首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wheat germ agglutinin (WGA) inhibits proliferation of human peripheral blood mononuclear cells (PBMC) induced by mitogens and antigens. We investigated the mechanism by which WGA inhibits PHA-induced human lymphocyte proliferation with regard to the interleukin pathway. Our data revealed that although PBMC-proliferation was markedly suppressed by WGA, levels of IL 2 activity in WGA-inhibited cultures were not reduced, but instead were increased, suggesting failure to utilize IL 2. Furthermore, the addition of exogenous IL 2 failed to overcome the suppression. Consistent with these observations, culturing PBMC with PHA plus WGA markedly decreased the number of high-affinity IL 2 receptor per cell, as determined by binding of purified [3H]IL 2, relative to cultures containing PHA alone. WGA immobilized on support beads bound detergent-solubilized IL 2 receptors from PHA-activated T cells, but did not bind human IL 2. However, WGA did not competitively block the binding of [3H]IL 2 to PHA-induced lymphoblasts. These results suggest that WGA inhibits lymphocyte proliferation by binding to and decreasing the number of high-affinity IL 2 receptors displayed on T cells, without impairing IL 2 production.  相似文献   

2.
CH12.LX, an in vitro subclone of a murine B cell lymphoma that makes IgM reactive with sheep erythrocytes (SRBC), has cell surface receptors for the lymphokine interleukin 2 (IL 2). The binding of recombinant murine IL 2 to these receptors did not stimulate CH12.LX cells to differentiate and secrete antibody. However, the binding of either of two monoclonal antibodies (Mab) specific for the IL 2 receptor increased the proportion of CH12.LX cells that secrete hemolytic IgM. The effect did not require the presence of antigen. One of the Mab, 3C7, is known to block the binding of IL2 to its receptor on T cells, whereas the other, 7D4, which also reacts with the IL 2 receptor, does not block the binding of IL 2. The differentiation of CH12.LX induced by 3C7, but not that induced by 7D4, was inhibited by recombinant IL 2. Neither IL 2 (up to 200 U/ml) nor 3C7 (up to 10 micrograms/ml) had any significant influence on incorporation of [3H]thymidine; 7D4 at 10 micrograms/ml decreased thymidine incorporation by about 60%. Mitomycin C and hydroxyurea, which both inhibit the incorporation of [3H]thymidine into CH12.LX cells, also both induce antibody secretion. In both cases, the concentration necessary to cause differentiation is substantially lower than that needed to cause detectable inhibition of thymidine uptake. We conclude that the IL 2 receptor on CH12.LX cells is a functional signal transducing molecule, and we discuss the possible inverse relationship between proliferation and differentiation.  相似文献   

3.
Expression of interleukin 2 receptors on interleukin 3-dependent cell lines   总被引:8,自引:0,他引:8  
Several mouse IL 3-dependent cell lines, IC2, LT4, FDC-P2, and PB-3C, derived from spleen or bone marrow cells were shown to express low affinity receptors for IL 2 (Kd; 0.5 to 8 X 10(-8) M). High affinity receptors for IL 2 were not detected on the IL 3-dependent cells within the experimental limitation of this study. The clones did not respond to IL 2 at all at the concentration as high as 25 micrograms/ml. The number of the receptors expressed on those clones was estimated to be 0.2 to 2 X 10(5)/cell, which is comparable with the number of those on IL 2-dependent T cell clones. Expression of IL 2 receptor was confirmed in mRNA levels for both IC2 and LT4 cells. A relatively low level expression of one (4.5 Kb) of four IL 2 receptor mRNA species was observed with those IL 3-dependent clones compared with IL 2-dependent T cells. It seems that these low affinity receptors may be expressed on IL 3-dependent cells that undergo differentiation or maturation in mast cell and some myeloid cell lineages.  相似文献   

4.
During the growth of interleukin 2 (IL-2)-dependent T cells IL-2 binding is followed by internalization of the complex between IL-2 and the high affinity IL-2 receptor (HA-IL-2R). The respective role of IL-2 binding to HA-IL-2R and internalization of the complex has been examined. Monoclonal antibody 7D4 (IgM) blocks IL-2-dependent T cell growth although it does not affect IL-2 binding to HA-IL-2R. We show here that 7D4 inhibits T cell growth by blocking IL-2 internalization by HA-IL-2R. In contrast, Fab fragments prepared from 7D4 neither block IL-2 internalization nor inhibit T cell growth. Monoclonal 5A2, that recognizes an epitope related to the IL-2 binding site as well as its Fab fragment, inhibits T cell growth and IL-2 internalization. Monoclonal antibody 7D4, because of its pentameric structure, probably aggregates the IL-2R at the T cell surface and therefore prevents it internalization. The data presented in this paper suggest that simple occupancy of HA-IL-2R by IL-2 is not sufficient to transduce the T cell growth signal; this signal is transmitted only after internalization of the IL-2/HA-IL-2R complex.  相似文献   

