首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Peripheral blood samples collected from four healthy nonsmoking human volunteers were diluted with tissue culture medium and exposed in vitro for 24 h to 847.74 MHz radiofrequency (RF) radiation (continuous wave), a frequency employed for cellular telephone communications. A code division multiple access (CDMA) technology was used with a nominal net forward power of 75 W and a nominal power density of 950 W/m(2) (95 mW/cm(2)). The mean specific absorption rate (SAR) was 4.9 or 5.5 W/kg. Blood aliquots that were sham-exposed or exposed in vitro to an acute dose of 1.5 Gy of gamma radiation were included in the study as controls. The temperatures of the medium during RF-radiation and sham exposures in the Radial Transmission Line facility were controlled at 37 +/- 0.3 degrees C. Immediately after the exposures, lymphocytes were cultured at 37 +/- 1 degrees C for 48 or 72 h. The extent of genetic damage was assessed from the incidence of chromosome aberrations and micronuclei. The kinetics of cell proliferation was determined from the mitotic indices in 48-h cultures and from the incidence of binucleate cells in 72-h cultures. The data indicated no significant differences between RF-radiation-exposed and sham-exposed lymphocytes with respect to mitotic indices, frequencies of exchange aberrations, excess fragments, binucleate cells, and micronuclei. The response of gamma-irradiated lymphocytes was significantly different from that of both RF-radiation-exposed and sham-exposed cells for all of these indices. Thus there was no evidence for induction of chromosome aberrations and micronuclei in human blood lymphocytes exposed in vitro for 24 h to 847.74 MHz RF radiation (CDMA) at SARs of 4.9 or 5.5 W/kg.  相似文献   

2.
No difference in survival was observed between cultured cells from basal cell naevus syndrome (BCNS) patients and normal controls following exposure of fibroblasts to ionizing radiation. Potential lethal damage repair in BCNS cells, measured by holding experiments, was also no different from normal. G0-irradiated lymphocytes from BCNS patients were found to have a significantly higher level of X-ray-induced chromosome aberrations compared with normals. This increase is, however, small, and, taken together with the survival data, suggests that increased cell killing as a measure of the unusual clinical radiosensitivity is not the major effect of the BCNS gene.  相似文献   

3.
Although in vitro studies have been previously conducted to determine the biological effects of radio frequency (RF) radiation, it has not yet been determined whether or not RF radiation poses a potential hazard. This study was conducted to determine whether RF radiation exposure exerts detectable effects on cell cycle distribution, cellular invasion, and migration. NIH3T3 mouse fibroblasts were exposed to 849 MHz of RF radiation at average SAR values of 2 or 10 W/kg for either 1 h, or for 1 h per day for 3 days. During the exposure period, the temperature in the exposure chamber was maintained isothermally by circulating water throughout the cavity. Cell cycle distribution was analyzed at 24 and 48 h after exposure, by flow cytometry. We detected no statistically significant differences between the sham-exposed and RF radiation-exposed cells. Cellular invasion and migration were assessed by in vitro Matrigel invasion and Transwell migration assays. The RF radiation-exposed groups evidenced no significant changes in motility and invasiveness compared to the sham-exposed group. However, the ionizing radiation-exposed cells, used as a positive control group, manifested dramatic alterations in their cell cycle distribution, cellular invasiveness, and migration characteristics. Our results show that 849 MHz RF radiation exposure exerts no detectable effects on cell cycle distribution, cellular migration, or invasion at average SAR values of 2 or 10 W/kg.  相似文献   

