首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The mechanism through which the C-17(3) carboxy group of bacteriochlorophyllide a is esterified to produce bacteriochlorophyll aphytyl of Rhodopseudomonas spheroides and bacteriochlorophyll ageranylgeranyl of Rhodospirillum rubrum was studied by using 5-aminolaevulinate labelled with 18O at its C-1 carboxy oxygen atoms. The latter species was prepared by an exchange reaction in which 5-aminolaevulinate hydrochloride was heated in H218O in an autoclave. A method for the determination of the 18O content of the C-1 oxygen atoms of 5-aminolaevulinate was developed. As a prelude to the mechanistic work, a systematic study was undertaken to establish the optimal conditions under which a significant proportion of the bacteriochlorophyll a of the two photosynthetic organisms originated from the exogenously added 5-aminolaevulinate. It was found that, when Rps. spheroides and Rsp. rubrum were grown in the presence of about 0.15mM- and 1.2mM-5-aminolaevulinate respectively, 30-40% of their chlorophyll was derived from the added precursor. In these conditions, 5-amino[1,4-18O3]laevulinate was incorporated into bacteriochlorophyll aphytyl and bacteriochlorophyll ageranylgeranyl by the relevant organisms. The samples of chlorophylls were then hydrolysed with alkali to obtain phytol and geranylgeraniol, which were converted into the corresponding trimethylsilyl derivatives and analysed by gas chromatography-mass spectrometry. The data were used to deduce that the alcohols contained 90-95% of the 18O originally present at each of the C-1 oxygen atoms of the precursor 5-aminolaevulinate. In the light of these results it is suggested that the ester bond at C-17(3) is formed, not by a chlorophyllase type of enzymic reaction, but by a process involving the nucleophilic attack by the C-17(3) carboxylate group of the chlorophyllide on the activated form of an isoprenyl alcohol.  相似文献   

2.
The 13C NMR spectra were analyzed in bacteriochlorophyll a and magnesium protoporphyrin methyl ester formed in Rhodopseudomonas spheroides S. in the presence of L-[1-13C]glutamate and [2-13C]glycine. After reassignment of three alpha-pyrrolic carbons (C-9, -14 and -16) of bacteriochlorophyll a, the spectra showed that C-2 of glycine was preferentially incorporated into the eight-carbon atoms in these tetrapyrrole macrocycles derived from C-5 of 5-aminolevulinic acid (ALA). C-2 of glycine was also incorporated specifically into methyl ester carbon of magnesium protoporphyrin IX methyl ester and methoxyl carbon of methoxycarbonyl group attached to isocyclic ring of bacteriochlorophyll a. No enrichment of these nine-carbon atoms was observed in the spectrum of bacteriochlorophyll formed in the presence of L-[1-13C]glutamate, showing exclusive operation of ALA synthase on bacteriochlorophyll biosynthesis.  相似文献   

3.
The 13C-NMR spectra of bacteriochlorophyll a formed in the presence of L-[1-13C]glutamate and [2-13C]glycine in Chromatium vinosum strain D were analyzed. The isotope in the glutamate was specifically incorporated into eight carbon atoms in the tetrapyrrole macrocycle derived from the C-5 of 5-aminolevulinic acid (ALA), and the 13C in glycine was incorporated into the methyl carbon of the methoxycarbonyl group attached to the isocyclic ring of bacteriochlorophyll a. These labeling patterns provide evidence for the exclusive operation of the C5 pathway in ALA biosynthesis in the bacterium. The 13C chemical shifts of two quaternary carbons (C-9 and C-16) of bacteriochlorophyll a were reassigned in the present study.  相似文献   

