首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Until now, analytical studies on European urban floras have mostly concentrated on the central and north‐western parts of the continent. In this paper, factors determining species richness of urban flora were studied for the city of Rome, Italy, based on a comprehensive floristic survey carried out between 1985 and 1994, and updated in 2005. All species were recorded in grid cells of 1.6 km2 and classified into native and alien (the latter divided into archaeophytes and neophytes). The grids were classified with respect to the prevailing habitat type, area available to vegetation, level of disturbance and geographical position within the city. Data were analysed using minimal adequate models. Total species number was determined by habitat and its interaction with position on the north‐west gradient; other variables explained much less variance. Holding other variables constant, the average species number per grid cell was highest in archaeological sites and parks, followed by woodlands and rivers, and grasslands and recent developments. Residential areas and the historical centre were poorest in species number. Towards the north of the city, species richness in corresponding habitats increases because of higher landscape heterogeneity and closer association with diaspore pools in the surroundings. Native species make up on average 84% of the total species numbers, and trends opposite to those for the total number of species were found for the proportional representation of aliens. The occurrence of alien and native species in the flora of Rome is driven by similar factors, but factors that increase representation of aliens decrease that of natives and vice versa. The representation of neophytes and native species in grid cells was easier to explain (74% of variation accounted for) than that of archaeophytes (27%); this result reflects that in terms of ecology and response to factors, archaeophytes take an intermediate position between native plants and neophytes. Proportional representation of neophytes decreased with increasing area available to vegetation, reflecting that semi‐natural vegetation is better developed where less fragmented.  相似文献   

2.
Aim To investigate alien plant species invasion levels in different habitats and alien species traits by comparing the naturalized flora in different areas of the same biogeographical region. Location Spain, Italy, Greece and Cyprus. Methods Comparison of floristic composition, species traits and recipient habitats of naturalized alien neophytes across an east–west gradient comprising four countries in the European Mediterranean basin. Results A total of 782 naturalized neophytes were recorded; only 30 species were present in all four countries. Although floristic similarity is low, the four alien floras share the same patterns of growth form (mostly herbs), life cycle (mostly perennials) and life form (mostly therophytes, hemicryptophytes and phanerophytes). The majority of the recipient habitats were artificial. Wetlands were the natural habitats, with the highest numbers of naturalized species. Floristic similarity analyses revealed: (1) the highest floristic similarity between Italy and Spain, both of which were more similar to Greece than to Cyprus; (2) two groups of floristic similarity between habitat categories in each country (Greece–Cyprus and Italy–Spain); (3) a higher degree of homogenization in the plant assemblages in different habitats in Greece and Cyprus and a lower degree of homogenization in those in Italy and Spain; and (4) a higher degree of homogenization in artificial and natural fresh‐water habitats than in the other natural habitats. Main conclusions The floristic similarity of naturalized neophytes between the four countries is low, although the overall analysis indicates that the western group (Italy–Spain) is separated from the eastern group (Greece–Cyprus). Similar patterns emerged regarding the life‐history traits and recipient habitats. The artificial habitats and the natural wet habitats are those that are invaded most and display the greatest homogenization in all four countries. Coastal habitats display a lower degree of homogenization but a high frequency of aliens. Dry shrubs and rocky habitats display a lower degree of homogenization and a low frequency of aliens.  相似文献   