4.
To examine the biological effects of radio frequency (RF) electromagnetic fields in vitro, we have examined the fundamental cellular responses, such as cell growth, survival, and cell cycle distribution, following exposure to a wide range of specific absorption rates (SAR). Furthermore, we compared the effects of continuous and intermittent exposure at high SARs. An RF electromagnetic field exposure unit operating at a frequency of 2.45 GHz was used to expose cells to SARs from 0.05 to 1500 W/kg. When cells were exposed to a continuous RF field at SARs from 0.05 to 100 W/kg for 2 h, cellular growth rate, survival, and cell cycle distribution were not affected. At 200 W/kg, the cell growth rate was suppressed and cell survival decreased. When the cells were exposed to an intermittent RF field at 300 W/kg(pk), 900 W/kg(pk) and 1500 W/kg(pk) (100 W/kg(mean)), no significant differences were observed between these conditions and intermittent wave exposure at 100 W/kg. When cells were exposed to a SAR of 50 W/kg for 2 h, the temperature of the medium around cells rose to 39.1 degrees C, 100 W/kg exposure increased the temperature to 41.0 degrees C, and 200 W/kg exposure increased the temperature to 44.1 degrees C. Exposure to RF radiation results in heating of the medium, and the thermal effect depends on the mean SAR. Hence, these results suggest that the proliferation disorder is caused by the thermal effect.  相似文献   

5.
In this study, rat pheochromocytoma (PC12) cells were exposed, as a model of neuron-like cells, to 1950 MHz radiofrequency (RF) radiation with a signal used by the 3G wireless technology of the Universal Mobile Telecommunications System (UMTS) to assess possible adverse effects. RF exposure for 24 h at a specific absorption rate (SAR) of 10 W/kg was carried out in a waveguide system under accurately controlled environmental and dosimetric parameters. DNA integrity, cell viability, and apoptosis were investigated as cellular endpoints relevant for carcinogenesis and other diseases of the central nervous system. Very sensitive biological assays were employed to assess the effects immediately after RF exposure and 24 h later, as demonstrated by the cellular response elicited in PC12 cells using positive control treatments provided for each assay. In our experimental conditions, 24 h of RF exposure at a carrier frequency and modulation scheme typical of a UMTS signal was not able to elicit any effect in the selected cellular endpoints in undifferentiated PC12 cells, despite the application of a higher SAR value than those applied in the majority of the studies reported in the literature.  相似文献   

6.
Peripheral blood samples collected from healthy human volunteers were exposed in vitro to 2.45 GHz or 8.2 GHz pulsed-wave radiofrequency (RF) radiation. The net forward power, average power density, mean specific absorption rate, and the temperature maintained during the 2-h exposure of the cells to 2.45 GHz or 8.2 GHz were, respectively, 21 W or 60 W, 5 mW/cm(2) or 10 mW/cm(2), 2.13 W/kg or 20.71 W/kg, and 36.9 +/- 0.1 degrees C or 37.5 +/- 0.2 degrees C. Aliquots of the same blood samples that were either sham-exposed or exposed in vitro to an acute dose of 1.5 Gy gamma radiation were used as unexposed and positive controls, respectively. Cultured lymphocytes were examined to determine the extent of cytogenetic damage assessed from the incidence of chromosomal aberrations and micronuclei. Under the conditions used to perform the experiments, the levels of damage in RF-radiation-exposed and sham-exposed lymphocytes were not significantly different. Also, there were no significant differences in the response of unstimulated lymphocytes and lymphocytes stimulated with phytohemagglutinin when exposed to 8.2 GHz RF radiation. In contrast, the positive control cells that had been subjected to gamma irradiation exhibited significantly more damage than RF-radiation- and sham-exposed lymphocytes.  相似文献   

7.
Forty-two children exposed to ionizing radiation in prenatal period and 15 children of control group were examined in the remote terms after the accident using the method of differential G-staining of chromosomes in lymphocytes of peripheral blood. It was found that the average group rate of aberrant cells and chromosome aberrations was reliably higher in the children exposed in utero compared to control. Long-term cytogenetic consequences of the pre-natal exposure were characterized by prevalence of aberrations of a chromosome type, mainly stable chromosome lesions. At chronic exposure to low doses of ionizing radiation the increase in the rate both stable and unstable chromosome aberrations.  相似文献   