4.
The 13C NMR spectra of the pheophorbide of bacteriochlorophyll c, formed in the presence of L-[1-13C]glutamate and [2-13C]glycine and [13C]bicarbonate in Prosthecochloris aestaurii, were analysed. The isotope in the glutamate was specifically incorporated into the eight carbon atoms in the tetrapyrrole macrocycle derived from the C-5 of 5-aminolevulinic acid, while no specific enrichment of these eight carbon atoms was observed in the spectrum of the pigment formed in the presence of [2-13C]glycine. These labelling patterns provide evidence for the operation of the C5 pathway of 5-aminolevulinic acid synthesis for bacteriochlorophyll c formation in the bacterium. The labelling of bacteriochlorophyll c by [13C]bicarbonate is consistent with its formation from 5-[1,4,5-13C]aminolevulinic acid formed by the C5 pathway from [1,2,5-13C]glutamic acid. It is proposed that this glutamate is the transamination product of 2-[1,2,5-13C]oxoglutaric acid, arising by carboxylation of [1,4-13C]succinyl-CoA with 13CO2 catalysed by 2-oxoglutaric acid synthase activity, and that the labelled succinyl-CoA is, in turn, derived by the fixation of 13CO2 by the reductive tricarboxylic acid cycle. The 13C chemical shifts of two sp2 quaternary carbons of bacteriopheophorbide c methyl ester (C-2 and C-4) were reassigned.  相似文献   

5.
A new bacteriochlorophyll from brown-colored chlorobiaceae   总被引:4,自引:0,他引:4  
A new bacteriochlorophyll has been isolated by thin layer chromatography from all strains of the brown-colored Chlorobiaceae Chlorobium phaeobacteroides and Chlorobium phaeovibrioides. The new bacteriochlorophyll e —like the bacteriochlorophylls c and d—represents the major amount of bacteriochlorophyll in the cells in addition to small amounts of bacteriochlorophyll a. Bacteriochlorophyll e can be differentiated from the bacteriochlorophylls c and d by its absorption maxima in aceton and its different R f -value in the thin layer chromatogram. The structure of the new bacteriochlorophyll e has been elucidated on the basis of mass spectra, 1H- and 13C-NMR-spectra, the UV/VIS-spectrum as well as IR-, ORD-, and CD-spectra. The new bacteriochlorophyll has the same relationship to bacteriochlorophyll c as chlorophyll b from green plants to chlorophyll a; therefore, bacteriochlorophyll e represents the first formyl-substituted chlorophyll from bacteria. Similar to the bacteriochlorophylls c and d, the new bacteriochlorophyll e consists of a mixture of at least three homologues which differ from each other by different substituents on the pyrrol rings II and III.Abbreviations Used DSM Deutsche Sammlung von Mikroorganismen, Göttingen - Bchl. bacteriochlorophyll - Bph. bacteriopheophytin - P phytol - Gg geranylgeraniol - F farnesol - C Chlorobium This work was made possible by the technology program of the Bundesministerium für Forschung und Technologie.  相似文献   

6.
The influence of temperature on yields of cell protein and bacteriochlorophyll as well as on the rates of growth and bacteriochlorophyll synthesis was studied with Rhodospirillum rubrum and Rhodopseudomonas sphaeroides. Under chemotrophic conditions net cell-protein production increased in cultures of both species along with temperature from 14°C up to the optimum at 33°C. Under phototrophic conditions cell-protein yields were largely constant within the range from 21°C to 33°C. At temperatures below 21°C and above 33°C yields decreased. These results are interpreted in terms of coupling between energy yielding or redox equivalent providing metabolisms and cell biosynthesis. Upon adaptation from chemotrophic to phototrophic conditions a direct relationship between temperature increase and bacteriochlorophyll level was observed. Arrhenius plots of both, specific growth rates and rates of bacteriochlorophyll synthesis, revealed discontinuities at about 20°C. Temperature coefficients either above or below those discontinuities were similar in both species. In R. rubrum temperature coefficients of the synthesis of total bacteriochlorophyll were also representative of the synthesis of photochemical reaction center and light harvesting bacteriochlorophylls. But in R. sphaeroides significant differences were observed between temperature coefficients of the syntheses of bacteriochlorophylls of the costantly composed reaction centerlight harvesting complex on one hand and of both, total and the quantitatively variable light harvesting bacteriochlorophylls on the other. The results are interpreted in light of hypotheses on the regulation (a) of cellular bacteriochlorophyll levels as well as (b) of the ratio of functionally different bacteriochlorophylls in the photosynthetic apparatus.Abbreviation Bchl bacteriochlorophyll  相似文献   