5.
We previously described a cell surface antigen, termed Tp44, detected by monoclonal antibody 9.3 on approximately 80% of mature human T lymphocytes. Analysis by SDS-polyacrylamide gel electrophoresis and isoelectric focusing demonstrated that this antigen consists of two identical 44 kilodalton glycopeptides that form a disulfide-linked homodimer. Competitive binding experiments showed that antibody 9.3 and an anti-CD3 antibody (64.1) recognize distinct antigenic determinants; furthermore, the binding of antibody 9.3 was unaffected by prior modulation of CD3. Thus, Tp44 has no detectable cell surface association with CD3. By itself, antibody 9.3 had no detectable effect on either IL 2 receptor expression or IL 2 release, and did not cause T cell proliferation even when monocytes were present and exogenous IL 2 was provided, indicating that binding of antibody 9.3 does not provide a primary signal for T cell activation. However, the proliferative responses of T lymphocytes activated by phytohemagglutinin, concanavalin A, or an anti-CD3 monoclonal antibody were strikingly enhanced in the presence of antibody 9.3, an effect associated with increased IL 2 receptor expression and increased IL 2 secretion. Antibody 9.3 enabled anti-CD3-Sepharose-activated T cells and anti-CD3 antibody-activated Jurkat cells to release IL 2 in the absence of monocytes. Fab fragments of antibody 9.3 had no effect on anti-CD3-induced IL 2 release by Jurkat cells, whereas F(ab')2 fragments had activity comparable to that of unmodified antibody, indicating that bivalent binding of Tp44 molecules is required for IL 2 secretion. Together, these results suggest that TP44 may function as a receptor for accessory signals in the activation of T cells.  相似文献   

6.
We previously established several mouse hybridoma cell lines producing monoclonal antibodies against the human interleukin 2 (IL 2) receptor molecule. As they bind to both high- and low-affinity IL 2 receptors, their effects on binding of 125I-labeled IL 2 to high- and low-affinity receptors were examined by Scatchard plot analysis. Two of these monoclonal antibodies, HIEI and H-47, reduced the IL 2 binding affinity of high-affinity receptors from a Kd of 14 to 20 pM to a Kd of 110 to 140 pM, but slightly raised that of low-affinity receptors. These two antibodies scarcely affected the numbers of high- and low-affinity receptors. On the other hand, H-31 completely blocked IL 2 binding to both high- and low-affinity receptors, and H-A26 slightly reduced the affinities of both high- and low-affinity receptors, from 17 pM to 28 pM and from 28 nM to 54 nM, respectively. H-48 had little affect on IL 2 binding to high- or low-affinity receptors. By use of these monoclonal antibodies, the inhibitory effect of IL 2 on growth of an HTLV-I-immortalized T cell line was demonstrated to be transmitted from high-affinity, but not low-affinity, receptors.  相似文献   

7.
8.
Anti-Tac monoclonal antibody identifies the receptor for interleukin 2 (IL 2, or T cell growth factor) present on activated human T lymphocytes. By using tritiated anti-Tac, we now report a sensitive and specific binding assay to evaluate cell surface IL 2 receptor expression. IL 2 receptors on human peripheral blood lymphocytes can be detected within 6 hr after PHA stimulation. PHA-induced receptor expression is inhibited by actinomycin D and cycloheximide, but not by mitomycin C, suggesting a requirement for de novo RNA and protein synthesis, but not DNA synthesis. Scatchard analysis of [3H]-anti-Tac binding to lymphocytes stimulated with PHA for 3 days revealed from 20,000 to 60,000 molecules of antibody bound per cell, and a Kd of 1 to 3 x 10(-10) mol/l. Sequential binding studies of activated human lymphocytes maintained in long-term culture with IL 2 demonstrated a progressive decline in receptor number correlating with diminished growth rate. Restimulation with lectin or antigen increased the number of IL 2 receptors, suggesting that IL 2 dependent immune responses may be regulated, at least in part, by IL 2 receptor expression. Receptor number was also increased by PMA. Moreover, similar effects were produced by incubation with phospholipase C but not interleukin 1. Because both PMA and phospholipase C result in activation of protein kinase C, these data suggest the possibility that activation of protein kinase C may induce IL 2 receptor expression.  相似文献   

