首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Differentiation of mate recognition systems is one of the important steps for speciation in animals. For some insects, a contact sex pheromone present on the cuticular surface is indispensable in discriminating reproductive partners. In Callosobruchus species (Coleoptera: Chrysomelidae: Bruchinae), contact sex pheromones have been found in two species, Callosobruchus chinensis (L.) and Callosobruchus maculatus (Fabricius). It was suggested, however, that these two species lacked the ability to discriminate their conspecific and/or heterosexual partners. To elucidate this inconsistency, we verified the existence of contact sex pheromones from two other species, Callosobruchus rhodesianus (Pic) and Callosobruchus analis (Fabricius). As a result, unlike C. chinensis and C. maculatus, the males of C. rhodesianus and C. analis were able to discriminate their heterosexual partners. Comparing cross‐copulation behavior, i.e., copulation behavior between two species, against these four species indicated that the mate recognition specificities were quite different. Males of C. rhodesianus and C. analis had highly species‐specific mating behavior, whereas males of C. chinensis and C. maculatus were much less specific. These results indicate that variation in mate recognition can arise even among congeneric species living in a sympatric environment, and this variation might have arisen during species differentiation. Based on our results in combination with previous reports on interspecific competition, we suggest that the observed asymmetric cross‐copulation behavior might be, at least partially, an adaptation for surviving interspecific competition.  相似文献   

2.
Interspecific interactions are contingent upon organism phenotypes, and thus phenotypic evolution can modify interspecific interactions and affect ecological dynamics. Recent studies have suggested that male–male competition within a species selects for capability to reproductively interfere with a closely related species. Here, we examine the effect of past evolutionary history under different mating regimes on the demographic dynamics of interspecific competition in Callosobruchus seed beetles. We used previously established experimental evolution lines of Callosobruchus chinensis that evolved under either forced lifelong monogamy or polygamy for 17 generations, and examined the demographic dynamics of competition between these C. chinensis lines and a congener, Callosobruchus maculatus. Callosobruchus chinensis was competitively excluded by C. maculatus in all trials. Time series data analyses suggested that reproductive interference from C. chinensis was relatively more important in the trials involving polygamous C. chinensis than those involving monogamous C. chinensis, in accordance with the potentially higher reproductive interference capability of polygamous C. chinensis. However, the estimated signs and magnitudes of interspecific interactions were not fully consistent with this explanation, implying the evolution of not only reproductive interference but also other interaction mechanisms. Our study thus suggests multifaceted effects of sexually selected traits on interspecific competitive dynamics.  相似文献   

3.
Reproductive interference is any interspecific sexual interaction that adversely affects female fitness through indiscriminate reproductive activities. It can be a driving force of resource partitioning in conjunction with resource competition. We previously showed that the bean beetle Callosobruchus maculatus is superior in larval resource competition, but vulnerable in reproductive interference, compared with its congener C. chinensis. We hypothesized that these two species might use two resources differently if one of the resources modified the intensity of reproductive interference or resource competition. We observed that C. maculatus females often enter gaps between beans to avoid mating attempts of heterospecific males, and hypothesized that removing bean gaps would strengthen reproductive interference. Therefore, we provided normal beans with gaps and split beans without gaps to females of the two species housed with conspecific or heterospecific males or no males and compared the number of eggs on each bean type among treatments. Callosobruchus maculatus females housed with heterospecific males were more likely to oviposit on normal beans than C. chinensis females. As a result, more C. chinensis adults hatched from split beans and more C. maculatus hatched from normal beans when females and males of both species were housed together. Thus, oviposition resource partitioning resulted from the combination of female avoidance of reproductive interference and resource competition.  相似文献   

4.
Male promiscuity sometimes results in interspecific reproductive interaction, also known as reproductive interference. Reproductive interference entails costs for the individuals involved and affects the community structure by reducing the population growth rate. However, our understanding of the mechanisms generating reproductive interference is still insufficient. Two congeneric bean weevils, Callosobruchus chinensis and C. maculatus, show asymmetric reproductive interference; only C. chinensis males reduce the fecundity of the other species. Here we investigated the mechanism of reproductive interference by C. chinensis males on C. maculatus females in terms of lifetime fecundity. Callosobruchus chinensis males with ablated genitals, which could harass C. maculatus females but not copulate with them, did not reduce the C. maculatus fecundity, suggesting that interspecific copulation was necessary. However, a single interspecific copulation did not affect C. maculatus fecundity as long as the females also copulated with a conspecific male. Exposure to C. chinensis males for 24 h prior to oviposition significantly reduced C. maculatus fecundity, and fecundity was negatively correlated with the number of C. chinensis males the females were exposed to. Additionally, C. maculatus females experienced more interspecific copulations when they were housed with more C. chinensis males. Together these findings suggest that multiple interspecific copulations by C. chinensis males reduce the fecundity of C. maculatus females. Thus in general, even if a single interspecific copulation is apparently harmless, repeated interspecific copulations can be costly for the individuals involved. Furthermore, only by quantifying reproductive success were we able to identify the precise mechanism of reproductive interference.  相似文献   

