首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rat liver xanthine dehydrogenase, type D, has been isolated directly from crude extracts as an antibody complex and its properties compared with those of two oxidase forms of the enzyme, heat-treated type O and trypsin-treated type O, also isolated as antibody complexes. The type D antibody complex displays electron acceptor specificities and electron paramagnetic resonance properties characteristic of an NAD+-dependent dehydrogenase whereas the trypsin-treated type O complex behaves as an O2-utilizing oxidase. The heat-treated type O complex displays intermediate behavior. After electrophoresis in dodecyl sulfate-urea-acrylamide gels, type D and heated type O enzymes show single polypeptide bands, each of approximately 150,000 molecular weight. The trypsinized type O also shows one major band but with an approximate molecular weight of 130,000. Purified type D enzyme, when proteolytically treated, is converted to an oxidase with increased mobility on polyacrylamide gels. The 150,000 molecular weight subunit is cleaved into smaller subunits during proteolysis. Treatment with 5,5′-dithiobis-(2-nitrobenzoic acid) converts the type D enzyme, whether isolated as the purified enzyme or as the immune precipitate, to type O enzyme in a time-dependent manner. Titration of type D and the two type O antibody complexes with 5,5′-dithiobis-(2-nitrobenzoic acid) reveals that type D and heated type O each has approximately 28 reactive sulfhydryls, whereas the trypsinized type O has only 8 such groups. Many of the free sulfhydryls are vicinal and form disulfide bonds during the conversion to an oxidase by this reagent. Unproteolyzed preparations of type O rat liver enzyme and milk xanthine oxidase are converted to type D enzymes by treatment with dithiothreitol. The converted enzymes display electron acceptor specificities and epr properties characteristic of an NAD+-dependent dehydrogenase molecule.  相似文献   

2.
The peptidyl prolyl hydroxylase responsible for the formation of hydroxyproline during arabinogalactan-protein biosynthesis in Lolium multiflorum (ryegrass) endosperm cells is a membrane-associated enzyme which will catalyze the hydroxylation of poly(l-proline) in the presence of oxygen, α-ketoglutarate, ferrous ion, and ascorbate. The Km for poly(l-proline) (8000 molecular weight) is 40 micromolar. The enzyme will also hydroxylate the protocollagen analog (Pro-Pro-Gly)5·4H2O.  相似文献   

3.
Multicatalytic proteinase complex (MPC) was isolated from bovine brain and the susceptibility of myelin basic protein (MBP) and P2 protein of bovine central and peripheral nervous system was examined. SDS-polyacrylamide electrophoretic analysis of purified MPC revealed protein bands of molecular weight ranging from 22–35 kDa. The enzyme is activated by SDS at a concentration less than 0.01%. Upon incubation with MPC, purified MBP and P2 proteins were degraded into smaller fragments. There was a 57% and 100% loss of MBP at 2 and 6 hours of incubation. The P2 protein which is not susceptible to any endogenous non-lysosomal enzyme thus far studied was digested into small peptide fragments only in the presence of SDS (0.01%) and not in its absence. These results indicate that MPC which is active at physiological conditions may have a role in the turnover of myelin proteins and in demyelinating diseases.  相似文献   

4.
The new complex compounds [RuLCl(p‐cymene)] ? 3H2O and [NiL2(H2O)2] ? 3H2O (L: 1‐{4‐[(2‐hydroxy‐3‐methoxybenzylidene)amino]phenyl}ethanone) were prepared and characterized using FT‐IR, 1H‐ and 13C‐NMR, mass spectroscopy, TGA, elemental analysis, X‐ray powder diffraction and magnetic moment techniques. Octahedral geometry for new Ni(II) and Ru(II) complexes was proposed. Thermal decomposition confirmed the existence of lattice and coordinated water molecule in the complexes. To determine the antioxidant properties of Schiff base ligand and its Ni(II), Ru(II) metal complexes, FRAP, CUPRAC, ABTS and DPPH methods of antioxidant assays were used. Moreover, enzyme inhibition of complexes was evaluated against carbonic anhydrase I and II isoenzymes (CA I and CA II) and acetylcholinesterase (AChE). For CA I and CA II, the best inhibition enzymes, was the Ni(II) complex with 62.98±18.41, 86.17±23.62 Ki values, whereas this inhibition effect showed ligand with 24.53±2.66 Ki value for the AChE enzyme.  相似文献   

