首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isotonic and isometric properties of nine human bronchial smoothmuscles were studied under various loading and tone conditions. Freshlydissected bronchial strips were electrically stimulated successively atbaseline, after precontraction with107 M methacholine (MCh),and after relaxation with105 M albuterol (Alb).Resting tension, i.e., preload determining optimal initial length(Lo) atbaseline, was held constant. Compared with baseline, MCh decreasedmuscle length to 93 ± 1%Lo(P < 0.001) before any electricalstimulation, whereas Alb increased it to 111 ± 3%Lo(P < 0.01). MCh significantlydecreased maximum unloaded shortening velocity (0.045 ± 0.007 vs.0.059 ± 0.007 Lo/s), maximalextent of muscle shortening (8.4 ± 1.2 vs. 13.9 ± 2.4%Lo), and peakisometric tension (6.1 ± 0.8 vs. 7.2 ± 1.0 mN/mm2). Alb restored all thesecontractile indexes to baseline values. These findings suggest that MChreversibly increased the number of active actomyosin cross bridgesunder resting conditions, limiting further muscle shortening and activetension development. After the electrically induced contraction,muscles showed a transient phase of decrease in tension below preload.This decrease in tension was unaffected by afterload levels but wassignificantly increased by MCh and reduced by Alb. These findingssuggest that the cross bridges activated before, but not during, theelectrically elicited contraction may modulate the phase of decrease intension below preload, reflecting the active part of resting tension.  相似文献   

2.
We asked whethercrystalloid administration improves tissue oxygen extraction inendotoxicosis. Four groups of anesthetized pigs(n = 8/group) received either normalsaline infusion or no saline and either endotoxin or no endotoxin. Wemeasured whole body (WB) and gut oxygen delivery and consumption duringhemorrhage to determine the critical oxygen extraction ratio(ERO2 crit). Just after onset of ischemia (critical oxygen delivery rate), gut was removed for determination of area fraction of interstitial edema and capillary hematocrit. Radiolabeled microspheres were used todetermine erythrocyte transit time for the gut. Endotoxin decreased WBERO2 crit(0.82 ± 0.06 to 0.55 ± 0.08, P < 0.05) and gutERO2 crit(0.77 ± 0.07 to 0.52 ± 0.06, P < 0.05). Unexpectedly, saline administration also decreased WBERO2 crit (0.82 ± 0.06 to 0.62 ± 0.08, P < 0.05) and gutERO2 crit (0.77 ± 0.07 to 0.67 ± 0.06, P < 0.05) in nonendotoxin pigs. Saline administration increased thearea fraction of interstitial space (P < 0.05) and resulted in arterial hemodilution(P < 0.05) but not capillaryhemodilution (P > 0.05). Salineincreased the relative dispersion of erythrocyte transit times from0.33 ± 0.08 to 0.72 ± 0.53 (P < 0.05). Thus saline administration impairs tissue oxygen extractionpossibly by increasing interstitial edema or increasing heterogeneityof microvascular erythrocyte transit times.

  相似文献   

3.
Cerebral vasomotor reactivity at high altitude in humans   总被引:3,自引:0,他引:3  
The purpose of this study was twofold:1) to determine whether at highaltitude cerebral blood flow (CBF) as assessed during CO2 inhalation and duringhyperventilation in subjects with acute mountain sickness (AMS) wasdifferent from that in subjects without AMS and2) to compare the CBF as assessedunder similar conditions in Sherpas at high altitude and in subjects atsea level. Resting control values of blood flow velocity in themiddle cerebral artery (VMCA), pulseoxygen saturation (SaO2), andtranscutaneous PCO2 were measured at4,243 m in 43 subjects without AMS, 17 subjects with AMS, 20 Sherpas,and 13 subjects at sea level. Responses ofCO2 inhalation andhyperventilation onVMCA,SaO2, and transcutaneous PCO2 were measured, and the cerebralvasomotor reactivity (VMR = VMCA/PCO2)was calculated as the fractional change ofVMCA per Torrchange of PCO2, yielding ahypercapnic VMR and a hypocapnic VMR. AMS subjects showeda significantly higher resting controlVMCA than didno-AMS subjects (74 ± 22 and 56 ± 14 cm/s, respectively;P < 0.001), andSaO2 was significantly lower (80 ± 8 and 88 ± 3%, respectively; P < 0.001). Resting control VMCA values inthe sea-level group (60 ± 15 cm/s), in the no-AMS group, and inSherpas (59 ± 13 cm/s) were not different. Hypercapnic VMR valuesin AMS subjects were 4.0 ± 4.4, in no-AMS subjects were 5.5 ± 4.3, in Sherpas were 5.6 ± 4.1, and in sea-level subjects were 5.6 ± 2.5 (not significant). Hypocapnic VMR values were significantly higher in AMS subjects (5.9 ± 1.5) compared with no-AMS subjects (4.8 ± 1.4; P < 0.005) but werenot significantly different between Sherpas (3.8 ± 1.1) and thesea-level group (2.8 ± 0.7). We conclude that AMS subjects havegreater cerebral hemodynamic responses to hyperventilation, higherVMCAresting control values, and lower SaO2 compared with no-AMSsubjects. Sherpas showed a cerebral hemodynamic patternsimilar to that of normal subjects at sea level.  相似文献   

