionated into plasma membrane and ER-derived vesicles by con A affinity chromatography. All of the AE1 and approximately half of the cellular AE2 was eluted with the ER vesicles, confirming their intracellular localization. Anion transport measurements on these fractions confirmed that the ER- restricted anion exchangers were functional. We conclude that AE1 and AE2 acquire the ability to mediate anion exchange at an early stage of their biosynthesis, before their exit from the ER.  相似文献   

12.
We have previously shown that, although overexpression of mutant dynamin inhibits clathrin-dependent endocytosis and disrupts high affinity binding of epidermal growth factor (EGF) to the EGF receptor (EGFR), it does not inhibit ligand-induced translocation of the EGFR into clathrin-coated pits. In the present study, we demonstrate that, upon ligand binding and incubation at 37 degrees C, the EGFR was polyubiquitinated regardless of overexpression of mutant dynamin. In cells not overexpressing mutant dynamin, the EGFR was rapidly internalized and deubiquitinated. In cells being endocytosis-deficient, due to overexpression of mutant dynamin, however, the EGFR was upon prolonged chase first found in deeply invaginated coated pits, and then eventually moved out of the coated pits and back onto the smooth plasma membrane. Polyubiquitination occurred equally efficiently in cells with or without intact clathrin-dependent endocytosis, while the kinetics of ubiquitination and deubiquitination was somewhat different. We further found that the EGF-induced ubiquitination of Eps15 occurred both in the absence and presence of endocytosis with the same kinetics as polyubiquitination of the EGFR, but that the EGF-induced monoubiquitination of Eps15 was somewhat reduced upon overexpression of mutant dynamin. Our data show that EGF-induced polyubiquitination of the EGFR occurs at the plasma membrane.  相似文献   

13.
To examine the acquisition of insulin sensitivity after the initial biosynthesis of the insulin-responsive aminopeptidase (IRAP), 3T3-L1 adipocytes were transfected with an enhanced green fluorescent protein-IRAP (EGFP-IRAP) fusion protein. In the absence of insulin, IRAP was rapidly localized (1-3 h) to secretory membranes and retained in these intracellular membrane compartments with little accumulation at the plasma membrane. However, insulin was unable to induce translocation to the plasma membrane until 6-9 h after biosynthesis. This was in marked contrast to another type II membrane protein (syntaxin 3) that rapidly defaulted to the plasma membrane 3 h after expression. In parallel with the time-dependent acquisition of insulin responsiveness, the newly synthesized IRAP protein converted from a brefeldin A-sensitive to a brefeldin A-insensitive state. The initial trafficking of IRAP to the insulin-responsive compartment was independent of plasma membrane endocytosis, as expression of a dominant-interfering dynamin mutant (Dyn/K44A) inhibited transferrin receptor endocytosis but had no effect on the insulin-stimulated translocation of the newly synthesized IRAP protein.  相似文献   

14.
ClC-3 is a ubiquitously expressed chloride transport protein that is present in synaptic vesicles and endosome/lysosome compartments. It is largely intracellular but has been observed at the plasma membrane as well. The aim of this study was to identify the pathways and regulation of ClC-3 trafficking to intracellular sites. At the steady state, approximately 94% of transfected ClC-3 was localized intracellularly, and only 6% was at the plasma membrane. Pulse labeling with [(35)S]methionine and biotinylation demonstrated that about 25% of newly synthesized ClC-3 traffics through the plasma membrane. We used both immunofluorescence microscopy and biotinylation assays to assess the trafficking of ClC-3. Plasma membrane ClC-3 was rapidly endocytosed (t((1/2)) approximately 9 min); a portion entered a recycling pool that returned to the cell surface after internalization, and the remainder trafficked to more distal intracellular compartments. ClC-3 associated with clathrin at the plasma membrane. Coimmunoprecipitation and glutathione S-transferase pulldown assays demonstrated that the N terminus of ClC-3 binds to clathrin. Alanine replacement of a dileucine acidic cluster within the cytosolic N terminus (amino acids 13-19) resulted in a molecule that had decreased endocytosis and increased surface expression. This replacement also abolished interaction with clathrin as assessed both by coimmunoprecipitation and glutathione S-transferase pulldown assays. We conclude that ClC-3 is primarily an intracellular transport protein that is transiently inserted into the plasma membrane where it is rapidly endocytosed. Internalization of ClC-3 depends on the interaction between an N-terminal dileucine cluster and clathrin.  相似文献   

15.

