首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hypotheses that secretion of luteinizing hormone (LH) varies with season and that estradiol may modulate the seasonal fluctuation in secretion of LH in cows were investigated. Seven mature cows were ovariectomized approximately 30 days before initiation of the experiment. Three of the ovariectomized cows (OVX-E2) were administered a subcutaneous estradiol implant that provided low circulating levels of 17 beta-estradiol. The remaining 4 cows (OVX) were not implanted. From December 21, 1982, to September 20, 1984, blood samples were collected sequentially (at 10-min intervals for 6 h) at each summer and winter solstice, and each spring and autumn equinox. In addition, from March 17, 1983, to March 17, 1984, sequential samples were collected midway between each solstice and equinox. Concentration of LH was measured in all samples, and concentration of estradiol was measured in pools of samples. An annual cycle in mean serum concentration of LH and amplitude of LH pulses was detected in both groups of cows. The seasonal pattern did not differ in the two treatment groups. Serum concentration of LH and amplitude of LH pulses were highest around the spring equinox, decreased gradually to the autumn equinox, and then increased and peaked again during the following spring equinox. Frequency of LH pulses and concentration of estradiol in serum did not vary with season. Circulating concentrations of LH and amplitude of pulses tended to be higher in OVX-E2 than OVX cows throughout the experimental period. Frequency of pulses of LH was lower in OVX-E2 than OVX cows throughout the experiment. Concentrations of estradiol were higher in the implanted cows.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The hypothesis that luteinizing hormone (LH) secretion in prepubertal females is responsive to estradiol negative feedback and that decreased feedback occurs as puberty approaches was tested in heifers. In the first experiment, seven heifers were maintained prepubertal by dietary energy restriction until 508 days of age (Day 0). All heifers were placed on a high-energy diet on Day 0 at which time they received no additional treatment (CONT), were ovariectomized (OVX) or were ovariectomized and subcutaneously implanted with estradiol-17 beta (OVX-E2). This feeding regimen was used to synchronize reproductive state in all heifers. A second experiment was performed with 16 prepubertal heifers using the same treatments at 266 days (Day 0) of age (CONT, OVX and OVX-E2) but no dietary intake manipulation. In both experiments, LH secretion increased rapidly following ovariectomy in OVX heifers. In the initial experiment, LH secretion was maintained at a low level in OVX-E2 heifers until a synchronous rapid increase was noted coincidental with puberty in the CONT heifer. In the second experiment, LH secretion increased gradually in OVX-E2 heifers and attained castrate levels coincidental with puberty in CONT heifers. A gradual increase in LH secretion occurred as puberty approached in CONT heifers. These results indicate that: a) LH secretion in prepubertal heifers is responsive to estradiol negative feedback; and b) estradiol negative feedback decreases during the prepubertal period in beef heifers.  相似文献   

3.
The aim of this study was to determine whether the decline in oestradiol inhibition of circulating luteinizing hormone (LH) and follicle-stimulating hormone (FSH) during the peripubertal period of heifers is associated with a change in opioid modulation of LH and FSH secretion. Opioid inhibition of LH secretion was determined by response to administration of the opioid antagonist naloxone. Prepubertal heifers (403 days old) were left as intact controls, ovariectomized or ovariectomized and chronically administered oestradiol. Control heifers were used to determine time of puberty. Three weeks after ovariectomy, four doses of naloxone (0.13-0.75 mg kg-1 body weight) or saline were administered to heifers in the treatment groups in a latin square design (one dose per day). Blood samples were collected at intervals of 10 min for 2 h before and 2 h after administration of naloxone. This procedure was repeated four times at intervals of 3 weeks during the time intact control heifers were attaining puberty. All doses of naloxone induced a similar increase in concentration of serum LH within a bleeding period. During the initial bleeding period (before puberty in control heifers), administration of naloxone induced an increase in LH concentration, but the response was greater for heifers in the ovariectomized and oestradiol treated than in the ovariectomized group. At the end of the study when control heifers had attained puberty (high concentrations of progesterone indicated corpus luteum function), only heifers in the ovariectomized and oestradiol treated group responded to naloxone. Opioid inhibition of LH appeared to decline in heifers during the time control heifers were attaining puberty. Heifers in the ovariectomized group responded to naloxone at the time of administration with an increase in FSH, but FSH did not respond to naloxone at any other time. Administration of naloxone did not alter secretion of FSH in ovariectomized heifers. These results suggest that opioid neuropeptides and oestradiol are involved in regulating circulating concentrations of LH and possibly FSH during the peripubertal period. Opioid inhibition of gonadotrophin secretion appeared to decline during the peripubertal period but was still present in ovariectomized heifers treated with oestradiol after the time when age-matched control heifers had attained puberty. We conclude that opioid inhibition is important in regulating LH and FSH in circulation in heifers during the peripubertal period. However, opioids continue to be involved in regulation of circulating concentrations of LH after puberty.  相似文献   