9.
Two lymphocyte mitogenic factors, interleukin 2 (IL 2) and blastogenic factor (BF), are generated concomitantly in human mixed lymphocyte cultures (MLC). The latter mitogenic factor is directly mitogenic for unstimulated lymphocytes, whereas the former mitogenic factor acts only on previously activated lymphocytes. Both factors had a m.w. range, as determined by gel filtration, of 18,000 to 30,000. Thus, these two factors were inseparable on the basis of m.w. size. However, BF and IL 2 were separable during ion exchange chromatography on the DEAE cellulose and phenyl-Sepharose chromatography. In addition, BF activity in the supernatants of MLC reached a maximum after day 5, whereas IL 2 activity peaked at day 3, thus distinguishing BF from IL 2 kinetically. These results clearly indicate that BF activity is mediated by molecules distinct from IL 2. The biochemical relationship between B cell growth factor (BCGF) and BF was also examined. Because BF was readily separable from BCGF by Con A-Sepharose chromatography, BF is distinguishable from BCGF. No augmentation of PHA-stimulated C3H mouse thymocyte proliferation was associated with the preparation of partially purified BF, demonstrating that BF and IL 1 are distinct molecules. Taken together, these results indicate that BF is clearly distinct from IL 2, BCGF, and IL 1. BF-containing MLC supernatants have direct mitogenic activity on both T and B cells. Both T and B cell blastogenic activities copurified during ammonium sulfate precipitation, gel filtration, DEAE cellulose ion exchange chromatography, and hydrophobic chromatography. Thus, these two activities appear to be biochemically inseparable. Monoclonal anti-Tac, that has been suggested to recognize the receptor for human IL 2, was highly inhibitory to the T cell response to the phenyl-Sepharose preparations of BF (IL 2-free). In contrast, this antibody had minimal or no effect on BF-induced B cell proliferation. However, when MLC supernatants were absorbed with a cloned IL 2-dependent T cell line, only IL 2 activity, but not BF activity, was removed, demonstrating that BF and IL 2 have different binding specificities. The precise mechanism(s) by which anti-Tac inhibits BF-induced proliferation of T cells is unknown at present. Additionally, during the course of these experiments, we observed that Con A-Sepharose chromatography could be used as a simple one-step method of separating BCGF from IL 2.  相似文献   

10.
Lymphokine activities in conditioned medium from activated helper T cell lines are most commonly defined by the proliferation of "specific" lymphokine-dependent cell lines. Various sublines of IL 2-dependent (and ostensibly specific) HT-2 and CTLL cells have now been shown to proliferate in response to BSF-1/IL 4 as well. After activation with antigen or mitogen, D10.G4.1, an antigen-specific cloned T helper cell that has recently been shown to produce IL 4 but not IL 2, secretes two distinct cytokines that induce the growth of HT-2 cells. These "T cell growth factors" (TCGF) can be separated by reversed phase high-performance liquid chromatography (RP-HPLC). The TCGF activity of one of these factors can be blocked by 11B11, an antibody specific for IL 4. The second TCGF activity is not affected by 11B11 or by antibodies specific for IL 2. This TCGF activity can be neutralized by a goat polyclonal antibody to granulocyte-macrophage colony-stimulating factor (GM-CSF), and has a RP-HPLC elution profile identical to that of recombinant GM-CSF. Recombinant GM-CSF induces both proliferation and long-term growth of HT-2 but not CTLL cells, and this activity can be neutralized by the same antibody to GM-CSF. GM-CSF is best known as a factor that induces the maturation and growth of granulocytes and macrophages from bone marrow-derived hematopoietic precursor cells. The ability of GM-CSF to induce the growth of certain T cell lines indicates that this molecule may play a role in T cell-mediated immune responses, either as an autocrine growth factor or a paracrine stimulus from both lymphoid and nonlymphoid tissues that produce this cytokine.  相似文献   