8.
To investigate the potential cytotoxicity of radiofrequency (RF) radiation on central nervous system, rat pheochromocytoma (PC12) cells were exposed to 2.856 GHz RF radiation at a specific absorption rate (SAR) of 4 W/kg for 8 h a day for 2 days in 35 mm Petri dishes. During exposure, the real-time variation of the culture medium temperature was monitored in the first hour. Reactive oxygen species (ROS) production, intracellular Ca2+ concentration, and cell apoptosis rate were assessed immediately after exposure by flow cytometry. The results showed that the medium temperature raised about 0.93 °C, but no significant changes were observed in apoptosis, ROS levels or intracellular Ca2+ concentration after treatment. Although several studies suggested that RF radiation does indeed cause neurological effects, this study presented inconsistent results, indicating that 2.856 GHz RF radiation exposure at a SAR of 4 W/kg does not have a dramatic impact on PC12 cells, and suggests the need for further investigation on the key cellular endpoints of other nerve cells after exposure to RF radiation.  相似文献   

9.
To investigate the induction of chromosomal aberrations in mouse m5S cells after exposure to high-frequency electromagnetic fields (HFEMFs) at 2.45 GHz, cells were exposed for 2 h at average specific absorption rates (SARs) of 5, 10, 20, 50 and 100 W/kg with continuous wave-form (CW), or at a mean SAR of 100 W/kg (with a maximum of 900 W/kg) with pulse wave-form (PW). The effects of HFEMF exposure were compared with those in sham-exposed controls and with mitomycin C (MMC) or X-ray treatment as positive controls. We examined all structural, chromatid-type and chromosome-type changes after HFEMF exposures and treatments with MMC and X-rays. No significant differences were observed following exposure to HFEMFs at SARs from 5 to 100 W/kg CW and at a mean SAR of 100 W/kg PW (a maximum SAR of 900 W/kg) compared with sham-exposed controls, whereas treatments with MMC and X-rays increased the frequency of chromatid-type and chromosome-type aberrations. In summary, HFEMF exposures at 2.45 GHz for 2 h with up to 100 W/kg SAR CW and an average 100 W/kg PW (a maximum SAR of 900 W/kg) do not induce chromosomal aberrations in m5S cells. Furthermore, there was no difference between exposures to CW and PW HFEMFs.  相似文献   

10.
In human lymphocytes low doses of X-rays can decrease the number of chromatid deletions induced by subsequent high doses of sparsely ionizing X-rays. Because of the concern with the carcinogenic effects of low doses of -particles from radon in homes, experiments were carried out to see if low doses of X-rays could also decrease the yield of chromosomal aberrations induced by subsequent exposure to radon. Human peripheral blood lymphocytes were irradiated with low doses of X-rays (2 cGy) at 48 h of culture, exposed to radon at 72 h of culture, and analyzed for the presence of chromatid aberrations at subsequent intervals. The frequency of chromatid aberrations induced by radon alone increased with time after exposure, indicating exaggerated differences in the stage sensitivity of cell cycle stages to high-LET radiation. Furthermore, the numbers of aberrations per cell did not follow a Poisson distribution but were over dispersed, as might be expected since high-LET radiations have a high relative biological effectiveness compared with low-LET radiations. Nevertheless, lymphocytes exposed to 2 cGy of X-rays before radon exposure contained approximately one-half the number of chromatid deletions compared with lymphocytes treated with radon alone and analzed at the same time. Thus, the putative chromosomal repair mechanism induced by low doses of sparsely ionizing radiation is also effective in reducing chromosomal aberrations induced by radon, which hitherto had been thought to be relatively independent of repair processes.  相似文献   