7.
Comparison of Chloroflexus aurantiacus J-10-fl cells by freeze-fracture electron microscopy showed that cell shape and dimensions did not depend on oxygen tension or light intensity during growth. The major morphological difference between cells cultured anaerobically in the light and aerobically in the dark was the absence of chlorosomes in aerobically grown cells. C. aurantiacus cells cultured aerobically in the dark began bacteriochlorophyll synthesis immediately when shifted to either phototrophic or semiaerobic conditions. Cells adapting to phototrophic conditions grew to the same density and synthesized as much bacteriochlorophyll as nonadapting phototrophic cultures grown at the same light intensity. Cells adapting to reduced oxygen tension (semiaerobic conditions) in the dark entered an 8- to 12-h growth lag during which the bacteriochlorophyll content increased significantly. Despite variations in the initial bacteriochlorophyll content and in the length of the growth lag, the amounts of bacteriochlorophyll a and c were constant at the end of the semiaerobic growth lag. At later times during adaptation to semiaerobic conditions, after growth resumed, variations in the ratio of bacteriochlorophyll c/bacteriochlorophyll a were observed and suggested independent regulation of the two bacteriochlorophylls.  相似文献   

8.
Dihydroxyacetoone synthase (EC 2.2.1.3), which is a key enzyme of the C1-compound-assimilating pathway in yeasts, catalyzes transketolation between formaldehyde and hydroxypyruvate, leading to the formation of dihydroxyacetone and CO2. When [13C]formaldehyde was used as a substrate with dihydroxyacytone synthase from Candida boidinii 2201, 13C was confirmed to be incorporated to the C-1 and C-3 positions of dihydroxyacetone, and the 13C content of each carbon (atoms/100 atoms) was estimated to be 50%. [13C]Methanol was also useful for the enrichment of dihydroxyacetone with 13C, when alcohol oxidase from a methylotrophic yeast was added for the conversion of methanol to formaldehyde. A fed-batch reaction with periodic addition of the substrates was required for the accumalation of 13C-labelled dihydroxyacetone at a higher concentration, because the enzyme system was relatively susceptible to the C donor, formaldehyde or methanol. The optimum conditions for the production gave 160mM (14.4 mg/ml) dihydroxyacetone for 180 min; the molar yield relative to methanol added was 80%. Diyhdroxyacetone kinase (EC 2.7.1.29) from methanol-grown Hansenula polymorpha CBS 4732 was a suitable enzyme for the phosphorylation of dihydroxyacytone. The phosphorylation system, comprising of dihydroxyacetone kinase, adenylate kinase, and ATP, could be coupled with the system for dihydroxyacetone production. A fed-batch reaction afforded 185 mM [1, 3-13C]dihydroxyacetone phosphate from [13C]methanol; the molar yield of the ester relative to methanol added was 92.5%  相似文献   

9.
The structure of the water-soluble bacteriochlorophyll a protein (Bchl protein) from the green photosynthetic bacterium Prosthecochloris aestuarii has been refined at 1.9 A resolution to a crystallographic residual of 18.9%. The refinement was carried out without knowledge of the amino acid sequence and has led to an "X-ray sequence". The structure consists of seven Bchl molecules enclosed within a protein "bag" and the refinement supports the general conformation of the molecule described previously. The refinement also supports the previous suggestion that the ligands to the seven Bchl magnesiums are, respectively, five histidines, a carbonyl oxygen from the polypeptide backbone of the protein, and a bound water molecule. The conformations of the seven Bchl head-groups are described in detail. In two cases the magnesium atoms are approximately 0.48 A "below" the plane of the conjugated macrocycle while in the other five cases the atoms are, on average, 0.48 A "above" the plane. The acetyl ring substituents are more-or-less coplanar with the dihydrophorbin macrocycle, consistent with a previous resonance Raman study. The conjugated atoms in each of the seven macrocycles have significant departures from strict planarity. These deviations are similar for Bchls 1, 2 and 3 (class I) and are also similar for Bchls 4, 5, 6 and 7 (class II). Ethylchlorophillide also belongs to class II. The out-of-plane deformations for the class I and class II bacteriochlorophylls appear to correspond to two distinct modes of bending or curvature of the dihydrophorbin macrocycle.  相似文献   