4.
Xie, Ailiang, Fiona Rankin, Ruth Rutherford, and T. DouglasBradley. Effects of inhaledCO2 and added dead space on idiopathic central sleep apnea. J. Appl.Physiol. 82(3): 918-926, 1997.We hypothesizedthat reductions in arterial PCO2 (PaCO2) below the apnea threshold play akey role in the pathogenesis of idiopathic central sleep apnea syndrome(ICSAS). If so, we reasoned that raisingPaCO2 would abolish apneas in thesepatients. Accordingly, patients with ICSAS were studied overnight onfour occasions during which the fraction of end-tidalCO2 and transcutaneous PCO2 were measured: during room airbreathing (N1), alternating room airand CO2 breathing(N2),CO2 breathing all night(N3), and addition of dead space viaa face mask all night (N4).Central apneas were invariably preceded by reductions infraction of end-tidal CO2. Bothadministration of a CO2-enrichedgas mixture and addition of dead space induced 1- to 3-Torr increasesin transcutaneous PCO2, whichvirtually eliminated apneas and hypopneas; they decreased from43.7 ± 7.3 apneas and hypopneas/h onN1 to 5.8 ± 0.9 apneas andhypopneas/h during N3(P < 0.005), from 43.8 ± 6.9 apneas and hypopneas/h during room air breathing to 5.9 ± 2.5 apneas and hypopneas/h of sleep duringCO2 inhalation during N2 (P < 0.01), and to 11.6% of the room air level while the patients werebreathing through added dead space duringN4 (P < 0.005). Because raisingPaCO2 through two different meansvirtually eliminated central sleep apneas, we conclude that centralapneas during sleep in ICSA are due to reductions inPaCO2 below the apnea threshold.

  相似文献   

5.
Gozal, David, Gavin R. Graff, José E. Torres, SanjayG. Khicha, Gautam S. Nayak, Narong Simakajornboon, and Evelyne Gozal. Cardiorespiratory responses to systemic administration of aprotein kinase C inhibitor in conscious rats. J. Appl.Physiol. 84(2): 641-648, 1998.Although proteinkinase C (PKC) is an essential component of multiple neurally mediatedevents, its role in respiratory control remains undefined. Theventilatory effects of a systemically active PKC inhibitor (Ro-32-0432;100 mg/kg ip) were assessed by whole body plethysmography duringnormoxia, hypoxia (10% O2), andhyperoxia (100% O2) inunrestrained Sprague-Dawley rats. A sustained expiratory time increaseoccurred within 8-10 min of injection in room air[mean 44.8 ± 5.2 (SE) % ], was similarto expiratory time prolongations after Ro-32-0432 administration during100% O2 (45.5 ± 8.1%; not significant), and was associated with mildminute ventilation (E) decreases.Hypercapnic ventilatory responses (5%CO2) remained unchanged afterRo-32-0432. During 10% O2,E increased from 122.6 ± 15.6 to 195.7 ± 10.1 ml/min in vehicle-treated rats(P < 0.001). In contrast, markedattenuation of E hypoxic responsesoccurred after Ro-32-0432 [86.2 ± 6.2 ml/min inroom air to 104.1 ± 7.1 ml/min in 10%O2; pre- vs. post-Ro32-0432, P < 0.001 (analysis ofvariance)]. Overall, PKC activity was reduced and increases withhypoxia were abolished in the particulate subcellular fraction of brain tissue after Ro-32-0432 treatment, indicating thatthis compound readily crosses the blood-brain barrier. We conclude thatsystemic PKC inhibition elicits significant centrally mediatedexpiratory prolongations and ventilatory reductions as well as bluntedventilatory responses to hypoxia but not to hypercapnia. Wepostulate that PKC plays an important role in signal transduction pathways within brain regions underlying respiratory control.