11.
We have described a human tumor T cell line, IARC 301, which constitutively expresses high affinity interleukin 2 (IL2) receptors, and showed that after binding to its receptors, IL2 is endocytosed and degraded. Here we present evidence that IL2 down-regulates its own high affinity receptors. Within 1 h, IL2 induces a 60% decrease in surface receptor expression. In order to maintain this down-regulation, IL2 concentration must be high enough for the receptors to be saturated throughout the incubation. The effect of IL2 on the kinetics of receptor internalization was investigated with two approaches. First, the initial rate of IL2 internalization was measured, and no difference could be detected whether the receptors were saturated with IL2 or only partially occupied. Second, the initial rate of surface receptor decay was followed and found to be significantly decreased in the presence of IL2. Although the half-life of IL2 receptors is very short in the absence of IL2, t 1/2 approximately 65 min, suggesting that these receptors are constantly endocytosed, it can still be reduced to t 1/2 approximately 25 min when the receptors are saturated with ligand. This suggests that occupied receptors are internalized faster than and independently from free receptors. The difference in internalization rates can explain the observed receptor down-regulation.  相似文献   

12.
The released interleukin 2 receptor binds interleukin 2 efficiently   总被引:25,自引:0,他引:25  
The released interleukin 2 receptor (IL 2R) molecule was characterized in order to clarify its biochemical structure and to determine its functional capacity. Enzymatic digestions demonstrated that the released IL 2R, like the cell surface IL 2R, is a complex glycoprotein, modified by the addition of both N- and O-linked carbohydrates and sialic acid residues. It has a peptide backbone that is approximately 10 Kd smaller than that of its membrane-associated counterpart. Affinity chromatography demonstrated that released IL 2R from either an HTLV-I-positive T cell line (HUT-102) or PHA-activated normal peripheral lymphocytes binds efficiently to purified recombinant IL 2. Furthermore, the interaction between the growth factor and the released receptor does not appear to require any accessory molecules. These observations suggest a potentially significant role for the released IL 2R in the regulation of IL 2-dependent lymphocyte functions.  相似文献   

13.
Interleukin-2 (IL-2) is a requisite factor for growth and proliferation of IL-2-dependent T cells. At present, the mechanism by which the high-affinity IL-2-IL-2 receptor interaction transmits a mitogenic signal to the cellular interior remains unclear. In this report we have used three murine T cell clones to demonstrate that IL-2 stimulates rapid tyrosine phosphorylation of several proteins. Two of these clones, CTLL-2 and CT6, exhibit a cytotoxic T cell phenotype, while the third, HT-2, was derived from a helper T cell line. All three T cell clones proliferated in response to IL-2 stimulation, but HT-2 cells also proliferated in response to interleukin-4 (IL-4). We comparatively examined the effects of IL-2 and IL-4 on protein tyrosine phosphorylation in these cells by immunoaffinity purification of phosphotyrosyl substrates with an anti-phosphotyrosine monoclonal antibody. Stimulation with concentrations of IL-2 resulting in maximal (10-30 U/ml) or sub-maximal (1-5 U/ml) proliferation caused the rapid tyrosine phosphorylation of 97 and 57 kDa proteins in all three cell lines. The 97 kDa protein was localized in the cytosol, while the 57 kDa protein was detected in both cytosolic and crude membrane fractions. IL-2-dependent tyrosine phosphorylation of an 86 kDa cytosolic protein was observed only in CT6 cells. Tyrosine phosphorylation of 22, 23 and 200 kDa proteins was also observed, but only in the cytotoxic T cell clones. Phosphoamino acid analyses revealed that the 97, 86 and 57 kDa proteins contained phosphotyrosine and phosphoserine residues. Concentrations of IL-2 below the threshold concentration for induction of a proliferative response correspondingly failed to stimulate protein tyrosine phosphorylation. In contrast, growth stimulation of HT-2 cells by IL-4 was not preceded by early changes in protein tyrosine phosphorylation, suggesting that protein tyrosine phosphorylation may not be essential for the induction of IL-4-dependent cell-cycle progression. These results demonstrate that high-affinity IL-2 receptors are coupled to tyrosine kinase activity(s) in T cells. However, the failure of IL-4 to stimulate protein tyrosine phosphorylation in the same cells indicates that enhanced protein tyrosine phosphorylation may not be requisite for growth factor-dependent T cell proliferation.  相似文献   