10.
A method is described for the preparation of two types of multi-labeled 6 beta-hydroxycortisol containing either five deuterium atoms at C-19 methyl and C-1 methylene or four 13C atoms at C-1, C-2, C-4, and C-19 in addition to the five deuterium atoms for use as analytical internal standards for gas chromatography-mass spectrometry (GC-MS). BMD derivatives of [1,1,19,19,19-2H(5)]cortisone and [1,2,4,19-13C(4),1,1,19,19,19-2H(5)]cortisone (cortisone-2H(5)-BMD and cortisone-13C(4),2H(5)-BMD) were first synthesized via indan synthon method starting from optical active 11-oxoindanylpropionic acid and labeled isopropenyl anion ([1,1,3,3,3-2H(5)]- or [1,3-13C(2),1,1,3,3,3-2H(5)]isopropenyl anion). The labeled isopropenyl anion was prepared from commercially available [1,1,1,3,3,3-2H(6)]- or [1,3-13C(2),1,1,1,3,3,3-2H(6)]acetone. Ultraviolet (UV) irradiated autoxidation at C-6 position of 3-ethyl-3,5-dienol ether derivatives of the labeled cortisone-BMDs gave 6 beta-hydroxy-[1,1,19,19,19-2H(5)]cortisone-BMD and 6 beta-hydroxy-[1,2,4,19-13C(4),1,1,19,19,19-2H(5)]cortisone-BMD, respectively, as a mixture of 6 beta- and 6 alpha-epimers in a ratio of 4:1. Separation of 6 beta- and 6 alpha-epimers by thin-layer chromatography (TLC) and subsequent hydrolysis of the BMD group at C-17 gave pure labeled 6 beta-hydroxycortisone. After protecting the keto group at C-3 of the labeled 6 beta-hydroxycortisone-BMD as semicarbazone, reduction of 11-keto group with NaBH(4) and subsequent removal of the C-3 and C-17 protecting groups gave 6beta-hydroxy-[1,1,19,19,19-2H(5)]cortisol (6 beta-hydroxycortisol-2H(5)) and 6 beta-hydroxy-[1,2,4,19-13C(4),1,1,19,19,19-2H(5)]cortisol (6 beta-hydroxycortisol-13C(4),2H(5)), respectively, as a mixture of 6 beta- and 6 alpha-epimers (6 beta:6 alpha=4.4:1). The isotopic compositions of 6 beta-hydroxycortisol-2H(5) and 6 beta-hydroxycortisol-13C(4),2H(5) were 90.9 and 92.1 at.%, respectively. Furthermore, 6 beta-hydroxy-[1 alpha,16,16,17 alpha-2H(4)]testosterone was synthesized by the UV irradiated autoxidation at C-6 position of 3-ethyl-3,5-dienol ether derivative of deuterium-labeled testosterone ([1 alpha,16,16,17 alpha-2H(4)]testosterone) obtained by using catalytic deuteration and hydrogen-deuterium exchange reactions.  相似文献   

11.
The fluorescence properties of bacteriochlorophylls (BChl) of the chlorosomal light-harvesting antenna of Oscillochloris trichoides (strain DG-6) from a new family of green filamentous bacteria Oscillochloridaceae were investigated in comparison with green bacteria from two other families. A strong dependence of the fluorescence intensity of chlorosomal bacteriochlorophyll c of Osc. trichoides on the redox potential of medium was found, which previously was observed only in green sulfur bacteria. The presence of BChl a in chlorosomes did not appear in their absorption spectra but was visualized by fluorescence spectroscopy at 77 K. From the comparative analysis of fluorescence spectral data for the chlorosomal light-harvesting antenna of Osc. trichoides and similar spectral data for green bacteria from two other families, it was concluded that, in some fluorescence spectral features (spectral position of bacteriochlorophyll c/a fluorescence bands; shape and full width at half maximum fluorescence band of chlorosomal bacteriochlorophyll c; the Stokes shift value of bacteriochlorophyll c band; a high molar ratio of bacteriochlorophyll c : bacteriochlorophyll a in chlorosomes that makes the bacteriochlorophyll a fluorescence band unresolved at room temperature; and highly redox-dependent fluorescence intensity of chlorosomal bacteriochlorophyll c), Osc. trichoides chlorosomes are close to the chlorosomal antenna of Chlorobiaceae species.  相似文献   