4.
The study was conducted to identify the mechanisms of endotoxin/cortisol action in the suppression of preovulatory LH surges in heifers infused with Escherichia coli (E. coli ) endotoxin. The hypotheses tested were that 1) endotoxin stimulates the release of progesterone, possibly from the adrenal leading to the LH blockade; 2) cortisol released in response to endotoxin infusion blocks the synthesis of estradiol at the ovarian level, culminating in a failure of the LH surge. Eight Holstein heifers were given two injections of prostaglandin F(2alpha) (PG), 11 d apart, to synchronize estrus. Starting from 25 h after the second injection of PG (PG-2), the uterus of each heifer was infused either with 5 ml of pyrogen-free water (control, n = 3) or with E. coli endotoxin (5 mug/kg of body weight) in 5 ml of pyrogen-free water (treated, n = 5), once every 6 h for 10 treatments. Blood samples were obtained every 15 min for 1 h before infusion and again 2 h after each infusion, then hourly until 1 h before the next infusion. After the tenth infusion, blood was collected daily until estrus. Serum progesterone concentrations remained at baseline values (< 1 ng/ml) in control and treated heifers. The total amount of progesterone measured starting 24 to 84 h after PG-2 injection was not different between control and treated heifers (P 0.05). In the control heifers, serum estradiol concentrations remained basal (< 10 pg/ml) until 4 h before the LH surge. Serum estradiol concentrations increased to 20 +/- 5.6 pg/ml, 4 h before the LH surge in control heifers (LH surge occurred 60 to 66 h after the PG-2 injection). There were no changes in serum estradiol concentrations in treated heifers during the sampling period, and the concentrations remained < 10 pg/ml. The total amount of estradiol measured in control heifers was higher (P < 0.05) than in treated heifers. The results if this study suggest that increases in cortisol concentrations after the infusion of endotoxin might block the synthesis of estradiol at the ovarian level, resulting in the failure of a preovulatory LH surge to occur.  相似文献   

5.
In ewes, anestrus results from a reduction in LH pulsatility due to an increased sensitivity of the hypothalamic estradiol negative feedback system. Considerable evidence has implicated the A15 group of dopaminergic neurons in the retrochiasmatic area in this seasonally dependent estradiol effect. Moreover, estradiol administered to the retrochiasmatic area in ovariectomized anestrous ewes inhibits LH secretion. However, A15 neurons do not appear to contain the classical estrogen receptors (ERalpha). Therefore, we tested the hypothesis that beta-estrogen receptors mediate the action of estradiol in the retrochiasmatic area by comparing the effects of estradiol and genistein, a selective ERbeta agonist. We also examined whether there are seasonal changes in response of the retrochiasmatic area to these agonists and if these effects are mediated by dopamine. To test these hypotheses, ovariectomized ewes were implanted with bilateral guide cannulae targeting the retrochiasmatic area. Crystalline agonists were administered via microimplants inserted down the cannulae. Blood samples taken before and 4 days after microimplant insertion were analyzed for LH concentrations, pulse frequency, and amplitude. Genistein treatment produced no significant change in LH levels in either season. Estradiol treatment decreased both mean LH concentrations and pulse frequency in anestrous but not breeding-season ewes. Administration of the dopamine antagonist sulpiride to ovariectomized ewes with estradiol microimplants in the retrochiasmatic area returned LH pulse frequency to levels indistinguishable from controls. From these data, we hypothesize that estradiol acts on local ERalpha-containing neurons in this area to stimulate a dopaminergic pathway that inhibits LH secretion during anestrus.  相似文献   