5.
Reproductive interference through mating between related species can cause fitness reduction and affect population dynamics of the interacting species. In experimental matings between two seed beetles, Callosobruchus chinensis and Callosobruchus maculatus, C. maculatus females, but not C. chinensis females, suffer from significant loss of fecundity when conspecific mating is followed by heterospecific mating. We hypothesized that male traits associated with sexual conflict, which are often harmful to females, pleiotropically affect fitness of heterospecific females through interspecific mating. We examined the effect of ejaculate of C. chinensis males on C. maculatus females as the cause of the fecundity loss in C. maculatus females due to interspecific copulation. We found that frequent interspecific copulation occurred between C. maculatus females and C. chinensis males, but not between C. chinensis females and C. maculatus males, resulting in frequent interspecific ejaculate transfer from C. chinensis males to C. maculatus females. However, injection of the extract from C. chinensis male reproductive organs into C. maculatus females did not significantly affect C. maculatus fecundity compared with saline injection, indicating that the effect of the heterospecific ejaculate transfer on fecundity is negligible. We suggest that other harmful male traits such as genital spines of C. chinensis males are mainly responsible for the fecundity reduction in C. maculatus females that have experienced interspecific mating.  相似文献   

6.
Male–male competition over fertilization can select for harmful male genital structures that reduce the fitness of their mates, if the structures increase the male's fertilization success. During secondary contact between two allopatrically formed, closely related species, harmful male genitalia may also reduce the fitness of heterospecific females given interspecific copulation. We performed a laboratory experiment to determine whether the extent of genital spine exaggeration in Callosobruchus chinensis males affects the fitness of C. maculatus females by injuring their reproductive organs. We found that males with more exaggerated genital spines were more likely to injure the females via interspecific copulation and that the genital injury translated into fecundity loss. Thus, as predicted, reproductive interference by C. chinensis males on C. maculatus females is mediated by exaggeration of the genital spine, which is the evolutionary consequence of intraspecific male–male competition. Harmful male traits, such as genital spines, might generally affect the extent of interaction between closely related species.  相似文献   

7.
Identifying behavioural basis of competitive relationship is essential to understand outcome of interspecific competition. However, it remains difficult to investigate demographic effect of competitive behaviour, because various kinds of behaviours may co‐occur in the competition and make the dynamics far complicated in nonlinear ways. We report that the behavioural basis of interspecific interaction can be identified, by focusing on the timescale difference from the occurrence of each behaviour to the appearance of its demographic effect. Between two bean beetles, Callosobruchus chinensis and C. maculatus, major interspecific interactions are resource competition (RC) at the larval stage and reproductive interference (RI) at the adult stage. RC has longer time lag than RI, because effect of RC appears in the adult number of the next generation through larval competition while effect of RI appears instantaneously in the adult number through early death of females. If we detect two effects with different time lags from the competition dynamics, an effect with intergenerational time lag and with no time lag would be considered as RC and RI, respectively. We applied empirical dynamic modelling approach, which is a nonlinear time series analysis for detecting causal interactions and the strength, to two published datasets of experimental competition between those beetles. Results showed the significant causality from the winner species to the loser one in both experiments, but the causality time lag differed between experiments: the causality had no time lag in the C. chinensis‐win data, while intergenerational time lag in C. maculatus‐win data. Furthermore, detection of the causality with intergenerational time lag from C. maculatus to C. chinensis in both experiments suggests interplay of constant RC and variable RI which can reverse the outcome. This study is the first successful case study that links behavioural‐level interactions to demographic‐level effects in interspecific competition.  相似文献   

8.
Interspecific resource competition is expected to select for divergence in resource use, weakening interspecific relative to intraspecific competition, thus promoting stable coexistence. More broadly, because interspecific competition reduces fitness, any mechanism of interspecific competition should generate selection favoring traits that weaken interspecific competition. However, species also can adapt to competition by increasing their competitive ability, potentially destabilizing coexistence. We reared two species of bean beetles, the specialist Callosobruchus maculatus and the generalist C. chinensis, in allopatry and sympatry on a mixture of adzuki beans and lentils, and assayed mutual invasibility after four, eight, and twelve generations of evolution. Contrary to the expectation that coevolution of competitors will weaken interspecific competition, the rate of mutual invasibility did not differ between sympatry and allopatry. Rather, the invasion rate of C. chinensis, but not C. maculatus, increased with duration of evolution, as C. chinensis adapted to lentils without experiencing reduced adaptation to adzuki beans, and regardless of the presence or absence of C. maculatus. Our results highlight that evolutionary responses to interspecific competition promote stable coexistence only under specific conditions that can be difficult to produce in practice.  相似文献   