5.
The effects of the solvents deuterated water (2H2O) and dimethyl sulfoxide (Me2SO) on [3H]ouabain binding to (Na+,K+)-ATPase under different ligand conditions were examined. These solvents inhibited the type I ouabain binding to the enzyme (i.e., in the presence of Mg2++ATP+Na+). In contrast, both solvents stimulated type II (i.e., Mg2++Pi-, or Mn2+-dependent) binding of the drug. The solvent effects were not due to pH changes in the reaction. However, pH did influence ouabain binding in a differential manner, depending on the ligands present. For example, changes in pH from 7.05 to 7.86 caused a drop in the rate of binding by about 15% in the presence of Mg2++Na++ATP, 75% in the Mg2++Pi system, and in the presence of Mn2+ an increase by 24% under similar conditions. Inhibitory or stimulatory effects of solvents were modified as various ligands, and their order of addition, were altered. Thus, 2H2O inhibition of type I ouabain binding was dependent on Na+ concentration in the reaction and was reduced as Na+ was elevated. Contact of the enzyme with Me2SO, prior to ligands for type I binding, resulted in a greater inhibition of ouabain binding than that when enzyme was exposed to Na++ATP first and then to Me2SO. Likewise, the stimulation of type II binding was greater when appropriate ligands acted on enzyme prior to addition of the solvent. Since Me2SO and 2H2O inhibit type I ouabain binding, it is proposed that this reaction is favored under conditions which promote loss of H2O, and E1 enzyme conformation; the stimulation of type II ouabain binding in the presence of the solvents suggests that this type of binding is favored under conditions which promote the presence of H2O at the active enzyme center and E2 enzyme conformation. This postulation of a role of H2O in modulating enzyme conformations and ouabain interaction with them is in concordance with previous observations.  相似文献   

6.
Summary A biosynthetic strategy has recently been developed for the production of 15N, 13C, 2H-labeled proteins using 1H3C-pyruvate as the sole carbon source and D2O as the solvent. The methyl groups of Ala, Val, Leu and Ile (2 only) remain highly protonated, while the remaining positions in the molecule are largely deuterated. An (H)C(CO)NH-TOCSY experiment is presented for the sequential assignment of the protonated methyl groups. A high-sensitivity spectrum is recorded on a 15N, 13C, 2H, 1H3C-labeled SH2 domain at 3°C (correlation time 18.8 ns), demonstrating the utility of the method for proteins in the 30–40 kDa molecular weight range.  相似文献   

7.
Mouse brain tissue extracts at various stages of development show a drastic change in the specific activity of pp(A2′p)2A-[32P]pCp binding protein. Identification of the ppp(A2′p)3A-[32P]pCp binding protein was established by (i) binding to the specific ligand ppp(A2′p)3A-[32P]pCp, (ii) displacement of binding by nanomolar concentration of pppA(pA)3, and (iii) affinity labeling techniques in which periodate oxidized ppp(A2′p)3A-[32P]pC was specifically cross-linked to a protein with a molecular weight of 86 000. These data suggest that the ppp(A2′p)3A-[32P]pCp protein is closely associated with the process of cellular proliferation and differentiation.  相似文献   