  相似文献   

6.
Blocker-inducednoise analysis of epithelial Na+ channels (ENaCs) was usedto investigate how inhibition of an LY-294002-sensitive phosphatidylinositol 3-kinase (PI 3-kinase) alters Na+transport in unstimulated and aldosterone-prestimulated A6 epithelia. From baseline Na+ transport rates(INa) of 4.0 ± 0.1 (unstimulated) and9.1 ± 0.9 µA/cm2 (aldosterone), 10 µM LY-294002caused, following a relatively small initial increase of transport, acompletely reversible inhibition of transport within 90 min to 33 ± 6% and 38 ± 2% of respective baseline values. Initialincreases of transport could be attributed to increases of channel openprobability (Po) within 5 min to 143 ± 17% (unstimulated) and 142 ± 10% of control (aldosterone) frombaseline Po averaging near 0.5. Inhibition oftransport was due to much slower decreases of functional channeldensities (NT) to 28 ± 4% (unstimulated)and 35 ± 3% (aldosterone) of control at 90 min. LY-294002 (50 µM) caused larger but completely reversible increases ofPo (215 ± 38% of control at 5 min) andmore rapid but only slightly larger decreases ofNT. Basolateral exposure to LY-294002 induced nodetectable effect on transport, Po or NT. We conclude that an LY-294002-sensitive PI3-kinase plays an important role in regulation of transport bymodulating NT and Po ofENaCs, but only when presented to apical surfaces of the cells.

  相似文献   

7.
Babb, T. G. Ventilatory response to exercise insubjects breathing CO2 orHeO2.J. Appl. Physiol. 82(3): 746-754, 1997.To investigate the effects of mechanical ventilatory limitationon the ventilatory response to exercise, eight older subjects with normal lung function were studied. Each subject performed graded cycleergometry to exhaustion once while breathing room air; once whilebreathing 3% CO2-21%O2-balanceN2; and once while breathing HeO2 (79% He and 21%O2). Minute ventilation(E) and respiratory mechanics weremeasured continuously during each 1-min increment in work rate (10 or20 W). Data were analyzed at rest, at ventilatory threshold (VTh),and at maximal exercise. When the subjects were breathing 3%CO2, there was an increase(P < 0.001) inE at rest and at VTh but not duringmaximal exercise. When the subjects were breathingHeO2,E was increased(P < 0.05) only during maximalexercise (24 ± 11%). The ventilatory response to exercise belowVTh was greater only when the subjects were breathing 3% CO2(P < 0.05). Above VTh, theventilatory response when the subjects were breathingHeO2 was greater than whenbreathing 3% CO2(P < 0.01). Flow limitation, aspercent of tidal volume, during maximal exercise was greater(P < 0.01) when the subjects werebreathing CO2 (22 ± 12%) thanwhen breathing room air (12 ± 9%) or when breathingHeO2 (10 ± 7%)(n = 7). End-expiratory lung volumeduring maximal exercise was lower when the subjects were breathingHeO2 than when breathing room airor when breathing CO2(P < 0.01). These data indicate thatolder subjects have little reserve for accommodating an increase inventilatory demand and suggest that mechanical ventilatory constraintsinfluence both the magnitude of Eduring maximal exercise and the regulation ofE and respiratory mechanics duringheavy-to-maximal exercise.