9.
Multiple mating and its effects on the sex ratio in Dinarmus basalis (Hymenoptera: Chalcidoidea, Pteromalidae), an ectoparasitoid of Callosobruchus maculatus (Coleoptera: Bruchidae), were investigated under controlled conditions. Once-mated females suffer a sperm depletion about 21 days after mating and thereafter are constrained to produce only haploid males. On the other hand, three-times-mated females store more sperm in their spermathecae (335 vs 147) and produce daughters during the major part of their reproductive life. Consequently, once-mated females showed a male-biased life time sex ratio (mean = 0.31) as opposed to three-times-mated females (mean = 0.63). Females can copulate only at the beginning of their reproductive life, and multiple mating must occur before egg-laying activity. This behavioral strategy could be an avoidance of consanguinity in a promiscuous environment. This ectoparasitoid species reveals a reproductive strategy which promotes polyandry and a very high sperm efficiency.  相似文献   

10.
Sexual selection sometimes favors male traits that benefit their bearers, but harm their mates. The harmful effects of male traits may also extend to females of other species via heterospecific mating interactions. This could affect the coexistence of closely related species during secondary contact. We examined the evolution of the interspecific interfering capability of a beetle (Callosobruchus chinensis) with a congener (C. maculatus) using C. chinensis males reared under conditions of monogamy and polygamy for 17 generations. After experimental evolution, C. chinensis males reared under polygamous conditions imposed greater impacts on offspring production by C. maculatus females than did C. chinensis males reared under monogamous conditions. However, the mechanism by which differential mating regimes altered the effect of C. chinensis males on C. maculatus females was unclear, because we did not find evidence for the expected genital evolution in C. chinensis, despite their body size divergence. Our findings suggest that traits that originally evolved through sexual selection in two allopatric species could influence the coexistence of these species or the likelihood of reinforcement during secondary contact.  相似文献   

11.
Studies on interactions between a larval parasitoid, Pteromalus cerealellae (Boucek) and one of its hosts, Callosobruchus maculatus (F.) were carried out in the laboratory. The number of host larvae parasitized by P. cerealellae increased with host larvae at low densities and tended to a plateau at a density of 25 larvae per female parasitoid. Each parasitoid was able to parasitize more hosts and produced more offspring at 20 and 25 °C than at 30 °C. The number of non-infested seeds mixed with seeds infested with the last instar of C. maculatus did not preclude P. cerealellae from identifying infested seeds and attacking larvae inside them. When infested seeds were tightly packed, several host larvae escaped parasitism. P. cerealellae may be a useful biological control agent in newly harvested cowpea with low C. maculatus infestation, and lowering the temperature of the storage system may enhance the effectiveness of this parasitoid.  相似文献   

12.
The Allee effect is a positive causal relationship between any component of fitness and population density or size. Allee effects strongly affect the persistence of small or sparse populations. Predicting Allee effects remains a challenge, possibly because not all causal mechanisms are known. We hypothesized that reproductive interference (an interspecific reproductive interaction that reduces the fitness of the species involved) can generate an Allee effect. If the density of the interfering species is constant, an increase in the population of the species receiving interference may dilute the per capita effect of reproductive interference and may generate an Allee effect. To test this hypothesis, we examined the effect of heterospecific males on the relationship between per capita fecundity and conspecific density in Callosobruchus chinensis and C. maculatus. Of the two species, only C. maculatus females suffer reproductive interference from heterospecific males. Only C. maculatus, the species susceptible to reproductive interference, demonstrated an Allee effect, and only when heterospecific males were present. In contrast, C. chinensis, the species not susceptible to reproductive interference, demonstrated no Allee effect regardless of the presence of heterospecific males. Our results show that reproductive interference in fact generated an Allee effect, suggesting the potential importance of interspecific sexual interactions especially in small or sparse populations, even in the absence of a shared resource. It may be possible to predict Allee effects produced by this mechanism a priori by testing reproductive interference between closely related species.  相似文献   