6.
The hypothesis that high levels of exogenous estradiol administered to heifers during the prepubertal period would decrease subsequent negative feedback of estradiol on luteinizing hormone (LH) secretion was tested. Fourteen prepubertal heifers were ovariectomized on Day 0. Ovariectomized heifers received either no further treatment (OVX, n = 4), a single estradiol implant on Day 0 (OVXE, n = 5), or the single implant on Day 0 and two additional implants between Days 16 and 30 (OVXE+ E, n = 5). Ten ovary-intact heifers received either no treatment (INT, n = 5) or were administered the two estradiol implants between Days 16 and 30 (INT+ 5, n = 5). Comparison of LH secretion in OVXE to OVXE+E, and in INT to INT+E resulted in significant time-by-treatment interactions (p less than 0.05 for both). As pubertal age approached, mean concentration of LH (p less than 0.05) and pulse frequency (p less than 0.05) increased more rapidly in OVXE+E and INT+E than in OVXE and INT, respectively. Amplitude of LH pulses was unaffected by treatment. When data were standardized to day of puberty in INT and INT+E heifers, mean LH concentration and LH pulse frequency increased as puberty approached in both groups. These data confirm earlier reports indicating that secretion of LH increases gradually as puberty approaches in heifers. It was concluded that administration of estradiol during the prepubertal period hastened the decline in the subsequent negative feedback of estradiol. Precocious puberty was not induced in ovary-intact females.  相似文献   

7.
Two experiments were conducted to determine whether the increased serum LH which occurs within 12 hr after a luteolytic dose of PGF2alpha is dependent upon changes in progesterone or estradiol secretion. In the first experiment, exogenous progesterone abolished the increase in serum LH caused by a subcutaneous injection of 25 mg PGF2alpha in diestrous heifers, but not in ovariectomized heifers. In the second experiment, progesterone pessaries were removed at 6 hr after a subcutaneous injection of 25 mg PGF2alpha. LH remained at pre-PGF2alpha values while the pessaries were in place, but began to increase within 1 hr after they were removed. Blood estradiol also remained at pre-PGF2alpha values until the pessaries were removed, and began to increase at 2 hr after pessary removal. We conclude that the increase in serum LH within 12 hr after PGF2alpha treatment in diestrous cattle is dependent upon withdrawal of progesterone; it is not due to increased serum estradiol.  相似文献   

8.
The objectives of this experiment were to determine the effects of 0.5 mg estradiol benzoate, administered intramuscularly 24 h after removal of CIDR-B progesterone containing intravaginal devices, on the time to estrus, ovulation and peak LH concentration in dairy heifers. Ovulatory responses and plasma LH concentrations were examined using 14 Friesian dairy heifers in 2 separate treatment periods. All heifers received a CIDR-B progesterone-containing intravaginal device with an attached 10-mg estradiol benzoate capsule for 12 d. Within each period, 24 h after CIDR-B removal, 7 heifers received an intramuscular injection of 0.5 mg estradiol benzoate while the remaining 7 heifers received an intramuscular injection of a placebo. Blood samples for LH assay were collected at 0, 6 and 12 h, and then every 4 h for 60 h after estradiol injection. Detection of estrus was conducted at 4-h intervals, and ultrasonographical examination to detect ovulation was conducted every 8 h for 88 h after removal of the CIDR-B device. Treatment with estradiol benzoate tended to reduce the time from device removal to the LH peak in Period 1 (median time to LH peak 40.1 vs 63.9 h; P = 6.07). In Period 2, treatment with estradiol had no significant effect on the time to the LH peak, standing estrus or ovulation. We hypothesize that the period effect was due to the stage of cycle at the time of treatment. For heifers treated in Period 1, the stage of cycle was random. However, because of the prior synchronization of estrus, which was implicit in the experimental design, heifers in Period 2 tended to be in late diestrus. The administration of estradiol benzoate after treatment with exogenous progesterone appears to overcome the variability in timing of LH peaks typically occurring in a herd of synchronized heifers due to different stages of follicular development.  相似文献   