  相似文献   

8.
Whole cellpatch-clamp techniques were used to investigate amiloride-sensitivesodium conductance (GNa) in the everted initial collecting tubule of Ambystoma. Accessibility to both theapical and basolateral membranes made this preparation ideal forstudying the regulation of sodium transport by insulin.GNa accounted for 20% of total cell conductance(GT) under control conditions. A restingmembrane potential of 75 ± 2 mV (n = 7)together with the fact that GT is stable withtime suggested that the cells studied were viable. Measurements ofcapacitance and use of a known uncoupling agent, heptanol, suggestedthat cells were not electrically coupled. Thus the values ofGT and GNa represented individual principal cells. Exposure of the basolateral membrane toinsulin (1 mU/ml) for 10-60 min significantly (P < 0.05) increased the normalized GNa [1.2 ± 0.3 nS (n = 6) vs. 2.0 ± 0.4 nS(n = 6)]. Cell-attached patch-clamp techniques wereused to further elucidate the mechanism by which insulin increasesamiloride-sensitive epithelial sodium channel (ENaC) activity. In thepresence of insulin there was no apparent change in either the numberof active levels/patch or the conductance of ENaC. The openprobability increased significantly (P < 0.01) from0.21 ± 0.04 (n = 6) to 0.46 ± 0.07 (n = 6). Thus application of insulin enhanced sodium reabsorption by increasing the fraction of time the channel spent inthe open state.

  相似文献   

9.
Albert, T. S. E., V. L. Tucker, and E. M. Renkin.Atrial natriuretic peptide levels and plasma volume contraction in acute alveolar hypoxia. J. Appl.Physiol. 82(1): 102-110, 1997.Arterial oxygentensions (PaO2), atrial natriureticpeptide (ANP) concentrations, and circulating plasma volumes (PV) weremeasured in anesthetized rats ventilated with room air or 15, 10, or8% O2(n = 5-7). After 10 min ofventilation, PaO2 values were 80 ± 3, 46 ± 1, 32 ± 1, and 35 ± 1 Torrand plasma immunoreactive ANP (irANP) levels were 211 ± 29, 229 ± 28, 911 ± 205, and 4,374 ± 961 pg/ml, respectively. AtPaO2 40 Torr, irANP responses weremore closely related to inspiredO2(P = 0.014) than toPaO2 (P = 0.168). PV was 36.3 ± 0.5 µl/g in controls but 8.5 and9.9% lower (P  0.05) for10 and 8% O2, respectively.Proportional increases in hematocrit were observed in animals withreduced PV; however, plasma protein concentrations were not differentfrom control. Between 10 and 50 min of hypoxia, small increases (+40%)in irANP occurred in 15% O2;however, there was no further change in PV, hematocrit, plasma protein,or irANP levels in the lower O2groups. Urine output tended to fall during hypoxia but was notsignificantly different among groups. These findings are compatiblewith a role for ANP in mediating PV contraction during acute alveolarhypoxia.

  相似文献   

10.
Verbitsky, O., J. Mizrahi, M. Levin, and E. Isakov.Effect of ingested sodium bicarbonate on muscle force, fatigue, and recovery. J. Appl. Physiol. 83(2):333-337, 1997.The influence of acute ingestion ofNaHCO3 on fatigue and recovery ofthe quadriceps femoris muscle after exercise was studied in six healthymale subjects. A bicycle ergometer was used for exercising under three loading conditions: test A, loadcorresponding to maximal oxygen consumption; testB, load in test A + 17%; test C, load intest B but performed 1 h after acuteingestion of NaHCO3.Functional electrical stimulation (FES) was applied to provokeisometric contraction of the quadriceps femoris. The resulting kneetorque was monitored during fatigue (2-min chronic FES) and recovery (10-s FES every 10 min, for 40 min). Quadriceps torques were higher inthe presence of NaHCO3(P < 0.05): withNaHCO3 the peak, residual, andrecovery (after 40 min) normalized torques were, respectively, 0.68 ± 0.05 (SD), 0.58 ± 0.05, and 0.73 ± 0.05; withoutNaHCO3 the values were 0.45 ± 0.04, 0.30 ± 0.06, and 0.63 ± 0.06. The increasedtorques obtained after acute ingestion ofNaHCO3 indicate the possibleexistence of improved nonoxidative glycolysis in isometric contraction,resulting in reduced fatigue and enhanced recovery.