3.
4.
Aim Pine trees (genus Pinus) represent an ancient lineage, naturally occurring almost exclusively in the Northern Hemisphere, but introduced and widely naturalized in both hemispheres. As large trees of interest to forestry, they attract much attention and their distribution is well documented in both indigenous and naturalized ranges. This creates an opportunity to analyse the relationship between indigenous and naturalized range sizes in the context of different levels of human usage, biological traits and the characteristics of the environments of origin. Location Global. Methods We combined and expanded pre‐existing data sets for pine species distributions and pine species traits, and used a variety of regression techniques (including generalized additive models and zero‐inflated Poisson models) to assess which variables explained naturalized and indigenous range sizes. Results Indigenous and naturalized range sizes are positively correlated but there are many notable exceptions. Some species have large indigenous ranges but small or no naturalized ranges, whereas others have small indigenous ranges, but have naturalized in many regions. Indigenous range is correlated to factors such as seed size (?), age at first reproduction (?), and latitude (+, supporting Rapoport's rule), but also to the extent of coverage of species in the forestry literature (+). Naturalized range size is strongly influenced by the extent of coverage of species in the forestry literature (+), a proxy for propagule pressure. Naturalization was also influenced by average elevation in the indigenous range (?) and age at first reproduction (?). Main conclusions The macroecological and evolutionary pressures facing plant groups are not directly transferable between indigenous and naturalized ranges. In particular, there are strong biases in species naturalization and expansion in invasive ranges that are unrelated to factors determining indigenous range size. At least for Pinus, a new set of macroecological patterns are emerging which are profoundly influenced by humans.  相似文献   

5.
从上海外来杂草区系剖析植物入侵的一般特征   总被引:125,自引:6,他引:125  
全球化不仅改变了世界的政治和经济格局,而且也改变了生物分布的格局,导致生物种群的重新分布,由此而产生的生物入侵已成了各国政府,国际社会和学术界所共同关心的问题,本文从上海市杂草植物区系的构成入手,揭示了该区植物入侵的特点,产生的原因以及将来的发展趋势,同时还从一般意义上探讨了入侵杂草和入侵生境的特征,植物入侵的环境和经济后果以及入侵生态学领域中重要的研究方向。  相似文献   

6.
Aim Biotic homogenization is a growing phenomenon and has recently attracted much attention. Here, we analyse a large dataset of native and alien plants in North America to examine whether biotic homogenization is related to several ecological and biological attributes. Location North America (north of Mexico). Methods We assembled species lists of native and alien vascular plants for each of the 64 state‐ and province‐level geographical units in North America. Each alien species was characterized with respect to habitat (wetland versus upland), invasiveness (invasive versus non‐invasive), life cycle (annual/biennial versus perennial) and habit (herbaceous versus woody). We calculated a Jaccard similarity index separately for native, for alien, and for native and alien species. We used the average of Jaccard dissimilarity index (1 ? Jaccard index) of all paired localities as a measure of the mean beta diversity of alien species for each set of localities examined in an analysis. We used a homogenization index to quantify the effect of homogenization or differentiation. Results We found that (1) wetland, invasive, annual/biennial and herbaceous alien plants markedly homogenized the state‐level floras whereas non‐invasive and woody alien plants tended to differentiate the floras; (2) beta diversity was significantly lower for wetland, invasive, annual/biennial and herbaceous alien plants than their counterparts (i.e. upland, non‐invasive, perennial and woody alien plants, respectively); and (3) upland and perennial alien plants each played an equal role in homogenizing and differentiating the state‐level floras. Main conclusions Our study shows that biotic homogenization is clearly related to habitat type (e.g. wetland versus uplands), species invasiveness and life‐history traits such as life cycle (e.g. annual/biennial and herbaceous versus woody species) at the spatial scale examined. These observations help to understand the process of biotic homogenization resulting from alien vascular plants in North America.  相似文献   