8.
Copper is the essential transition element for nitrous oxide respiration in Pseudomonas perfectomarinus. Two novel kinds of copper proteins were detected in this organism. Their distribution was studied under different growth conditions and in other pseudomonads, as well as their association with N2O reduction of intact cells. A low molecular mass copper protein (M r 38,000) with a single absorption band at 340 nm (oxidized form), was found only in P. perfectomarinus and was not required for N2O reduction. N2O respiration was consistently associated with a high molecular mass copper protein (M r 120,000) in P. perfectomarinus, Pseudomonas stutzeri, and in strains of Pseudomonas fluorescens that were capable of this type of respiration. The oxidized protein was violet to pink with absorption bands at 350, 480, 530, 620, and 780 nm. Pseudomonas chlororaphis and Pseudomonas aureofaciens which did not respire with N2O as electron acceptor, did not contain the novel type of copper protein. Cytochrome patterns were compared in these denitrifying pseudomonads to search for the physiological electron carrier to N2O reductase. The content and nature of the soluble c-type cytochromes depended strongly on the species and the particular growth condition.Abbreviations M r relative molecular mass  相似文献   

9.
A series of bifunctional chelates of the type dipicolylamino-alkylcarboxylate (NC5H4CH2)2N(CH2)nCO2H (n = 1-4; HL1-HL4, respectively) has been prepared. Reactions of the ligands in aqueous methanol/N,N-dimethylformamide with the appropriate Cu(II) salts yielded the compounds [CuL1](NO3)·H2O (1·H2O), [CuL2(H2O)]BF4·H2O (2·H2O), [Cu(HL3)(SO4)]2 (3) and [CuL4(NO3)]·MeOH (4·MeOH). While compounds 1, 2 and 4 are one-dimensional, the detailed connectivities within the chains are quite distinct, depending on factors such as alkyl chain length and ligation of aqua ligands or anionic components. In contrast to 1, 2 and 4, the structure of 3 is molecular, a binuclear assembly of edge-sharing Cu(II) ‘4+2’ distorted octahedra. The Cd(II) species, [{CdL2}2(SO4)]·4H2O (5·4H2O), prepared from HL2 and CdSO4·nH2O in aqueous methanol/N,N-dimethylformamide, is two-dimensional, with a network constructed from binuclear units of seven coordinate Cd(II), , linked through bridging SO42− groups to produce an assembly of linked hexagonal rings [{CdL2}2(SO4)]6.  相似文献   

10.
The present work was undertaken to examine and compare some biologically important properties of peroxo compounds of V(V) and W(VI) containing biogenic species as ancillary ligand. New anionic peroxovanadate(V) complex of the type Na[VO(O2)2(triglycine)]·3H2O (pV1) and a molecular peroxotungstate(VI) [WO(O2)2(triglycine)]·3H2O (pW1) were synthesized and characterized for the purpose and their stability in solution was ascertained. Studies on kinetics of inhibition of alkaline phosphatase activity by the newly synthesized compounds and series of dipeptide and amino acid containing peroxo complexes of vanadium and tungsten synthesized previously by us viz., Na[VO(O2)2(gly-gly)(H2O)]·H2O (gly-gly = glycyl-glycine), Na[VO(O2)2(asn)]·H2O (asn = asparagine), Na[VO(O2)2(gln)]·H2O (gln = glutamine), and [WO(O2)2(gly-gly)(H2O)]·3H2O, revealed that each of these species is a potent mixed-type inhibitor of the enzyme. Significant difference was noted between the peroxovanadium (pV) and peroxotungsten (pW) compounds in terms of their oxidant activity with reduced glutathione.  相似文献   

11.
Neutron small angle scattering measurements of solutions of the Mo-Fe protein from C. pasteurianum have yielded the following results. The molecular weight of the protein is 208,000 ± 10,000, in agreement with figures obtained by other methods. The radius of gyration is 39.8 ± 0.7 Å in H2O, and 37.6 ± 0.3 Å in D2O. The experimental scattering curves have been compared with the calculated scattering curves of simple homogeneous bodies. It is concluded that the MoFe protein from C. pasteurianum is a non spherical particle having an axial ratio of 2:1, and that it probably has little, if any, solvent containing cavities.  相似文献   