9.
Thyroid hormones permit the increase in response to estradiol negative feedback in ewes at the transition to anestrus. In this study, we tested whether the thyroid hormones are also required for steroid-independent seasonal changes in pulsatile LH secretion. In experiment 1, Suffolk ewes were ovariectomized and thyroidectomized (THX) or ovariectomized only (controls) in late November. LH pulse frequency and amplitude were measured for 4 h in December, April, May, June, and August. Pulse frequency was also measured in the presence of estradiol-containing implants during the breeding (December) and early anestrus (March) seasons. As expected, in the presence of estradiol, pulse frequency declined between December and March in control but not THX ewes. In the absence of estradiol, a seasonal decline in frequency and an increase in amplitude occurred in control ewes, concurrent with lengthening photoperiod. A similar trend was seen in THX ewes, but the seasonal changes were lower in magnitude and not significant. In experiment 2, the same protocol was used (pulse measurements in December, May, and June) with a larger THX group size (n = 7). Results were similar to those of experiment 1 for controls. In THX ewes, pulse frequency did not change over time and was significantly elevated relative to that of controls during the summer. Pulse amplitude in THX ewes tended to increase during summer and did not differ from pulse amplitudes in control ewes. These results demonstrate that thyroid hormones are required for steroid-independent cycles in LH pulse frequency; however, some seasonal changes in amplitude still occur in the absence of thyroid hormones. This finding contrasts with the changes in estradiol negative feedback at the transition to anestrus, which are entirely thyroid hormone dependent.  相似文献   

10.
Eleven heifers, between 63 and 197 days of age, were exposed to 18 hr light/day (L) or natural photoperiods (N), beginning October 19, 1979. They were ovariectomized 8 weeks later. LH concentrations after ovariectomy were not affected by photoperiod, but the rate of increase of FSH after ovariectomy was greater (P<0.10) for group L than for group N. Three weeks after ovariectomy, heiters were injected, IV, with 0.1 mug/kg estradiol-17beta. LH concentrations initially decreased after injection. This was followed by a series of pulses larger than those prior to injection. FSH concentrations declined after injection and remained low throughout the sampling period. The net response of LH concentrations to estradiol (mean post-injection concentration minus mean pre-injection concentration) was greater (P=0.05) for group L (4.7 +/- 0.49 ng/ml) than for group N (2.9 +/- 0.37 ng/ml). Photoperiod did not affect the net response of FSH concentrations to estradiol. We concluded that exposing prepubertal heifers to 18 hr light/day during the winter resulted in a greater rate of increase of FSH after ovariectomy and greater estrogen-induced LH release. Because the response of LH to estradiol-17beta differed from the response of FSH, these hormones may be regulated differently.  相似文献   

11.
Intact sexually mature New Zealand White male rabbits, raised under natural lighting and temperature conditions, were isolated and housed in air-conditioned quarters, in a 12-h light:12-h dark cycle. Push-pull cannulae were implanted towards the tuberal region of the hypothalamus, and animals were perfused with modified Krebs'-Ringer phosphate medium for an average period of 4 h. Most rabbits were repetitively perfused over an average period of 3.7 months. Perfusions were grouped into seasonal periods of about 40 or 80 days through the entire 1-year cycle: (A) 23 November to 31 December (winter solstice period: N = 6), (B) 1 January to 23 March (winter: N = 10), (C) 24 March to 13 June (spring: N = 9), (D) 14 June to 23 July (summer solstice period: N = 23), (E) 24 July to 13 October (late summer-early fall: N = 7) and (F) 14 October to 22 November (fall: N = 4). Maximal and minimal values of mean release, mean amplitude and mean frequency from every animal in each block were obtained. In the summer solstice group (D), maximal mean (+/- s.e.) LHRH release levels were significantly greater (14.42 +/- 6.62 pg/10 min) than for all groups (A, 0.76 +/- 0.27; B, 1.59 +/- 0.39; C, 1.34 +/- 0.22; E, 1.33 +/- 0.33; and F, 1.18 +/- 0.11) while during the winter solstice period (A), minimal mean LHRH release levels (0.48 +/- 0.04 pg/10 min) were significantly lower than in all other groups (B, 1.43 +/- 0.41; C, 0.96 +/- 0.11; D, 7.25 +/- 4.12; E, 1.18 +/- 0.37; and F, 1.18 +/- 0.11). Maximal values were highest during the summer solstice period while the minimal values were lowest during the winter solstice period. The amplitude and frequency of the LHRH pulses showed changes similar to those observed with the mean LHRH release. For 1 year, an estimated left testis weight was measured in 4-7 rabbits every 2-5 weeks. The percentage estimated testis weight peaked in early August and reached minimal levels during the winter months. These data demonstrate that the rabbit LHRH neural apparatus is very sensitive to seasonal influences although animals remained in a fixed photoperiod during the entire duration of the experiment.  相似文献   