11.
The increased use of mobile phones has raised the question of possible health effects of such devices, particularly the risk of cancer. It seems unlikely that the low-level radiofrequency (RF) radiation emitted by them would damage DNA directly, but its ability to act as a tumor promoter is less well characterized. In the current study, we evaluated the effect of low-level RF radiation on the development of cancer initiated in mice by ionizing radiation. Two hundred female CBA/S mice were randomized into four equal groups at the age of 3 to 5 weeks. The mice in all groups except the cage-control group were exposed to ionizing radiation at the beginning of the study and then to RF radiation for 1.5 h per day, 5 days a week for 78 weeks. One group was exposed to continuous NMT (Nordic Mobile Telephones)-type frequency-modulated RF radiation at a frequency of 902.5 MHz and a nominal average specific absorption rate (SAR) of 1.5 W/kg. Another group was exposed to pulsed GSM (Global System for Mobile)-type RF radiation (carrier-wave frequency 902.4 MHz, pulse frequency 217 Hz) at a nominal average SAR of 0.35 W/kg. The control animals were sham-exposed. Body weight, clinical signs, and food and water consumption were recorded regularly. Hematological examinations and histopathological analyses of all lesions and major tissues were performed on all animals. The RF-radiation exposures did not increase the incidence of any neoplastic lesion significantly. We conclude that the results do not provide evidence for cancer promotion by RF radiation emitted by mobile phones.  相似文献   

12.
The induction of an adaptive response (AR) was examined in human peripheral blood lymphocytes exposed to non-ionizing radiofrequency fields (RF). Cells from nine healthy human volunteers were stimulated for 24h with phytohaemagglutinin and then exposed for 20h to an adaptive dose (AD) of a 1950MHz RF UMTS (universal mobile telecommunication system) signal used for mobile communications, at different specific absorption rates (SAR) of 1.25, 0.6, 0.3, and 0.15W/kg. This was followed by treatment of the cells at 48h with a challenge dose (CD) of 100ng/ml mitomycin C (MMC). Lymphocytes were collected at the end of the 72h total culture period. The cytokinesis-block method was used to record the frequency of micronuclei (MN) as genotoxicity end-point. When lymphocytes from six donors were pre-exposed to RF at 0.3W/kg SAR and then treated with MMC, these cells showed a significant reduction in the frequency of MN, compared with the cells treated with MMC alone; this result is indicative of induction of AR. The results from our earlier study indicated that lymphocytes that were stimulated for 24h, exposed for 20h to a 900MHz RF GSM (global system for mobile communication) signal at 1.25W/kg SAR and then treated with 100ng/ml MMC, also exhibited AR. These overall data suggest that the induction of AR depends on RF frequency, type of the signal and SAR. Further characterization of RF-induced AR is in progress.  相似文献   

13.
The inhibition of poly(ADP-ribose) polymerase by 3-aminobenzamide (3AB) has been reported to have very different effects on X-ray-induced chromosome aberrations in G0 human lymphocytes. One group of investigators observed a 2-3-fold increase in the yield of rings, dicentrics and chromosome breaks after X-irradiation and 3AB treatment, whereas another group found that 3AB had no effect on X-ray-induced chromosome aberrations. To resolve this discrepancy, we repeated the experiments as described by both groups and found no effect of 3 mM or 5 mM 3AB on the frequency of chromosome aberrations induced by either 1 Gy or 2 Gy of X-rays. Furthermore, we found no effect of 3AB on X-ray-induced aberration yields in C-banded prematurely condensed chromosome preparations from unstimulated human lymphocytes. These results indicate that poly(ADP-ribose) polymerase is not involved in the repair of cytogenetic damage in G0 human lymphocytes.  相似文献   