7.
Naturalization and invasion of alien plants: concepts and definitions   总被引:11,自引:0,他引:11  
Abstract.  Much confusion exists in the English-language literature on plant invasions concerning the terms 'naturalized' and 'invasive' and their associated concepts. Several authors have used these terms in proposing schemes for conceptualizing the sequence of events from introduction to invasion, but often imprecisely, erroneously or in contradictory ways. This greatly complicates the formulation of robust generalizations in invasion ecology.
Based on an extensive and critical survey of the literature we defined a minimum set of key terms related to a graphic scheme which conceptualizes the naturalization/invasion process. Introduction means that the plant (or its propagule) has been transported by humans across a major geographical barrier. Naturalization starts when abiotic and biotic barriers to survival are surmounted and when various barriers to regular reproduction are overcome. Invasion further requires that introduced plants produce reproductive offspring in areas distant from sites of introduction (approximate scales: > 100 m over < 50 years for taxa spreading by seeds and other propagules; > 6 m/3 years for taxa spreading by roots, rhizomes, stolons or creeping stems). Taxa that can cope with the abiotic environment and biota in the general area may invade disturbed, seminatural communities. Invasion of successionally mature, undisturbed communities usually requires that the alien taxon overcomes a different category of barriers.
We propose that the term 'invasive' should be used without any inference to environmental or economic impact. Terms like 'pests' and 'weeds' are suitable labels for the 50–80% of invaders that have harmful effects. About 10% of invasive plants that change the character, condition, form, or nature of ecosystems over substantial areas may be termed 'transformers'.  相似文献   

8.

Aim

Directly or indirectly, humans select the plants that they transport and introduce outside of species native ranges. Plants that have become invasive may therefore reflect which species had the chance to invade, rather than which species would become invasive given the chance. We examine characteristics of failed introductions, along with invasion successes, by investigating (a) variation in plant characteristics across invasion stages, and (b) how observed characteristics predict the likelihood of species moving through invasion stages.

Location

Australia.

Time period

1770s to present.

Major taxa studied

34,650 plant species, across 424 families.

Methods

We used a comprehensive list of 34,650 plant species that are known to have been introduced to Australia, 4,081 of which are classified as naturalized and 428 as invasive. We represent plant characteristics with categorical growth forms, three functional traits (plant height, seed mass, and specific leaf area) and three factors related to species introduction histories (native regions, purpose, and minimum residence times).

Results

(a) The types of species introduced determine the types of species that naturalize and become invasive; (b) species introduction histories predict the likelihood of species moving through invasion stages; and (c) the numbers of species naturalizing (~15%) and becoming invasive (~15%) slightly exceeds expectation from the “tens rule”, which expects that 10% of introduced species naturalize and 10% become invasive.

Main conclusions

Our findings are significant for global biosecurity, indicating that functional traits alone cannot be used to predict a species' risk of becoming invasive. Rather, evidence suggests that characteristics of species introductions—specifically, a longer time-lag since first introduction and more pathways of introduction—define the relative risks of species moving through invasion stages. This is important for assessing future invasion risks, as future introductions may differ from those of the past. Our work highlights the need to reduce the number of species introduced.  相似文献   

9.
10.
11.
The establishment, reproduction, dispersal, and distribution of alien plants are affected by various factors during the transition from being newly introduced in a habitat to being invasive. In the agro-pastoral ecotone of northern China, comprising farmlands and natural grasslands, the biological characteristics of alien plant species were the key intrinsic factors (propagation characteristics and competitive ability), followed by such extrinsic factors as human interference and environmental heterogeneity. Among biological characteristics, the life form may be an important and useful indicator of the invasive ability of a species, and the risk of invasion is greater from alien species that are poisonous, inedible, and have traits that facilitate wide dispersal. Farmlands may serve as initial shelters for alien species, from which they spread into neighbouring habitats, whereas natural grassland may act as a barrier to plant invasions. Management practices detrimental to grasslands, including overgrazing, reclamation, and road construction, often facilitate the invasions; therefore, counter measures such as reseeding and a ban on grazing need special attention. Environmental factors including precipitation, nutrients, prevailing winds, fires, and topography may be other factors that promote or block the process of invasion. In studying ways of preventing or controlling such invasions, alien plants with short life cycle, prolific seed production, and strong competitiveness, deserve particular attention and so do human activities that may damage the environment and fragile habitats.  相似文献   