12.
Angus and Angus crossbred prepubertal heifers were ovariectomized and randomly assigned to either increasing light simulating the photoperiod of the vernal equinox to the summer solstice (I) or decreasing light simulating the photoperiod of the autumnal equinox to the winter solstice (D) for 43 degrees N latitude. Three blood samples were taken each week for 14 weeks, the first at 11:00 h and two others 2 days later, 1 h before lights on (dark), 1 h before lights off (light). At the end of 14 weeks 4 heifers from each treatment group were cannulated and samples were taken for 12 h at 15-min intervals, 6 h in the light and 6 h in the dark. All sera were assayed for LH, FSH and prolactin. In addition, the samples taken at 15-min intervals were assayed for melatonin. In samples taken weekly at 11:00 h circulating concentrations of LH and prolactin were higher among animals in Group I, while FSH concentrations were not different between Groups D and I. In samples collected weekly in the light or the dark, LH and prolactin concentrations were higher in Group I animals. However, prolactin concentrations were higher and LH concentrations tended to be higher in samples taken in the dark. FSH concentrations were not different between either D or I or dark and light. In samples taken at 15-min intervals the prolactin baseline was higher and pulse amplitude tended to be higher for Group I animals. Neither LH nor FSH pulse characteristics differed between I and D; however, LH baseline and LH pulse amplitude were higher in the dark. Melatonin pulse amplitude was higher among animals in Group D and higher in serum collected in the dark. These results suggest that photoperiod alters circulating concentrations of LH and prolactin and alters pulsatile release of LH, prolactin and melatonin in the prepubertal heifer.  相似文献   

13.
Ten, normally cycling, Holstein heifers were assigned to one of two environmental treatment groups (21.3 C, 59% RH or 32.0 C, 67% RH). PGF(2)alpha was used to induce luteal regression and synchronize estrus in order to evaluate temperature effects on various hormonal and physiological responses during the proestrous through metestrous periods. Environmental temperature (32.0 C) evoked a 1.4 C increase in rectal temperature and a 3.6 C increase in skin temperatures. Length of estrus was shorter (P<.10) for heifers at 32.0 C (16 vs 21 hr.). Average plasma progestin concentration between treatments was not different (P>.10). Mean estradiol concentrations were significantly (P<.10) lower in heifers at 32.0 C. No differences (P>.10) were detected in mean concentrations of LH between heifers at 21.3 C and 32.0 C. Preovulatory peak LH concentrations were 32.2 and 33.2 ng/ml plasma, respectively. All animals had a preovulatory surge of LH, suggesting that hyperthermia did not alter factors which regulate hypothalamic control of LH release. Mean basal concentrations of prolactin and corticoids were not different between temperature treatments (P>.10). However, mean corticoid response following ACTH was of lower magnitude, earlier to peak, and of shorter duration in heat stressed heifers. Heat stress did not appear to affect the hormonal milieu in peripheral plasma associated with corpus luteum regression (decrease in progestin) and ovulation (LH surge). However, duration of estrus, concentrations of estradiol at proestrus and corticoid response to injection of ACTH were reduced.  相似文献   