13.
We investigated the effects of injecting male-derived extracts on congeneric female receptivity in two species of Callosobruchus beetle, C. chinensis and C. maculatus. We also examined the influence of interspecific mating on female remating behaviour in these two species. Male-derived extracts reduced congeneric female receptivity in both species. As quick-acting components, extracts of C. chinensis male seminal vesicles reduced the receptivity of C. maculatus females, whereas extracts of C. maculatus male testes reduced the receptivity of C. chinensis females. As slow-acting components, extracts of male accessory glands of other species reduced the receptivity of both C. maculatus and chinensis females. After interspecific mating, the sperm of C. maculatus males were transferred to the reproductive organs of C. chinensis females, thereby reducing their receptivity. In contrast, no C. chinensis sperm were transferred to the reproductive organs of C. maculatus females; accordingly, the latter's receptivity was not reduced. Furthermore, the survival rate of C. chinensis females decreased markedly after interspecific mating. These results raise the possibility that under circumstances where populations of these two species share the same habitat, reproductive interference would occur only in the interactions between C. maculatus males and C. chinensis females.  相似文献   

14.
In West Africa, Uscana lariophaga Steffan (Hymenoptera: Trichogrammatidae) and Dinarmus basalis (Rondani) (Hymenoptera: Pteromalidae) parasitize the eggs and larvae, respectively, of Callosobruchus maculatus Fab. (Coleoptera: Bruchidae), an important pest of stored cowpea. The impact of the parasitoids on pest populations was evaluated in clay pots similar to the ones used in traditional storage in Niger. At the beginning of the storage period, cowpeas were infested with one density of C. maculatus and with either one or both of the parasitoid species. If the parasitoids we inoculated as single species in stores, both D. basalis and U. lariophaga significantly suppressed the bruchid population, but the former did so more effectively than the latter. A combination of D. basalis and U. lariophaga resulted in the same suppression of bruchid populations as when D. basalis was the only parasitoid. Fifteen weeks after storage, the parasitoids reduced the number of grains damaged significantly by 38–56%. The effect of inoculating single or multiple parasitoid species on C. maculatus populations in an augmentation strategy is discussed.  相似文献   

15.
Callosobruchus maculatus (F.) (Coleoptera : Bruchidae) is a tropical beetle that develops in the seeds of Vigna unguiculata. C. maculatus adults show an imaginal polymorphism with differences in morphological, behavioral and reproductive characteristics. Adults of the flight morph that emerge in cowpea storage systems were studied under natural climatic conditions. A large number of the flight morph females were in reproductive diapause and had a long imaginal life. These females did not synthesize vitellogenin, produced a specific diapause protein and possessed significant protein reserves. This suggests that the beetles survived in the tropical ecosystem for a long time and colonized the crops during the cowpea growing and flowering phases. Analysis of reproductive activity in females captured in the V. unguiculata crops indicates that they terminated their reproductive diapause and began to lay eggs as soon as the pods were formed. Few females of the flight morph were sexually active at the beginning of imaginal life. In this paper we discuss the adaptive significance of these two reproductive strategies in females of C. maculatus.  相似文献   

16.
Damaged Allium plants produce and release sulfur allelochemicals, presumably to prevent insect herbivory. Defensive sulfur compounds, particularly dimethyl disulfide (DMDS), are highly toxic for non‐adapted species. The toxicity of DMDS in these insects is due to disruption of the cytochrome oxidase system of their mitochondria. The purpose of this study was to compare susceptibility to DMDS in a specialist and a non‐specialist insect of Allium plants, i.e., Acrolepiopsis assectella Zeller (Lepidoptera: Acrolepiidae) and Callosobruchus maculatus Fabricius (Coleoptera: Bruchidae) a specialist insect of Leguminosae. Results showed that A. assectella larvae are less susceptible to DMDS than C. maculatus adults. This bruchid becomes more tolerant after a first exposure to 0.2 µl l?1 of DMDS, with second‐exposure toxicity depending on the time lapse between exposures. Higher second‐exposure tolerance could be due to selection and detoxification. To answer this question, the activity of glutathione S‐transferase (GST), a key enzyme in the detoxification system, was analyzed after DMDS exposure of C. maculatus adults and larvae and of A. assectella larvae. Exposure to DMDS increased GST activity in C. maculatus adults and larvae. This finding implies that induced GST is involved in C. maculatus tolerance to DMDS. Exposure to DMDS had no effect on GST activity in A. assectella. Adaptations underlying A. assectella tolerance to sulfur compounds are discussed.  相似文献   