12.
Diglycolic acid (DGA) oxidizing activity was found in crude extracts of Rhodococcus sp. no. 432 grown in DGA. Glycolic acid (GA) oxidase was purified approximately 80 times by treatment with streptomycin sulfate, precipitation with (NH4)2SO4, chromatographies with DEAE-cellulose, DEAE-Toyopearl and Butyl-Toyopearl, and gel filtration on Toyopearl HW-55. The purified GA oxidase was almost homogeneous on sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis. The purity was calculated to be more than 95%. The molecular weight of the enzyme, which appeared to consist of three identical units, was 158,000. Each subunit of GA oxidase included one molecule of FAD as a cofactor. The isoelectric point of the enzyme was around 5.3. GA oxidase was stable below 30°C and at the pH range of 6.0–8.5. The optimum pH and temperature were around 7.5 and 40°C, respectively. Oxygen, cytochrome c, ferricyanide and 2,6-dichlorophenol indophenol (DCIP) acted as an electron acceptor. The activity of GA oxidase was strongly inhibited by potassium cyanide, quinine, quinacrine, monoiodoacetate, 1,4-benzoquinone and some heavy metal ions. GA oxidase also had activity in DGA, GA, glyoxylic acid (GOA), methoxy acetate, ethoxy acetate and l-malate. Alcohols and other organic acids were not oxidized by the enzyme. The apparent Km values for DGA, GA and GOA were about 26.7, 0.5 and 4.4 mM, respectively. The reaction products from DGA were supposed to be GOA and GA by the enzymatic assays. The reaction mechanism of GA oxidase in oxidation of DGA was supposed to be as follows: HOOCH2COCH2COOH+H2O+acceptor→HOOCCHO+HOOCCH2OH+ reduced acceptor.  相似文献   

13.
The synthesis, thermal behavior, spectroscopic characterization and crystal and molecular structure of a Zn(II) complex containing the pseudo-oxocarbon Croconate Violet (CV2−) dianion, namely K2[Zn(CV)2(H2O)2] · 2H2O are reported. Thermal analysis has shown that the complex structure presents coordination and lattice water molecules. According to vibrational spectroscopy the Croconate Violet dianion is coordinated to Zn(II) center through the vicinal oxygen atoms in a chelating fashion with no involvement of CN moieties. The complex structure has been confirmed by single crystal X-ray diffraction analysis. The dianionic units [Zn(CV)2(H2O)2]2− adopt an slight distorted octahedral geometry in which the metallic center is surrounded by six oxygen atoms. These discrete dianionic units are connected through intermolecular hydrogen bonding giving rise to a supramolecular array extended along the crystallographic a axis.  相似文献   

14.
Dimethylglycine oxidase was purified to homogeneity from the cell extract of Cylindrocarpon didymum M–1, aerobically grown in medium containing betaine as the carbon source. The molecular weight of the enzyme was estimated to be 170,000 by the gel filtration method and 180,000 by the sedimentation velocity method. The enzyme exhibited an absorption spectrum characteristic of a flavoprotein with absorption maxima at 277, 345 and 450 nm. The enzyme consisted of two identical subunits with a molecular weight of 82,000, and contained two mol of FAD per mol of enzyme. The flavin was shown to be covalently bound to the protein. The enzyme was inactivated by Ag+, Hg2+, Zn2+ and iodoacetate. The enzyme oxidized dimethylglycine but was inert toward choline, betaine, sarcosine and alkylamines. Km and Vmax values for dimethylglycine were 9.1 mm and 1.22 μmol/min/mg, respectively. The enzyme catalyzed the following reaction: Dimethylglycine+O2+H2O → sarcosine+formaldehyde+H2O2.  相似文献   