  相似文献   

11.
Through a right thoracotomy in seven sheep we chronically implanted sonomicrometry crystals and electromyographic electrodes in the costal and crural diaphragmatic regions. Awake sheep were studied during recovery for 4-6 wk, both during quiet breathing (QB) and during CO2 rebreathing. Tidal volume, respiratory frequency, and esophageal and gastric pressures were studied before and after surgery. Normalized resting length (LFRC) was significantly decreased for the costal segment on postoperative day 1 compared with postoperative day 28. Fractional costal shortening both during QB and at 10% end-tidal CO2 (ETCO2) increased significantly from postoperative days 1 to 28, whereas crural shortening did not change during QB but progressively increased at 10% ETCO2. Maximal costal shortening during electrophrenic stimulation was constant at 40% LFRC during recovery, although maximal crural shortening increased from 23 to 32% LFRC. Minute ventilation, tidal volume, and transdiaphragmatic pressure at 10% ETCO2 increased progressively after thoracotomy until postoperative day 28. Our results suggest there is profound diaphragmatic inhibition after thoracotomy and crystal implantation in sheep that requires at least 3-4 wk for stable recovery.  相似文献   

12.
Methods are described for isolating smooth muscle cells from thetracheae of adult and neonatal sheep and measuring the single-cell shortening velocity. Isolated cells were elongated,Ca2+ tolerant, and contractedrapidly and substantially when exposed to cholinergic agonists, KCl,serotonin, or caffeine. Adult cells were longer and widerthan preterm cells. Mean cell length in 1.6 mMCaCl2 was 194 ± 57 (SD) µm(n = 66) for adult cells and 93 ± 32 µm (n = 20) for preterm cells(P < 0.05). Mean cell width at thewidest point of the adult cells was 8.2 ± 1.8 µm(n = 66) and 5.2 ± 1.5 µm(n = 20) for preterm cells(P < 0.05). Cells were loaded into aperfusion dish maintained at 35°C and exposed to agonists, andcontractions were videotaped. Cell lengths were measured from 30 videoframes and plotted as a function of time. Nonlinear fitting of celllength to an exponential model gave shortening velocities faster thanmost of those reported for airway smooth muscle tissues. For a sampleof 10 adult and 10 preterm cells stimulated with 100 µM carbachol,mean (± SD) shortening velocity of the preterm cells was notdifferent from that of the adult cells (0.64 ± 0.30 vs. 0.54 ± 0.27 s1, respectively), butpreterm cells shortened more than adult cells (68 ± 12 vs. 55 ± 11% of starting length, respectively;P < 0.05). The preparative andanalytic methods described here are widely applicable to other smoothmuscles and will allow contraction to be studied quantitatively at thesingle-cell level.

  相似文献   

13.
Phosphocreatine hydrolysis during submaximal exercise: the effect of FIO2   总被引:1,自引:0,他引:1  
There isevidence that the concentration of the high-energy phosphatemetabolites may be altered during steady-state submaximal exerciseby the breathing of different fractions of inspiredO2 (FIO2). Whereasit has been suggested that these changes may be the result ofdifferences in time taken to achieve steady-state O2 uptake(O2) at differentFIO2 values, we postulated that they are due to a direct effect ofO2 tension. We used31P-magnetic resonancespectroscopy during constant-load, steady-state submaximal exercise todetermine 1) whether changes inhigh-energy phosphates do occur at the sameO2 with variedFIO2 and2) that these changes are not due todifferences in O2onset kinetics. Six male subjects performed steady-state submaximal plantar flexion exercise [7.2 ± 0.6 (SE) W] for 10 minwhile lying supine in a 1.5-T clinical scanner. Magnetic resonancespectroscopy data were collected continuously for 2 min beforeexercise, 10 min during exercise, and 6 min during recovery. Subjectsperformed three different exercise bouts at constant load with theFIO2 switched after 5 min ofthe 10-min exercise bout. The three exercise treatments were1)FIO2 of 0.1 switched to0.21, 2)FIO2 of 0.1 switched to1.00, and 3)FIO2 of 1.00 switched to0.1. For all three treatments, theFIO2 switch significantly (P  0.05) altered phosphocreatine:1) 55.5 ± 4.8 to 67.8 ± 4.9% (%rest); 2) 59.0 ± 4.3 to72.3 ± 5.1%; and 3) 72.6 ± 3.1 to 64.2 ± 3.4%, respectively. There were no significantdifferences in intracellular pH for the three treatments. The resultsdemonstrate that the differences in phosphocreatine concentration withvaried FIO2 are not theresult of different O2onset kinetics, as this was eliminated by the experimental design.These data also demonstrate that changes in intracellular oxygenation,at the same work intensity, result in significant changes in cell homeostasis and thereby suggest a role for metabolic control by O2 even during submaximalexercise.