17.
The ability of a pest insect species to enter diapause, a physiological state of dormancy, has significant implications for population dynamics and pest management practises in agricultural landscapes. The false codling moth Thaumatotibia leucotreta is a major pest of deciduous and citrus fruit in southern Africa and a quarantine pest of international concern. Apart from an early field assessment that may have been compromised by taxonomic uncertainty surrounding cryptic developing life stages, no studies have investigated diapause induction within an experimental framework for this species, and none to date have used a suite of physiological traits potentially indicative of the diapause state. Here, we subjected larvae to cooling and shortening day length over a period of 14 days [Diapause Treatment (DT) group] relative to a similar‐aged control (CON) group held at optimal rearing conditions (25°C, 12 : 12 L : D) and tested if physiological traits, including resting metabolic rate, body freezing temperature (=supercooling point, equivalent to the low‐temperature mortality threshold) and body condition (body mass, body lipid and water content) varied in a direction that may be reflective of diapause induction. Mean metabolic rate in DT larvae was 0.044 ml CO2/h (mean mass: 52.7 mg), which was significantly higher than in CON larvae [0.025 ml CO2/h, mean mass: 51.5 mg (P = 0.04)]. Supercooling points were not statistically lower in the CON group than in DT larvae (DT:?15.6 ± 1.5°C; CON: ?16.4 ± 2.8°C; P = 0.33). Measures of body size, body condition and resting water loss rates remained similar between groups. These results support the conclusion of early field observations that T. leucotreta does not undergo diapause that has significant implications for the management of the species.  相似文献   

18.
The seed beetle Callosobruchus maculatus larvae exhibit two types of resource competition: scramble, in which a resource is shared, and contest, in which the resource is monopolized. This difference in larval behavior results in different adult densities. Under contest competition, adult density remains constant regardless of larval density, but under scramble competition, adult density increases with larval density. This in turn affects mating frequency during adulthood, and thus, the intensity of sexual selection operating on males. In this study, we examined the relationship between larval competition types and male reproductive investment in mating. We assessed the male ejaculate expenditure per mating across geographic strains of C. maculatus. The male investment (ejaculate expenditure) increased with the degree of scramble competition and decreased with the degree of contest competition. We therefore suggest that males experience different selective pressures depending on the type of larval competition: scramble type males are selected for increased reproductive investment.  相似文献   

19.
The outcome of sexual conflict can depend on the social environment, as males respond to changes in the inclusive fitness payoffs of harmfulness and harm females less when they compete with familiar relatives. Theoretical models also predict that if limited male dispersal predictably enhances local relatedness while maintaining global competition, kin selection can produce evolutionary divergences in male harmfulness among populations. Experimental tests of these predictions, however, are rare. We assessed rates of dispersal in female and male seed beetles Callosobruchus maculatus, a model species for studies of sexual conflict, in an experimental setting. Females dispersed significantly more often than males, but dispersing males travelled just as far as dispersing females. Next, we used experimental evolution to test whether limiting dispersal allowed the action of kin selection to affect divergence in male harmfulness and female resistance. Populations of C. maculatus were evolved for 20 and 25 generations under one of three dispersal regimens: completely free dispersal, limited dispersal and no dispersal. There was no divergence among treatments in female reproductive tract scarring, ejaculate size, mating behaviour, fitness of experimental females mated to stock males or fitness of stock females mated to experimental males. We suggest that this is likely due to insufficient strength of kin selection rather than a lack of genetic variation or time for selection. Limited dispersal alone is therefore not sufficient for kin selection to reduce male harmfulness in this species, consistent with general predictions that limited dispersal will only allow kin selection if local relatedness is independent of the intensity of competition among kin.  相似文献   

20.
In a community of three ectoparasitoids, Dinarmus basalis, Eupelmus vuilleti and E. orientalis, the host Callosobruchus maculatus parasitised 48 h before by D. basalis, is accepted by E. vuilleti females after they have eliminated the eggs and neonatal larvae of D. basalis. This ovicidal and larvicidal behaviour enables E. vuilleti to develop on C. maculatus instead of D. basalis. E. vuilleti females are able to parasitise the L5 larval stage and the pupa of D. basalis: their larvae therefore feed at the expense of the developing parasitoid. This trophic level is that of hyperparasitism. However, E. vuilleti females rarely practise hyperparasitism on their own L5 larvae and on those of E. orientalis. This behaviour reveals a high behavioural plasticity enabled by intra- and interspecific recognition of parasitoids used as hosts. Hyperparasitism activity in E. orientalis females is higher than that in E. vuilleti females since they hyperparasitise host parasitoids more frequently without preferential species choice. However, E. vuilleti seems to be free from competitive pressure with E. orientalis, as the former penetrates deeply into a grain store contaminated with C. maculatus in contrast to E. orientalis females, which remain on the surface from where they escaped.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号