15.
A simple, reproducible and rapid protocol for the purification of arginine decarboxylase fromCucumis sativus seedlings has been standardised. The purification steps involved ion-exchange chromatography on diethylaminoethyl-cellulose followed by gel filtration on Sephadex G-l 50. The purified enzyme preparation migrated as a single stainable band on Polyacrylamide gels at both basic and acidic pH, but under denaturing and reducing conditions on sodium dodecyl sulphate-polyacrylamide gels resolved into polypeptides of molecular weight 48,000,44,000 and 15,000. However, in the absence of 2-mercaptoethanol on electrophoresis on sodium dodecyl sulphate-polyacrylamide gels, the enzyme moved as single band with a molecular weight of 150,000. Evidence was obtained to indicate that these three polypeptides were probably derived from a single larger molecular weight enzyme. On storage of the purified protein, the 48,000 species was preferentially degraded to smaller polypeptides. The preliminary data suggested that the 48,000 and 44,000 species shared many common tryptic peptides as revealed by finger printing of the [125I ]-labelled protein. The purified enzyme was a glycoprotein and had aK m of 0.5 mM for arginine. Its activity was stimulated by dithiothrietol and pyridoxal phosphate. EDTA did not inhibit the enzyme activity. Mn2+ at 1 mM stimulated arginine decarboxylase activity but was inhibitory at higher concentration  相似文献   

16.
Avocado (Persea americana Mill.) fruit produce copious quantities of the enzyme Cx-cellulase (EC 3.2.1.4) during ripening. The possibility that Cx-cellulase is able to disrupt cellulose microfibril oranization was investigated using molecular weight (Mr), x-ray diffraction, and ultrastructural analyses of cell walls from unripe avocado fruit incubated with the purified enzyme. Results indicate that Cx-cellulase causes a downshift in the Mr of unbranched cell-wall polymers in the Mr range of 106–107 Da. There is an increase in the proportion of crystalline cellulose, and cellulose fibrils appear to lose cohesiveness in response to enzyme activity. We propose that Cx-cellulase attacks avocado cellulose at accessible sites in the peripheral and integral noncrystalline regions of the microfibril, resulting in a loss of cohesiveness within the fibril structure and an alteration in the binding of associated cell-wall matrix polysaccharides. The initial loss of avocado mesocarp firmness during fruit ripening may be linked to the onset of Cx-cellulase activity.Abbreviations CMC carboxymethylcellulose - DMAC dimethylacetamide - DS developmental stage - M molecular weight - XG xyloglucan  相似文献   

17.
In this study, the interaction between human serum albumin (HSA) and a copper complex of carmoisine dye; [Cu(carmoisine)2(H2O)2], was studied in vitro using multi‐spectroscopic methods. It was found that the intrinsic fluorescence of HSA was quenched by the addition of the [Cu(carmoisine)2(H2O)2] complex and the quenching mechanism was considered as static quenching by formation of a [Cu(carmoisine)2(H2O)2]–HSA complex. The binding constant was about 104 M?1 at room temperature. The values of the calculated thermodynamic parameters (ΔH < 0 and ΔS > 0) suggested that both hydrogen bonds and the hydrophobic interactions were involved in the binding process. The site marker competitive experiments revealed that the binding of [Cu(carmoisine)2(H2O)2] to HSA primarily occurred in subdomain IIIA (site II) of HSA. The results of circular dichroism (CD) and UV–vis spectroscopy showed that the micro‐environment of amino acid residues and the conformation of HSA were changed after addition of the [Cu(carmoisine)2(H2O)2] complex. Finally, the binding of the [Cu(carmoisine)2(H2O)2] complex to HSA was modelled by a molecular docking method. Excellent agreement was obtained between the experimental and theoretical results with respect to the binding forces and binding constant.  相似文献   