14.
Subject index     
Two experiments were conducted to determine whether the increased serum LH which occurs within 12 hr after a luteolytic dose of PGF is dependent upon changes in progesterone or estradiol secretion. In the first experiment, exogenous progesterone abolished the increase in serum LH caused by a subcutaneous injection of 25 mg PGF in diestrous heifers, but not in ovariectomized heifers. In the second experiment, progesterone pessaries were removed at 6 hr after a subcutaneous injection of 25 mg PGF. LH remained at pre-PGF values while the pessaries were in place, but began to increase within 1 hr after they were removed. Blood estradiol also remained at pre-PGF values until the pessaries were removed, and began to increase at 2 hr after pessary removal. We conclude that the increase in serum LH within 12 hr after PGF treatment in diestrous cattle is dependent upon withdrawal of progesterone; it is not due to increased serum estradiol.  相似文献   

15.
Surges of FSH were characterized in each of 12 Holstein heifers using a computerized cycle detector program, and as mean changes averaged over all heifers. Blood samples were collected 6 times a day at 4-h intervals beginning at late diestrus. Concentrations of FSH were adjusted relative to the preovulatory LH peak (Hour 0) and profiled beginning 48 h before and ending 120 h after the LH peak. Peak concentrations of FSH and LH occurred synchronously in 11 of 12 (92%) heifers, and only a 4-h interval separated peak concentrations in the remaining heifer. The FSH surge that was synchronous with the LH surge was designated FSH Surge 1 and was used as a reference to designate other FSH surges. Surge -1 of FSH was detected in 58% of the heifers at mean Hour -21.2, and Surges 2, 3 and 4 were detected in 92%, 92% and 75% of the heifers, respectively, at mean Hours 25.1, 57.8 and 78.7. Mean peak levels and duration of FSH Surges-1, 2, 3 and 4 were significantly lower than for FSH Surge 1. Mean concentrations of FSH significantly increased and decreased before and after the LH peak, resulting from the synchrony between FSH Surge 1 and the LH surge in individual heifers. Additionally, there was a tendency (P < 0.08) for a second and third increase in mean FSH concentrations at Hours 24 and 60, which was attributed to FSH Surges 2 and 3 that occurred in individuals. Peak FSH concentrations of Surge 2 occurred (mean, Hour 25.1) within 8 h of maximal mean concentrations at Hour 24 in 91% of the heifers. Correspondingly, peak FSH concentrations of Surge 3 occurred (mean, Hour 57.8) within 8 h of maximal mean concentrations at Hour 60 in 64% of the heifers. Surges -1 and 4 of FSH occurred less frequently and at various times within and among heifers compared with Surges 1 to 3; therefore, they were not detected as mean increases in FSH concentrations but were masked as a result of concentrations being averaged over all heifers. In summary, FSH surges were detected in individual heifers before and after the combined FSH/LH surge. The interpeak intervals for FSH Surges 1 to 2 (25 h), 2 to 3 (33 h) and 3 to 4 (21 h) suggests a rhythmic nature to the surges.  相似文献   

16.
The hypothesis tested was that the decline in negative feedback of estradiol on secretion of luteinizing hormone (LH) that occurs as puberty approaches in heifers results from a decline in the number of receptors for estradiol in the hypothalamus and/or pituitary. In addition, associated changes in receptors for luteinizing hormone-releasing hormone (LHRH) in the pituitary, ovarian follicle development, and uterine growth were characterized. Fifty prepubertal heifers, 234 to 264 days of age, were used. Six heifers of median body weight were designated controls, and sequential blood samples were collected at 20-min intervals for 24 h every 2 wk from 249 days of age through puberty and analyzed for concentrations of LH. Frequency of LH pulses/24 h was regressed on number of days prepuberty to develop a prediction equation for puberty. Thirty of the remaining 44 heifers were killed at 253, 302, and 351 days of age (n = 10/group), and tissues for described analyses were collected. Three to 5 days before tissue collection, sequential blood samples were obtained from these heifers, as described for control heifers to determine frequency of release of LH. With this information, number of days prepuberty at the time of tissue collection was estimated from the prediction equation developed with data from control heifers. The average age at puberty in control heifers was 366 days. The average age at puberty of heifers that were not killed or included in the control group (n = 14) was 360 days. Receptor and morphological data were related to the estimated onset of puberty. Cytosolic concentration of receptors for estradiol (fmoles receptor/mg cytosolic protein) in the anterior hypothalamus, medial basal hypothalamus, and anterior pituitary declined (p less than 0.05) as puberty approached. No change in concentration of receptors for estradiol was observed in the stalk median eminence or preoptic area. The concentration of receptors for LHRH in the anterior pituitary did not change as puberty approached. Uterine weight increased rapidly during the 50 days preceding puberty. The number of small, medium, or large follicles and the wet, pressed, or dry weight of the ovaries did not change as puberty approached. Follicles with a diameter greater than 12 mm were found only in the 3 heifers estimated to be closest to puberty at the time of tissue collection. The hypothesis that the decline in estradiol feedback on secretion of LH during the prepubertal period in heifers may result from a decline in the concentration of binding sites for estradiol at the hypothalamus and/or pituitary is supported by this study.  相似文献   