12.
在简要讨论外来植物相关定义的基础上, 对中国外来归化植物的调查和编目现状进行了概述; 并对近年发表的两篇文章中外来归化植物数据进行了订正。  相似文献   

13.
Predicting the probability of successful establishment of plant species by matching climatic variables has considerable potential for incorporation in early warning systems for the management of biological invasions. We select South Africa as a model source area of invasions worldwide because it is an important exporter of plant species to other parts of the world because of the huge international demand for indigenous flora from this biodiversity hotspot. We first mapped the five ecoregions that occur both in South Africa and other parts of the world, but the very coarse definition of the ecoregions led to unreliable results in terms of predicting invasible areas. We then determined the bioclimatic features of South Africa's major terrestrial biomes and projected the potential distribution of analogous areas throughout the world. This approach is much more powerful, but depends strongly on how particular biomes are defined in donor countries. Finally, we developed bioclimatic niche models for 96 plant taxa (species and subspecies) endemic to South Africa and invasive elsewhere, and projected these globally after successfully evaluating model projections specifically for three well‐known invasive species (Carpobrotus edulis, Senecio glastifolius, Vellereophyton dealbatum) in different target areas. Cumulative probabilities of climatic suitability show that high‐risk regions are spatially limited globally but that these closely match hotspots of plant biodiversity. These probabilities are significantly correlated with the number of recorded invasive species from South Africa in natural areas, emphasizing the pivotal role of climate in defining invasion potential. Accounting for potential transfer vectors (trade and tourism) significantly adds to the explanatory power of climate suitability as an index of invasibility. The close match that we found between the climatic component of the ecological habitat suitability and the current pattern of occurrence of South Africa alien species in other parts of the world is encouraging. If species' distribution data in the donor country are available, climatic niche modelling offers a powerful tool for efficient and unbiased first‐step screening. Given that eradication of an established invasive species is extremely difficult and expensive, areas identified as potential new sites should be monitored and quarantine measures should be adopted.  相似文献   

14.
15.
Aim Recent studies using vegetation plots have demonstrated that habitat type is a good predictor of the level of plant invasion, expressed as the proportion of alien to all species. At local scale, habitat types explain the level of invasion much better than alien propagule pressure. Moreover, it has been shown that patterns of habitat invasion are consistent among European regions with contrasting climates, biogeography, history and socioeconomic background. Here we use these findings as a basis for mapping the level of plant invasion in Europe. Location European Union and some adjacent countries. Methods We used 52,480 vegetation plots from Catalonia (NE Spain), Czech Republic and Great Britain to quantify the levels of invasion by neophytes (alien plant species introduced after ad 1500) in 33 habitat types. Then we estimated the proportion of each of these habitat types in CORINE land‐cover classes and calculated the level of invasion for each class. We projected the levels of invasion on the CORINE land‐cover map of Europe, extrapolating Catalonian data to the Mediterranean bioregion, Czech data to the Continental bioregion, British data to the British Isles and combined Czech–British data to the Atlantic and Boreal bioregions. Results The highest levels of invasion were predicted for agricultural, urban and industrial land‐cover classes, low levels for natural and semi‐natural grasslands and most woodlands, and the lowest levels for sclerophyllous vegetation, heathlands and peatlands. The resulting map of the level of invasion reflected the distribution of these land‐cover classes across Europe. Main conclusions High level of invasion is predicted in lowland areas of the temperate zone of western and central Europe and low level in the boreal zone and mountain regions across the continent. Low level of invasion is also predicted in the Mediterranean region except its coastline, river corridors and areas with irrigated agricultural land.  相似文献   

16.
The geographical extent of exotic plant species is a major component of invasiveness, which has been explained by intrinsic attributes of the plants, such as growth rate, reproductive type, life form, and biogeographical origin. We assessed quantitatively life cycle and biogeographical origin as determinants of the geographical distribution of naturalized plants in continental Chile, using minimum residence time (MRT) as an estimator of introduction date. We assembled a database with information on 428 plants (principally herbs) in continental Chile, corresponding to 61% of the exotic naturalized flora. For each species we recorded: (1) minimum residence time (introduction date or first recorded date in the country); (2) biogeographical origin (American, Eurasian, others); (3) life cycle (annual, perennial, others); (4) number of Chilean regions occupied by the plant. We found that 82 species (19%) have been recorded in only one region of Chile, while only three species have been found in all 13 regions of the country. About 89% of the species (381) have been found only in central Chile (Regions IV to VIII), while the remaining 11% (47) are found only in the northern (Regions I to III) or southern parts of the country (Regions IX to XII). We detected significant differences in regional spread of naturalized plants according to minimum residence time: those species with shorter MRT had more limited spread ranges than those with longer MRT. Biogeographical origin and life cycle did not explain geographical extent in Chile. This study shows that historical factors are more important than biological ones in determining the geographical extent of naturalized plants in continental Chile. Thus, caution should be exercised when assigning value to biological attributes that may confer invasiveness to naturalized plants.  相似文献   