  相似文献   

14.
We used a reconstituted fiber formed when 3T3fibroblasts are grown in collagen to characterize nonmusclecontractility and Ca2+ signaling. Calf serum (CS) andthrombin elicited reversible contractures repeatable for >8 h. CSelicited dose-dependent increases in isometric force; 30% produced thelargest forces of 106 ± 12 µN (n = 30), whichis estimated to be 0.5 mN/mm2 cell cross-sectionalarea. Half times for contraction and relaxation were 4.7 ± 0.3 and 3.1 ± 0.3 min at 37°C. With imposition of constant shortening velocities, force declined with time, yieldingtime-dependent force-velocity relations. Forces at 5 s fit thehyperbolic Hill equation; maximum velocity(Vmax) was 0.035 ± 0.002 Lo/s.Compliance averaged 0.0076 ± 0.0006 Lo/Fo. Disruption of microtubules with nocodazole in a CS-contracted fiber had no net effects on force, Vmax, or stiffness; force increased in 8, butdecreased in 13, fibers. Nocodazole did not affect baselineintracellular Ca2+ concentration([Ca2+]i) but reduced (~30%) the[Ca2+]i response to CS. The force afternocodazole treatment was the primary determinant of stiffness andVmax, suggesting that microtubules were not amajor component of fiber internal mechanical resistance. Cytochalasin Dhad major inhibitory effects on all contractile parameters measured butlittle effect on [Ca2+]i.

  相似文献   

15.
We sought to determine whether chronic exposure tointermittent hypoxia (CIH) increases sympathetic responsiveness tosubsequent chemoreflex stimulation. Sprague-Dawley rats were exposed to30 days of CIH: exposure chamber%O2 [fractionalconcentration of chamber O2(FcO2)]nadir 6.5-7% with return to 21% each minute for 8 h/day duringthe diurnal sleep period (Exp group). Sham controls (SC group) weresimilarly handled but kept at 21%FcO2 andcompared with unhandled controls (UC group). Rats were then anesthetized with urethan, and preganglionic cervical sympathetic activity (CSA), diaphragm electromyogram, arterial pressure, and electrocardiogram were recorded while the rats were spontaneously breathing 100% O2, room air, 10%O2, 12%CO2, and 10%O2-12%CO2. CSA and heart rate were alsorecorded during phenylephrine infusion to assess baroreceptor function.Mean arterial pressure was significantly greater in Exp than in SC andUC rats during all conditions (P < 0.05). A vasopressor response to 10%O2-12%CO2 was observed only in Exp rats.CSA was greater in Exp than in SC and UC rats during 10%O2, 12%CO2, and 10%O2-12%CO2 but not during room-air exposure. A significant increase in CSA compared with room air wasnoted during 10% O2, 12%CO2, and 10%O2-12%CO2 in Exp but not in SC or UCrats. No differences in baroreceptor function were observed amonggroups. We conclude that CIH leads to increased sympatheticresponsiveness to chemoreflex stimulation.

  相似文献   

16.
Akilesh, Manjapra R., Matthew Kamper, Aihua Li, and EugeneE. Nattie. Effects of unilateral lesions of retrotrapezoid nucleuson breathing in awake rats. J. Appl.Physiol. 82(2): 469-479, 1997.In anesthetizedrats, unilateral retrotrapezoid nucleus (RTN) lesions markedlydecreased baseline phrenic activity and the response toCO2 (E. E. Nattie and A. Li.Respir. Physiol. 97: 63-77,1994). Here we evaluate the effects of such lesions on restingbreathing and on the response to hypercapnia and hypoxia inunanesthetized awake rats. We made unilateral injections [24 ± 7 (SE) nl] of ibotenic acid (IA; 50 mM), an excitatoryamino acid neurotoxin, in the RTN region(n = 7) located by stereotaxic coordinates and by field potentials induced by facial nervestimulation. Controls (n = 6) receivedRTN injections (80 ± 30 nl) of mock cerebrospinal fluid. A secondcontrol consisted of four animals with IA injections (24 ± 12 nl)outside the RTN region. Injected fluorescent beads allowed anatomicidentification of lesion location. Using whole body plethysmography, wemeasured ventilation in the awake state during room air, 7%CO2 in air, and 10%O2 breathing before and for 3 wkafter the RTN injections. There was no statistically significant effectof the IA injections on resting room air breathing in the lesion groupcompared with the control groups. We observed no apnea. The response to7% CO2 in the lesion groupcompared with the control groups was significantly decreased, by 39%on average, for the final portion of the 3-wk study period. There wasno lesion effect on the ventilatory response to 10%O2. In this unanesthetized model,other areas suppressed by anesthesia, e.g., the reticular activatingsystem, hypothalamus, and perhaps the contralateral RTN, may providetonic input to the respiratory centers that counters the loss of RTNactivity.