14.
The aim of this study was to evaluate whether daily whole-body exposure to 900 MHz GSM-modulated radiation could affect spleen lymphocytes. C57BL/6 mice were exposed 2 h/day for 1, 2 or 4 weeks in a TEM cell to an SAR of 1 or 2 W/kg. Untreated and sham-exposed groups were also examined. At the end of the exposure, mice were killed humanely and spleen cells were collected. The number of spleen cells, the percentages of B and T cells, and the distribution of T-cell subpopulations (CD4 and CD8) were not altered by the exposure. T and B cells were also stimulated ex vivo using specific monoclonal antibodies or LPS to induce cell proliferation, cytokine production and expression of activation markers. The results did not show relevant differences in either T or B lymphocytes from mice exposed to an SAR of 1 or 2 W/kg and sham-exposed mice with few exceptions. After 1 week of exposure to 1 or 2 W/kg, an increase in IFN-gamma (Ifng) production was observed that was not evident when the exposure was prolonged to 2 or 4 weeks. This suggests that the immune system might have adapted to RF radiation as it does with other stressing agents. All together, our in vivo data indicate that the T- and B-cell compartments were not substantially affected by exposure to RF radiation and that a clinically relevant effect of RF radiation on the immune system is unlikely to occur.  相似文献   

15.
Ejaculated, density purified, human spermatozoa were exposed to pulsed 900 MHz GSM mobile phone radiation at two specific absorption rate levels (SAR 2.0 and 5.7 W/kg) and compared with controls over time. Change in sperm mitochondrial membrane potential was analysed using flow cytometry. Sperm motility was determined by computer assisted sperm analysis (CASA). There was no effect of pulsed 900 MHz GSM radiation on mitochondrial membrane potential. This was also the case for all kinematic parameters assessed at a SAR of 2.0 W/kg. However, over time, the two kinematic parameters straight line velocity (VSL) and beat-cross frequency (BCF) were significantly impaired (P < 0.05) after the exposure at SAR 5.7 W/kg and no exposure by time interaction was present. This result should not be ascribed to thermal effects, due to the cooling methods employed in the RF chamber and temperature control within the incubator.  相似文献   

16.
We have studied the induction of chromosomal aberrations in human lymphocytes exposed in G0 to X rays or carbon ions. Aberrations were analyzed in G0, G1, G2 or M phase. Analysis during the interphase was performed by chemically induced premature chromosome condensation, which allows scoring of aberrations in G1, G2 and M phase; fusion-induced premature chromosome condensation was used to analyze the damage in G0 cells after incubation for repair; M-phase cells were obtained by conventional Colcemid block. Aberrations were scored by Giemsa staining or fluorescence in situ hybridization (chromosomes 2 and 4). Similar yields of fragments were observed in G1 and G2 phase, but lower yields were scored in metaphase. The frequency of chromosomal exchanges was similar in G0 (after repair), G2 and M phase for cells exposed to X rays, while a lower frequency of exchanges was observed in M phase when lymphocytes were irradiated with high-LET carbon ions. The results suggest that radiation-induced G2-phase block is associated with unrejoined chromosome fragments induced by radiation exposure during G0.  相似文献   

17.
Studies were conducted to determine the effects of BeSO4 or X rays, alone and in combination, on cell cycle kinetics, cell killing, and the production of chromosome aberrations in Chinese hamster ovary (CHO) cells. The concentration of BeSO4 required to kill 50% of CHO cells exposed to BeSO4 for 20 h was determined to be 1.1 mM with 95% confidence intervals of 0.72 to 1.8 mM. During the last 2 h of the 20-h beryllium treatment (0.2 and 1.0 mM), cells were exposed to 0.0, 1.0, or 2.0 Gy of X rays. Exposure to either BeSO4 or X rays produced a change in cell cycle kinetics which resulted in an accumulation of cells in the G2/M stage of the cell cycle. However, combined exposure to both agents resulted in a block similar to that observed following exposure to X rays only. The background level of chromosome damage was 0.05 +/- 0.015 aberrations/cell in the CHO cells. Seven hours after the end of exposure to 0.2 and 1.0 mM beryllium, 0.03 +/- 0.003 and 0.09 +/- 0.02 aberrations/cell, respectively, were observed. The data for chromosome aberrations following X-ray exposure were fitted to a linear model with a coefficient of 0.14 +/- 0.01 aberrations/cell/Gy. When beryllium was combined with the X-ray exposure the interactive response was predicted by a multiplicative model and was significantly higher (P less than 0.05) than predicted by an additive model. The influence of time after radiation exposure on the interaction between beryllium and X rays was also determined. No interaction between beryllium and X-ray exposure in the induction of chromosome-type aberrations (P greater than 0.05) was detected. The frequency of chromatid-type exchanges and total aberrations was significantly higher (P less than 0.05) in the radiation plus beryllium-exposed cells when compared to cells exposed to X rays only, at both 9 and 12 h after X-ray exposure. These data suggest that the multiplicative interaction may be limited to cells in the S and G2 stages of the cell cycle.  相似文献   