12.
Raman spectra of bacteriochlorophyll a (BChl) bound to the soluble protein complex from Prosthecochloris aestuarii have been obtained at low temperature, using the resonance effect on their Qx for Soret electronic bands. These spectra show that the acetyl carbonyls of at least four of the seven molecules bound to the monomer subunit of the complex and the ketone carbonyls of at least five of them are oriented close to the mean plane of the conjugated part of the dihydrophorbin macrocycle. Up to three bacteriochlorophyll molecules may have their ketone carbonyls free from hydrogen-bonding and up to two may have their acetyl carbonyls similarly free. Several of the binding sites of the remaining conjugated carbonyls are probably the same as those binding the conjugated carbonyls of bacteriochlorophyll (and of bacteriopheophytin) in reaction centers and in antenna structures of purple bacteria and as those binding chlorophyll in the antenna of higher plants and algae. The present resonance Raman spectra confirm that the magnesium atoms of most of the seven bacteriochlorophylls are pentacoordinated. They also show that polarisation effects from their local environments induce changes in the groundstate structures of the dihydrophorbin skeletons of the complexed molecules with respect to those of isolated, monomeric bacteriochlorophyll. These changes are quasi-identical for the seven molecules. These environmental effects predominate over any structural change brought about by intermolecular bonding of the conjugated carbonyls or of the magnesium atoms. The dihydrophorbin rings of the seven molecules thus appear to be immersed in a nearly homogeneous medium of low permittivity, although specific van der Waals interactions may polarise the free carbonyls to quite different extents. The possible implications of these observations on the interpretation of the electronic spectrum of the set of complexed bacteriochlorophylls are discussed.  相似文献   

13.
The pigment content of a B800-850 light-harvesting pigment-protein complex isolated from three different stains of Rhodopseudomonas sphaeroides has been determined. In each case the ratio of carotenoid to bacteriochlorophyll present is very nearly 1 : 3 an no specificity with regard to carotenoid type was observed. The fourth derivative of the infra-red absorption bands of the complex was determined and it is concluded that the minimal functional unit of B800-850 complex consists of 1 carotenoid molecule and three bacteriochlorophyll molecules. The data presented here, together with the previous study of Austin, (Austin, L.A. (1976) Ph.D. Thesis, University of California at Berkeley, Lawrence Berkeley Laboratory Report No. LBL 5512) suggest that the 800 nm absorption band represents one of these bacteriochlorophyll molecules while the remaining two bacteriochlorophylls are responsible for the 850 nm band. The absorption spectra and circular dichroism spectra of the complexes suggests that their structure has not been greatly altered during the purification.  相似文献   

14.
Mutations were made in four residues near the bacteriochlorophyll cofactors of the photosynthetic reaction center from Rhodobacter sphaeroides. These mutations, L131 Leu to His and M160 Leu to His, near the dimer bacteriochlorophylls, and M203 Gly to Asp and L177 Ile to Asp, near the monomer bacteriochlorophylls, were designed to result in the placement of a hydrogen bond donor group near the ring V keto carbonyl of each bacteriochlorophyll. Perturbations of the electronic structures of the bacteriochlorophylls in the mutants are indicated by additional resolved transitions in the bacteriochlorophyll absorption bands in steady-state low-temperature and time-resolved room temperature spectra in three of the resulting mutant reaction centers. The major effect of the two mutations near the dimer was an increase up to 80 mV in the donor oxidation-reduction midpoint potential. Correspondingly, the calculated free energy difference between the excited state of the primary donor and the initial charge separated state decreased by up to 55 mV, the initial forward electron-transfer rate was up to 4 times slower, and the rate of charge recombination between the primary quinone and the donor was approximately 30% faster in these two mutants compared to the wild type. The two mutations near the monomer bacteriochlorophylls had minor changes of 25 mV or less in the donor oxidation-reduction potential, but the mutation close to the monomer bacteriochlorophyll on the active branch resulted in a roughly 3-fold decrease in the rate of the initial electron transfer.  相似文献   