17.
18.
外来种隐蔽入侵: 类型及影响   总被引:1,自引:0,他引:1  
隐蔽入侵(cryptic invasion)是指在形态上与土著种(或早期建群种)不能或难以区分的外来种在人们未觉察的状态下成功入侵的过程。人们对这类入侵方式往往视而不觉。本文综述了外来种隐蔽入侵的类型以及生态影响。隐蔽入侵的类型主要包括外来姊妹种形式的隐蔽入侵、 不同遗传支系的隐蔽入侵、 不同地理种群的隐蔽入侵以及“返传入”。其中, “返传入”目前还是一种假说。由于这类入侵外来种更容易与土著种(或早期建群种)杂交或基因渗透, 因而可对入侵种自身或土著种产生深远的生态影响。鉴于隐蔽入侵现象的广泛性, 建议进一步加强该方面的研究。  相似文献   

19.
Aim We tested the hypothesis that anthropogenic fires favour the successful establishment of alien annual species to the detriment of natives in the Chilean coastal matorral. Location Valparaíso Region, central Chile. Methods We sampled seed rain, seedbank emergence and establishment of species in four paired burned and unburned areas and compared (using GLMM) fire resistance and propagule arrival of alien and native species. To assess the relative importance of seed dispersal and seedbank survival in explaining plant establishment after fire, we compared seed rain and seedbank structure with post‐fire vegetation using ordination analyses. Results Fire did not change the proportion of alien species in the coastal matorral. However, fire increased the number of annual species (natives and aliens) of which 87% were aliens. Fire reduced the alien seedbank and not the native seedbank, but alien species remained dominant in burned soil samples (66% of the total species richness). Seed rain was higher for alien annuals than for native annuals or perennials, thus contributing to their establishment after fire. Nevertheless, seed rain was less important than seedbank survival in explaining plant establishment in burned areas. Main conclusions Anthropogenic fires favoured alien and native annuals. Thus, fire did not increase the alien/native ratio but increased the richness of alien species. The successful establishment of alien annuals was attributable to their ability to maintain rich seedbanks in burned areas and to the greater propagule arrival compared to native species. The native seedbank also survived fire, indicating that the herbaceous community has become highly resilient after centuries of human disturbances. Our results demonstrate that fire is a relevant factor for the maintenance of alien‐dominated grasslands in the matorral and highlight the importance of considering the interactive effect of seed rain and seedbank survival to understand plant invasion patterns in fire‐prone ecosystems.  相似文献   

20.
Zoological gardens host large numbers of wild species and domestic forms, mostly not indigenous to the place where the zoological garden is located. Escapes (or releases) from zoological gardens are recognized as a pathway of introduction of alien species, leading in some cases to a naturalized population. Although previously reported worldwide, scientific accounts of escapes from zoos are rare and often anecdotal. In this note, we document, for the first time in Europe and, to our knowledge, in an area outside its native range, a case of introduction and establishment of a feral population of Llama (Lama glama), originating from a group of animals living in captivity at the Zoological Park of Cavriglia (Tuscany, central Italy). We reconstruct in detail the story of the population since 1974, also reporting preliminary data on abundance, distribution and diet. Finally, we critically evaluate the causes of this introduction, highlighting how unsafe the management of a zoological garden can be, and we discuss the implications for conservation and management perspectives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号