Background  

The cyclic nucleotide-gated ion channels (CNGCs) maintain cation homeostasis essential for a wide range of physiological processes in plant cells. However, the precise subcellular locations and trafficking of these membrane proteins are poorly understood. This is further complicated by a general deficiency of information about targeting pathways of membrane proteins in plants. To investigate CNGC trafficking and localization, we have measured Atcngc5 and Atcngc10 expression in roots and leaves, analyzed AtCNGC10-GFP fusions transiently expressed in protoplasts, and conducted immunofluorescence labeling of protoplasts and immunoelectron microscopic analysis of high pressure frozen leaves and roots.  相似文献   

16.
The newly discovered proteins hemojuvelin (Hjv) and transferrin receptor type 2 (TfR2) are involved in iron metabolism. Mutations in the Hjv and TfR2 gene cause hemochromatosis. We investigated the expression and cellular localization of Hjv and TfR2 in rat and human liver. The expression of Hjv and TfR2 was shown on mRNA and protein level by RT–PCR and immunoblot experiments. Their cellular localization was studied by immunofluorescence with antibodies raised against Hjv and TfR2. Hjv and TfR2 are present in human and rat liver and in primary human hepatocytes. Antisera raised against Hjv identified immunoreactive proteins with an apparent size of 44 and 46 kDa in immunoblot experiments of rat and human liver extracts, which are in accordance with the putative membrane-bound and cleaved soluble forms of this protein, respectively. TfR2 was detected as a 105 kDa protein corresponding to the predicted size of glycosylated TfR2 monomers. In immunofluorescence experiments, Hjv and TfR2 were found in rat liver only in hepatocytes. At the subcellular level, both proteins were predominantly localized to the basolateral membrane domain of hepatocytes. The localization of Hjv and TfR2 at the same membrane domain renders a functional interaction of these two proteins in iron homeostasis possible. Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at . Kulaksiz and Stremmel contributed equally to this work.  相似文献   

17.
Incubation of washed rabbit platelets with suspensions of dilauroylglycerophosphocholine resulted in the shedding of vesicles without causing any appreciable leakage of cytoplasmic marker (lactate dehydrogenase) or organelle marker ([14C]serotonin). The response was dependent on incubation time, concentration of dilauroylglycerophosphocholine and reaction temperature. Vesicles were separated from platelets and exogenous dilauroylglycerophosphocholine by a series of centrifugation steps. An average diameter of vesicles was 100–200 nm on scanning electron microscopy. Vesicles were enriched 5-fold in plasma membrane marker enzyme, acetylcholinesterase, whereas specific activities of lactate dehydrogenase and intracellular membrane marker enzyme, NADH-cytochrome c reductase were decreased in vesicles. Protein analysis by SDS-polyacrylamide gel electrophoresis showed that actin and actin-binding protein were present, while myosin was barely detectable in vesicles. Vesicles contained all phospholipid species of intact platelets and cholesterol but almost 50% of phospholipids in vesicles was dilauroylglycerophosphocholine. The phospholipid to protein ratio in vesicles was about 6.5-times higher than in intact platelets.  相似文献   

18.
The effect upon human chorionic gonadotropin (hCG) binding of a 90-min incubation of plasma membranes prepared from the corpora lutea of control and prostaglandin F2 alpha injected rats was studied. After incubation for 90 min with 1 mM CaCl2 at 40 degrees C, single point hCG binding assays at room temperature revealed a significant decrease in the degree of binding of approximately 50% in membrane samples prepared from regressed corpora lutea. The binding decrease in regressed samples did not occur if the incubation temperature was reduced to 35 degrees C or if calcium ion was replaced with magnesium. Scatchard analyses indicated that the decrease in binding capacity was the result of a loss of gonadotropin receptors rather than an affinity shift. Specific activities of two membrane-bound enzymes (Na+-K+ ATPase, 5'-nucleotidase) did not change in a correlative fashion during the incubation. In previous studies the same in vitro conditions caused a substantial and significant decrease in membrane fluidity, as determined by fluorescence polarization. Thus it appears that the membrane rigidification is of a specific nature and interferes with gonadotropin binding during luteolysis.  相似文献   

19.
The precise trafficking routes followed by newly synthesized lysosomal membrane proteins after exit from the Golgi are unclear. To study these events we created a novel chimera (YAL) having a lumenal domain comprising two tyrosine sulfation motifs fused to avidin, and the transmembrane and cytoplasmic domains of lysosome associated membrane protein 1 (Lamp1). The newly synthesized protein rapidly transited from the trans- Golgi Network (TGN) to lysosomes (t(1/2) approximately 30 min after a lag of 15-20 min). However, labeled chimera was captured by biotinylated probes endocytosed for only 5 min, indicating that the initial site of entry into the endocytic pathway was early endosomes. Capture required export of YAL from the TGN, and endocytosis of the biotinylated reagent, and was essentially quantitative within 2 h of chase, suggesting that all molecules were following an identical route. There was no evidence of YAL trafficking via the cell surface. Fusion of TGN-derived vesicles with 5 min endosomes could be recapitulated in vitro, but neither late endosomes nor lysosomes could serve as acceptor compartments. This suggests that contrary to previous conclusions, most if not all newly synthesized Lamp1 traffics from the TGN to early endosomes prior to delivery to late endosomes and lysosomes.  相似文献   

20.
The plasma membrane (PM) is a highly heterogenous structure intertwined with the cortical actin cytoskeleton and extracellular matrix. This complex architecture makes it difficult to study the processes taking place at the PM. Model membrane systems that are simple mimics of the PM overcome this bottleneck and allow us to study the biophysical principles underlying the processes at the PM. Among them, cell-derived giant plasma membrane vesicles (GPMVs) are considered the most physiologically relevant system, retaining the compositional complexity of the PM to a large extent. GPMVs have become a key tool in membrane research in the last few years. In this review, I will provide a brief overview of this system, summarize recent applications and discuss the limitations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号