15.
The pigment content of a B800–850 light-harvesting pigment-protein complex isolated from three different stains of Rhodopseudomonas sphaeroides has been determined. In each case the ratio of carotenoid to bacteriochlorophyll present is very nearly 1 : 3 an no specificity with regard to carotenoid type was observed.The fourth derivative of the infra-red absorption bands of the complex was determined and it is concluded that the minimal functional unit of B800–850 complex consists of 1 carotenoid molecule and three bacteriochlorophyll molecules. The data presented here, together with the previous study of Austin, (Austin, L.A. (1976) Ph.D. Thesis, University of California at Berkeley, Lawrence Berkeley Laboratory Report No. LBL 5512) suggest that the 800 nm absorption band represents one of these bacteriochlorophyll molecules while the remaining two bacteriochlorophylls are responsible for the 850 nm band.The absorption spectra and circular dichroism spectra of the complexes suggests that their structure has not been greatly altered during the purification.  相似文献   

16.
A chlorosome is an antenna complex located on the cytoplasmic side of the inner membrane in green photosynthetic bacteria that contains tens of thousands of self-assembled bacteriochlorophylls (BChls). Green bacteria are known to incorporate various esterifying alcohols at the C-17 propionate position of BChls in the chlorosome. The effect of these functional substitutions on the biogenesis of the chlorosome has not yet been fully explored. In this report, we address this question by investigating various esterified bacteriochlorophyll c (BChl c) homologs in the thermophilic green non-sulfur bacterium Chloroflexus aurantiacus. Cultures were supplemented with exogenous long-chain alcohols at 52 °C (an optimal growth temperature) and 44 °C (a suboptimal growth temperature), and the morphology, optical properties and exciton transfer characteristics of chlorosomes were investigated. Our studies indicate that at 44 °C Cfl. aurantiacus synthesizes more carotenoids, incorporates more BChl c homologs with unsaturated and rigid polyisoprenoid esterifying alcohols and produces more heterogeneous BChl c homologs in chlorosomes. Substitution of phytol for stearyl alcohol of BChl c maintains similar morphology of the intact chlorosome and enhances energy transfer from the chlorosome to the membrane-bound photosynthetic apparatus. Different morphologies of the intact chlorosome versus in vitro BChl aggregates are suggested by small-angle neutron scattering. Additionally, phytol cultures and 44 °C cultures exhibit slow assembly of the chlorosome. These results suggest that the esterifying alcohol of BChl c contributes to long-range organization of BChls, and that interactions between BChls with other components are important to the assembly of the chlorosome. Possible mechanisms for how esterifying alcohols affect the biogenesis of the chlorosome are discussed.  相似文献   

17.
M S Huster  K M Smith 《Biochemistry》1990,29(18):4348-4355
Administration of carbon-13 and carbon-14 labeled glutamate, glycine, and methionine to Chlorobium vibrioforme forma thiosulfatophilum strain D have demonstrated operation of the C5 and C1 metabolic pathways in bacteriochlorophyll c and bacteriochlorophyll d biosynthesis in this organism, with glutamate providing the delta-aminolevulinic acid for macrocycle synthesis and glycine providing the source of the extra homologation at the 4-, 5-, and delta-positions (via S-adenosylmethionine). Further evidence showing that the bacteria appear to adjust the homologue composition of their antenna bacteriochlorophylls in response to varying growth conditions is presented. Timing of these changes within a single culture is consistent with a light adaptation mechanism, which predicts that degree of alkylation is directly proportional to light intensity in the culture; other factors influencing pigment composition during the lifespan of a single culture may also be operating, and these are discussed.  相似文献   