14.
The proliferation and differentiation of hemopoietic committed progenitor cells depend on colony stimulating factors (CSF). However, isolated mouse granulocyte-macrophage progenitor cells can still undergo limited proliferation in serum-free cultures after CSF deprivation. To test whether this is due to an accumulated pool of internalized factor, we examined the binding, internalization and degradation of radiolabelled interleukin 3 (IL-3) and granulocyte-macrophage colony stimulating factor (GM-CSF) in various hemopoietic cells. We found 20,000 high affinity IL-3 receptors on cells of two IL-3-dependent hemopoietic cell lines, FDC-P1 and FDC-P2 (Kd = 85 and 129 pM). FDC-P1 cells, which also respond to GM-CSF, possess 600 high-affinity GM-CSF receptors (Kd = 64 pM). Cells of both lines internalize IL-3, but only FDC-P1 cells release degraded IL-3 at a rapid rate. Both cell lines have similar dose-response curves for IL-3 and survival kinetics after factor removal. All other cells tested behave like FDC-P1, suggesting that the metabolism of IL-3 by FDC-P2 is exceptional. Our study indicates that transient proliferation of committed progenitor cells in the absence of added factors is apparently not due to a stable pool of internalized CSF but merely represents an intrinsic capability of these cells.  相似文献   

15.
The cloned murine interleukin 3 (IL 3)-dependent cell lines FD.C/1, 32Dc1-23, and KP3 can each be switched to interleukin 2 (IL 2)-dependent growth states. Replication-defective retroviral vectors have been used to introduce the v-src oncogene into each of these cell lines maintained in either an IL 3- or an IL 2-dependent growth state. These cell lines maintained in an IL 3-dependent growth state were converted to lymphokine-independent growth after infection with v-src. These same cells maintained in an IL 2-dependent growth state and infected with v-src maintained strict lymphokine dependence for growth. Another cloned murine IL 3-dependent cell line, GM, can be switched to a granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent growth state. GM cells maintained as IL 3- or GM-CSF-dependent cells readily converted to a lymphokine-independent growth state when infected with v-src. These experiments indicate that either there exist differences in the biochemical mechanisms of signal transduction through the IL 3- and IL 2-specific receptors, or developmental processes associated with the switching of cells to an IL 2-dependent growth state influence expression of the v-src gene product. These cell lines offer new ways not only for analyzing biochemical pathways that regulate cell growth, but also for analyzing the control of oncogene expression.  相似文献   

16.
Adrenergic receptor agonists are known to attenuate the proliferative response of human lymphocytes after activation; however, their mechanism of action is unknown. Since expression of interleukin 2 (IL-2) receptors is a prerequisite for proliferation, the effect of beta-adrenergic receptor agonists on lymphocyte IL-2 receptors was studied on both mitogen-stimulated lymphocytes and IL-2-dependent T lymphocyte cell lines. In both cell types the beta-adrenergic receptor agonist isoproterenol blocked the expression of IL-2 receptors, as determined with the IL-2 receptor anti-TAC antibody. To determine the effect of beta-adrenergic agonists on expression of the high affinity IL-2 receptors, [125I]IL-2 binding studies were performed at concentrations selective for high affinity sites. No significant effect of beta-adrenergic agonists on high affinity IL-2 receptor sites could be detected. The data demonstrate that beta-adrenergic receptor agonists down-regulate IL-2 receptors primarily affecting low affinity sites.  相似文献   