  相似文献   

17.
The present study compared the microdialysis ethanoloutflow-inflow technique for estimating blood flow (BF) in skeletalmuscle of humans with measurements by Doppler ultrasound of femoralartery inflow to the limb(BFFA). The microdialysis probeswere inserted in the vastus lateralis muscle and perfused with a Ringeracetate solution containing ethanol,[2-3H]adenosine (Ado),andD-[14C(U)]glucose.BFFA at rest increased from0.16 ± 0.02 to 1.80 ± 0.26 and 4.86 ± 0.53 l/minwith femoral artery infusion of Ado (AdoFA,i) at 125 and 1,000 µg · min1 · l1thigh volume (low dose and high dose, respectively;P < 0.05) and to 3.79 ± 0.37 and6.13 ± 0.65 l/min during one-legged, dynamic, thigh muscle exercisewithout and with high AdoFA,i,respectively (P < 0.05). The ethanoloutflow-to-inflow ratio (38.3 ± 2.3%) and the probe recoveries(PR) for [2-3H]Ado(35.4 ± 1.6%) and forD-[14C(U)]glucose(15.9 ± 1.1%) did not change withAdoFA,i at rest (P = not significant). During exercisewithout and with AdoFA,i, theethanol outflow-to-inflow ratio decreased(P < 0.05) to a similar level of17.5 ± 3.4 and 20.6 ± 3.2%, respectively(P = not significant), respectively,while the PR increased (P < 0.05) toa similar level (P = not significant)of 55.8 ± 2.8 and 61.2 ± 2.5% for[2-3H]Ado and to 42.8 ± 3.9 and 45.2 ± 5.1% forD-[14C(U)]glucose.Whereas the ethanol outflow-to-inflow ratio and PR correlated inverselyand positively, respectively, to the changes in BF during muscularcontractions, neither of the ratio nor PR correlated tothe AdoFA,i-induced BF increase.Thus the ethanol outflow-to-inflow ratio does not represent skeletalmuscle BF but rather contraction-induced changes in molecular transport in the interstitium or over the microdialysis membrane.

  相似文献   

18.
The hypothesis that the intracellularNa+ concentration([Na+]i)is a regulator of the epithelialNa+ channel (ENaC) was tested withthe Xenopus oocyte expression systemby utilizing a dual-electrode voltage clamp.[Na+]iaveraged 48.1 ± 2.2 meq (n = 27)and was estimated from the amiloride-sensitive reversal potential.[Na+]iwas increased by direct injection of 27.6 nl of 0.25 or 0.5 MNa2SO4.Within minutes of injection,[Na+]istabilized and remained elevated at 97.8 ± 6.5 meq(n = 9) and 64.9 ± 4.4 (n = 5) meq 30 min after theinitial injection of 0.5 and 0.25 MNa2SO4,respectively. This increase of[Na+]icaused a biphasic inhibition of ENaC currents. In oocytes injected with0.5 MNa2SO4(n = 9), a rapid decrease of inwardamiloride-sensitive slope conductance(gNa) to 0.681 ± 0.030 of control within the first 3 min and a secondary, slowerdecrease to 0.304 ± 0.043 of control at 30 min were observed.Similar but smaller inhibitions were also observed with the injectionof 0.25 MNa2SO4.Injection of isotonicK2SO4(70 mM) or isotonicK2SO4made hypertonic with sucrose (70 mMK2SO4-1.2M sucrose) was without effect. Injection of a 0.5 M concentration ofeitherK2SO4,N-methyl-D-glucamine (NMDG) sulfate, or 0.75 M NMDG gluconate resulted in a much smaller initial inhibition (<14%) and little or no secondary decrease. Thusincreases of[Na+]ihave multiple specific inhibitory effects on ENaC that can betemporally separated into a rapid phase that was complete within 2-3 min and a delayed slow phase that was observed between 5 and 30 min.