18.
Summary The bacteriochlorophylls a of 60 strains belonging to 13 different species of the purple nonsulfur bacteria (Rhodospirillaceae) were studied with respect to the nature of the esterifying alcohol. The new bacteriochlorophyll aGg containing all-trans-geranylgeraniol is the main bacteriochlorophyll in all strains of Rhodospirillum rubrum. Rhodospirillum photometricum contains the new and the classical bacteriochlorophyll aP (phytol as esterifying alcohol) in nearly equal amounts. The strains of all other species contain the classical bacteriochlorophyll aP.  相似文献   

19.
Escherichia coli (E. coli) is an ideal organism to tailor-make labeled nucleotides for biophysical studies of RNA. Recently, we showed that adding labeled formate enhanced the isotopic enrichment at protonated carbon sites in nucleotides. In this paper, we show that growth of a mutant E. coli strain DL323 (lacking succinate and malate dehydrogenases) on (13)C-2-glycerol and (13)C-1,3-glycerol enables selective labeling at many useful sites for RNA NMR spectroscopy. For DL323 E. coli grown in (13)C-2-glycerol without labeled formate, all the ribose carbon atoms are labeled except the C3' and C5' carbon positions. Consequently the C1', C2' and C4' positions remain singlet. In addition, only the pyrimidine base C6 atoms are substantially labeled to ~96% whereas the C2 and C8 atoms of purine are labeled to ~5%. Supplementing the growth media with (13)C-formate increases the labeling at C8 to ~88%, but not C2. Not unexpectedly, addition of exogenous formate is unnecessary for attaining the high enrichment levels of ~88% for the C2 and C8 purine positions in a (13)C-1,3-glycerol based growth. Furthermore, the ribose ring is labeled in all but the C4' carbon position, such that the C2' and C3' positions suffer from multiplet splitting but the C5' position remains singlet and the C1' position shows a small amount of residual C1'-C2' coupling. As expected, all the protonated base atoms, except C6, are labeled to ~90%. In addition, labeling with (13)C-1,3-glycerol affords an isolated methylene ribose with high enrichment at the C5' position (~90%) that makes it particularly attractive for NMR applications involving CH(2)-TROSY modules without the need for decoupling the C4' carbon. To simulate the tumbling of large RNA molecules, perdeuterated glycerol was added to a mixture of the four nucleotides, and the methylene TROSY experiment recorded at various temperatures. Even under conditions of slow tumbling, all the expected carbon correlations were observed, which indicates this approach of using nucleotides obtained from DL323 E. coli will be applicable to high molecular weight RNA systems.  相似文献   

20.
The bacteriochlorophyll d producing photosynthetic green sulfur bacteria Chlorobium vibrioforme forma thiosulfatophilum strain NCIB 8327 and C. vibrioforme strain B1-20 respond to reduced light conditions in culture by performing methylations at the 4- and 5-substituents, for example, converting the 4-Et into 4-n-Pr, 4-i-Bu, and even 4-neoPn. During this process, the absorption maximum in living cells of C. vibrioforme strain B1-20 red shifts from 714 to about 728 nm. Eventually, the C. vibrioforme forma thiosulfatophilum strain NCIB 8327 culture carries out a delta-methylation to produce the bacteriochlorophylls c (lambda max ca. 750 nm); the new UC Davis bacteriochlorophyll c culture is named C. vibrioforme forma thiosulfatophilum strain D. It is possible that the homologation process increases hydrophobic interactions between individual BChl molecules, giving rise to larger aggregates in the antenna system. Alternatively, the additional methyl units attached to the 4-position shift the absolute configuration of the 2-(1-hydroxyethyl) group from pure R in the case of 4-Et to pure S in the case of 4-neoPn, which in turn might determine the size of the in vivo aggregates due to the intrinsic nature of the pigment protein system. It is suggested that the bacteriochlorophylls c from Chloroflexus aurantiacus strain J-10-fl and the bacteriochlorophylls e from Chlorobium phaeovibrioides might have undergone similar meso methylation as a response to external environmental pressure such as low light intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号