17.
The regulation of interleukin 1 (IL 1) receptor expression on a human large granular lymphocyte cell line, YT, and fate of internalized 125I-labeled IL 1 beta (125I-IL 1 beta) were studied. YT cells were selected for this study, because this cell line expresses a large number of specific high-affinity receptor for IL 1, responds biologically to exogenously added IL 1 by expressing high-affinity IL 2 receptors, and does not produce IL 1. YT cells constitutively express approximately 7 X 10(3) IL 1 receptors/cell with a Kd approximately 10(-10) M. Neither IL 2, phorbol myristic acid, nor lipopolysaccharide affected the total binding of 125I-IL 1 beta by YT cells. In contrast, the capacity of YT cells to bind 125I-IL 1 beta when incubated at 37 degrees C for 3 to 16 hr with a low dose of purified IL 1 beta (approximately 6 U/ml) was reduced by greater than 80%. The loss of binding capability gradually recovered by 16 hr after removal of IL 1 beta from cultured YT cells. The apparent loss of IL 1 receptor expression was accompanied by the internalization of 125I-IL 1 beta into cells. Acid treatment of YT cells to remove bound 125I-IL 1 beta at 4 degrees C showed that 50% of the 125I-IL 1 beta bound to cells could no longer be recovered after 30 min at 37 degrees C, and this increased to 80% after 3 hr at 37 degrees C. Fractionation of cell extracts on Percoll gradient additionally showed 125I-IL 1 beta to appear intracellularly after receptor binding on plasma membranes, and to be successively transferred to some membranous organelles (d approximately equal to 1.037) through an intermediate density organelle (d approximately equal to 1.050), and to finally end up in lysosomal cell fractions (d approximately equal to 1.05 to 1.08) after approximately 3 hr at 37 degrees C. Only approximately 5% of internalized 125I-IL 1 beta was released into culture media by 6 hr of incubation at 37 degrees C. However, the radioactivity in the TCA soluble fraction of the culture media increased gradually by 6 hr and a lysosomotropic enzyme, ethylamine, significantly inhibited both the transfer of internalized 125I-IL 1 beta to the lysosomal fraction and the degradation of 125I-IL 1 beta. This study represents the first evidence of autoregulation of IL 1 receptors by IL 1 and internalization of IL 1 molecules after binding to receptors.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Both cloned murine helper T lymphocytes (HTL) and cytolytic T lymphocytes (CTL) proliferated and secreted lymphokines when stimulated with immobilized anti-T cell receptor monoclonal antibody (anti-TCR mAb). However, although proliferation of CTL increased and reached plateau levels as concentrations of anti-TCR mAb were increased, the proliferation of HTL decreased with high concentrations of anti-TCR mAb. A reduction of IL 2-dependent proliferation by CTL was observed when IL 2 was added to cultures of CTL in the presence of high concentrations of anti-TCR mAb, whereas IL 2-independent proliferation appeared to be unaffected by these concentrations of anti-TCR mAb. Inhibition of IL 2-driven proliferation caused by high concentrations of immobilized anti-TCR mAb did not seem to be mediated by soluble factors. Cells continued to express cell surface receptors for IL 2 and transferrin after treatment with immobilized anti-TCR mAb. Inhibition of IL 2-driven proliferation by high concentrations of immobilized anti-TCR mAb may represent a mechanism for regulating the proliferation of T lymphocytes. This inhibitory mechanism is initiated by stimulation of the T cell receptor, in this case by immobilized anti-TCR mAb, and is independent of other cells and factors.  相似文献   

19.
A C3-fragment preparation (C3-FP) was studied for its ability to regulate human peripheral blood lymphocyte activation. It was found that very low concentrations of this low m.w. fraction, which was free of C3a, inhibited the PHA-induced lymphocyte proliferation without any cytotoxicity. Cytofluorometric analysis showed that C3-FP did not influence the transition of T cells from the G0 to the G1a phase of the cell cycle. However, the IL 2-dependent transition from the G1a to the G1b phase of the cell cycle was effectively blocked. Addition of exogenous IL 2 did not release cells arrested in the G1a phase. Furthermore, neither IL 2 production nor IL 2 receptor formation was inhibited by C3-FP, and binding of IL 2 to its receptor was unaltered. It was found that only IL 2-dependent cell lines were inhibited in their proliferation; all other tested cell lines were unaffected by C3-FP. Our findings suggest that cleaved products of C3 may inhibit IL 2-dependent lymphocyte proliferation at a stage where the IL 2 signal is required for initiation of proliferation.  相似文献   

20.
An enzyme-linked immunosorbent assay was used to quantitate soluble interleukin 2 receptors (IL 2R) released by antigen-dependent, insulin-specific murine T cells into the culture supernatant, as well as cell-associated IL 2R present in cell lysates. IL 2R were released solely after T cell activation by antigen. The release of IL 2R was transient, reaching optimal levels within 72 hr after antigen challenge and gradually declining to background levels thereafter, when the cells were subcultured in IL 2-enriched medium. The decrease in the amount of IL 2R released during culture in IL 2-containing medium paralleled the decrement in cellular IL 2R detected in cell lysates, in cell surface-expressed IL 2R as determined by cytofluorometry, as well as in high-affinity IL 2R. In contrast, IL 2R were constitutively released by an IL 2-dependent T cell clone. Soluble IL 2R might exert an immunoregulatory function by competing with cellular IL 2R for IL 2 binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号