18.
Combined pH-metric, UV-Vis, 1H NMR and EPR spectral investigations on the complex formation of M(II) ions (M=Co, Ni, Cu and Zn) with N-(2-benzimidazolyl)methyliminodiacetic acid (H2bzimida, hereafter H2L) in aqueous solution at a fixed ionic strength, I=10−1 mol dm−3, at 25 ± 1 °C indicate the formation of M(L), M(H−1L) and M2(H−1L)+ complexes. Proton-ligand and metal-ligand constants and the complex formation equilibria have been elucidated. Solid complexes, [M(L)(H2O)2] · nH2O (n=1 for M = Co and Zn, n=2 for M = Ni) and {Cu (μ-L) · 4H2O}n, have been isolated and characterized by elemental analysis, spectral, conductance and magnetic measurements and thermal studies. Structures of [Ni(L)(H2O)2] · 2H2O and {Cu(μ-L) · 4H2O}n have been determined by single crystal X-ray diffraction. The nickel(II) complex exists in a distorted octahedral environment in which the metal ion is coordinated by the two carboxylate O atoms, the amino-N atom of the iminodiacetate moiety and the pyridine type N-atom of the benzimidazole moiety. Two aqua O atoms function as fifth and sixth donor atoms. The copper(II) complex is made up of interpenetrating polymeric chains of antiferromagnetically coupled Cu(II) ions linked by carboxylato bridges in syn-anti (apical-equatorial) bonding mode and stabilized via interchain hydrogen bonds and π-π stacking interactions.  相似文献   

19.
Reaction of the oxo-molybdenum(V) precursor [MoTp*(O)Cl2] [Tp* = hydrotris(3,5-dimethyl-1-pyrazolyl)borate] with H2NC6H4R-4 (R = OEt; OPr) in refluxing toluene in the presence of Et3N afforded the binuclear oxo-bridged oxo(arylimido) molybdenum(V) complexes [Tp*Mo(O)Cl](μ-O)[Tp*Mo(NC6H4OR-4)Cl]. Surprisingly, a similar reaction between [MoTp*(O)Cl2] and C6H5NH2 yielded the previously reported compound [{MoTp*(O)Cl}2(μ-O)] as the only product. The new compounds were characterized by microanalytical data, mass spectrometry, IR and 1H NMR spectroscopy. Cyclic voltammetric studies of the new compounds, of the previously reported compounds [Tp*Mo(O)Cl](μ-O)[Tp*Mo(NAr)Cl] (Ar = C6H4OMe-4, C6H4F-3, C6H4Cl-4, C6H4Br-4, and C6H4I-3), and of [{MoTp*(O)Cl}2(μ-O)] revealed a reversible one-electron oxidation process that is little affected by the nature of the substituent on the aryl group, whereas it is greatly affected by replacement of the imido ligand with an oxo ligand. The [{MoTp*(O)Cl}2(μ-O)] compound also shows a one-electron reduction process.  相似文献   

20.
The synthesis and characterization of seven new solid complexes, [Cu(2-MeSnic)2 (phen)] (2-MeSnic = 2-methylthionicotinate, phen = 1,10-phenanthroline), [CuX2(bipy)(H2O)] (X = 2-MeSnic or nic (nicotinate), bipy = 2,2′-bipyridine), [Cu(isonic)2(bipy)(H2O)] · H2O (isonic = isonicotinate), [Cu(bipy)2(H2O)](2-MeSnic)2 · 3H2O, [Cu(phen)2(H2O)](isonic) 2 · 2H2O and [Cu(phen)2(H2O)](nic)2 · 3H2O, are reported. The composition and stereochemistry as well as the mode of ligand coordination have been determined by elemental analysis, IR, electronic and EPR spectra. The carboxyl group of the pyridinecarboxylate anions coordinates to the Cu(II) atom as an unidentate or as a chelating ligand. The EPR spectra of studied complexes are monomeric except for the spectrum of [Cu(2-MeSnic)2(bipy)(H2O)], which shows triplet state feature. Half-field transition, observed for [Cu(2-MeSnic)2(bipy)(H2O)], [Cu(bipy)2(H2O)](2-MeSnic)2 · 3H2O and [Cu(phen)2(H2O)](nic)2 · 3H2O, was used to estimate the interspin copper-copper distances. In all cases, the available evidence supports square-pyramidal environment about the copper(II) atom, which is confirmed by crystal and molecular structure of one of the products, namely [Cu(2-MeSnic)2(bipy)(H2O)]. The antimicrobial effects have been tested on various strains of bacteria, yeasts and filamentous fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号