18.
Harmful effects of electromagnetic fields (EMF) on cognitive and behavioural features of humans and rodents have been controversially discussed and raised persistent concern about adverse effects of EMF on general brain functions. In the present study we applied radio-frequency (RF) signals of the Universal Mobile Telecommunications System (UMTS) to full brain exposed male Wistar rats in order to elaborate putative influences on stress hormone release (corticosteron; CORT and adrenocorticotropic hormone; ACTH) and on hippocampal derived synaptic long-term plasticity (LTP) and depression (LTD) as electrophysiological hallmarks for memory storage and memory consolidation. Exposure was computer controlled providing blind conditions. Nominal brain-averaged specific absorption rates (SAR) as a measure of applied mass-related dissipated RF power were 0, 2, and 10 W/kg over a period of 120 min. Comparison of cage exposed animals revealed, regardless of EMF exposure, significantly increased CORT and ACTH levels which corresponded with generally decreased field potential slopes and amplitudes in hippocampal LTP and LTD. Animals following SAR exposure of 2 W/kg (averaged over the whole brain of 2.3 g tissue mass) did not differ from the sham-exposed group in LTP and LTD experiments. In contrast, a significant reduction in LTP and LTD was observed at the high power rate of SAR (10 W/kg). The results demonstrate that a rate of 2 W/kg displays no adverse impact on LTP and LTD, while 10 W/kg leads to significant effects on the electrophysiological parameters, which can be clearly distinguished from the stress derived background. Our findings suggest that UMTS exposure with SAR in the range of 2 W/kg is not harmful to critical markers for memory storage and memory consolidation, however, an influence of UMTS at high energy absorption rates (10 W/kg) cannot be excluded.  相似文献   

19.
The aim of this study was to determine whether the exposure to either single or multiple radio‐frequency (RF) radiation frequencies could induce oxidative stress in cell cultures. Exposures of human MCF10A mammary epithelial cells to either a single frequency (837 MHz alone or 1950 MHz alone) or multiple frequencies (837 and 1950 MHz) were conducted at specific absorption rate (SAR) values of 4 W/kg for 2 h. During the exposure period, the temperature in the exposure chamber was maintained isothermally. Intracellular levels of reactive oxygen species (ROS), the antioxidant enzyme activity of superoxide dismutase (SOD), and the ratio of reduced/oxidized glutathione (GSH/GSSG) showed no statistically significant alterations as the result of either single or multiple RF radiation exposures. In contrast, ionizing radiation‐exposed cells, used as a positive control, showed evident changes in all measured biological endpoints. These results indicate that single or multiple RF radiation exposure did not elicit oxidative stress in MCF10A cells under our exposure conditions. Bioelectromagnetics 33:604–611, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Lymphocytes from individual patients undergoing radiolabeled immunoglobulin therapy have been examined both for chromosome aberrations expressed immediately upon explant, or for chromosome aberrations induced by a subsequent challenge of gamma-rays after PHA-stimulated proliferation. Despite interpatient variation, there is strong correlation between levels of chromosome aberrations observed in the initial mitosis after mitogenic stimulation and levels induced by a challenge dose of radiation in replicate cultures after several cell cycles of growth. These data indicated that even after proliferation, human lymphocytes retain a memory of in vivo exposure to ionizing radiation that can be observed by challenge with a clastogenic agent. This persistent hypersensitivity occurs at high frequency, suggesting that it may be related to initial steps in multistage carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号