  相似文献   

19.
The effects of periodic obstructive apneas onsystemic and myocardial hemodynamics were studied in ninepreinstrumented sedated pigs under four conditions: breathing room air(RA), breathing 100% O2,breathing RA after critical coronary stenosis (CS) of the left anteriordescending coronary artery, and breathing RA after autonomic blockadewith hexamethonium (Hex). Apneas with RA increased mean arterialpressure (MAP; from baseline 103.0 ± 3.5 to late apnea 123.6 ± 7.0 Torr, P < 0.001) and coronary blood flow (CBF; late apnea 193.9 ± 22.9% of baseline,P < 0.001) but decreased cardiacoutput (CO; from baseline 2.97 ± 0.15 to late apnea 2.39 ± 0.19 l/min, P < 0.001). Apneas withO2 increased MAP (from baseline105.1 ± 4.6 to late apnea 110.7 ± 4.8 Torr, P < 0.001). Apneas with CS producedsimilar increases in MAP as apneas with RA but greater decreases in CO(from baseline 3.03 ± 0.19 to late apnea 2.1 ± 0.15 l/min,P < 0.001). In LAD-perfused myocardium, there was decreased segmental shortening (baseline 11.0 ± 1.5 to late apnea 7.6 ± 2.0%,P < 0.01) and regionalintramyocardial pH (baseline 7.05 ± 0.03 to late apnea 6.72 ± 0.11, P < 0.001) during apneas withCS but under no other conditions. Apneas with Hex increased to the sameextent as apneas with RA. Myocardial O2 demand remained unchangedduring apnea relative to baseline. We conclude that obstructiveapnea-induced changes in left ventricular afterload and CO aresecondary to autonomic-mediated responses to hypoxemia. Increased CBFduring apneas is related to regional metabolic effects of hypoxia andnot to autonomic factors. In the presence of limited coronary flowreserve, decreased O2 supply during apneas can lead to myocardial ischemia, which in turnadversely affects left ventricular function.

  相似文献   

20.
Ventilation during ischemia attenuatesischemia-reperfusion lung injury, but the mechanism is unknown.Increasing tissue cyclic nucleotide levels has been shown to attenuatelung ischemia-reperfusion injury. We hypothesized thatventilation prevented increased pulmonary vascular permeability duringischemia by increasing lung cyclic nucleotide concentrations.To test this hypothesis, we measured vascular permeability and cGMP andcAMP concentrations in ischemic (75 min) sheep lungs that wereventilated (12 ml/kg tidal volume) or statically inflated with the samepositive end-expiratory pressure (5 Torr). The reflection coefficientfor albumin (alb) was 0.54 ± 0.07 and 0.74 ± 0.02 (SE) in nonventilated and ventilatedlungs, respectively (n = 5, P < 0.05). Filtration coefficientsand capillary blood gas tensions were not different. The effect ofventilation was not mediated by cyclic compression of alveolarcapillaries, because negative-pressure ventilation(n = 4) also was protective (alb = 0.78 ± 0.09). Thefinal cGMP concentration was less in nonventilated than in ventilatedlungs (0.02 ± 0.02 and 0.49 ± 0.18 nmol/g blood-free dry wt,respectively, n = 5, P < 0.05). cAMP concentrations werenot different between groups or over time. Sodium nitroprussideincreased cGMP (1.97 ± 0.35 nmol/g blood-free dry wt) andalb (0.81 ± 0.09) innonventilated lungs (n = 5, P < 0.05). Isoproterenol increasedcAMP in nonventilated lungs (n = 4, P < 0.05) but had no effect onalb. The nitric oxide synthaseinhibitor NG-nitro-L-arginine methylester had no effect on lung cGMP (n = 9) or alb(n = 16) in ventilated lungs but didincrease pulmonary vascular resistance threefold(P < 0.05) in perfused sheep lungs (n = 3). These results suggest thatventilation during ischemia prevented an increase in pulmonaryvascular protein permeability, possibly through maintenance of lungcGMP by a nitric oxide-independent mechanism.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号