17.
The long-term negative feedback effects of sustained elevations in circulating estradiol and progesterone on the pulsatile secretion of gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) were evaluated in the ewe following ovariectomy during the mid-late anestrous and early breeding seasons. GnRH secretion was monitored in serial samples of hypophyseal portal blood. Steroids were administered from the time of ovariectomy by s.c. Silastic implants, which maintained plasma concentrations of estradiol and progesterone at levels resembling those that circulate during the mid-luteal phase of the estrous cycle; control ewes did not receive steroidal replacement. Analysis of hormonal pulse patterns in serial samples during 6-h periods on Days 8-10 after ovariectomy disclosed discrete, concurrent pulses of GnRH in hypothalamo-hypophyseal portal blood and LH in peripheral blood of untreated ovariectomized ewes. These pulses occurred every 97 min on the average. Treatment with either estradiol or progesterone greatly diminished or abolished detectable pulsatile secretion of GnRH and LH, infrequent pulses being evident in only 3 of 19 steroid-treated ewes. No major seasonal difference was observed in GnRH or LH pulse patterns in any group of ewes. Our findings in the ovariectomized ewe provide direct support for the conclusion that the negative-feedback effects of estradiol and progesterone on gonadotropin secretion in the ewe include an action on the brain and a consequent inhibition of pulsatile GnRH secretion.  相似文献   

18.
Seasonal changes in pulsatile luteinizing hormone (LH) secretion in ovariectomized ewes were examined over the course of 2 yr in relation to annual changes in environmental photoperiod, shifts in response to estradiol negative feedback control of LH secretion, and timing of the breeding season. Under natural environmental conditions, the frequency of LH pulses in individual ovariectomized ewes changed gradually and in close association with the annual cycle of day length. As days became shorter in late summer and autumn, LH pulse frequency increased; conversely, as day length increased in late winter and spring, frequency declined. Under artificial conditions in which ovariectomized ewes were exposed to different photoperiods, a similar inverse relationship was observed between day length and LH pulse frequency. The seasonal changes in frequency of LH pulses in ovariectomized ewes, although symmetric with the annual photoperiodic cycle, were not temporally coupled to the dramatic shifts in response to estradiol feedback inhibition of LH secretion at the transitions between breeding season and anestrus. The feedback shifts occurred abruptly and at times when LH pulse frequency in ovariectomized ewes was at, or near, the annual maximum or minimum. The tight coupling between LH pulse frequency and photoperiod leads to the conclusion that there is a photoperiodic drive to the LH pulse-generating system of the ewe. The temporal dissociation between changes in this photoperiodic drive and the seasonal shifts in response to estradiol negative feedback support the hypothesis that the neuroendocrine basis for these two phenomena is not one and the same.  相似文献   

19.
Objectives were to determine: 1) whether estradiol, given via implants in amounts to stimulate a proestrus increase, induces preovulatory-like luteinizing hormone (LH) and follicle-stimulating hormone (FSH) surges; and 2) whether progesterone, given via infusion in amounts to simulate concentrations found in blood during the luteal phase of the estrous cycle, inhibits gonadotropin surges. All heifers were in the luteal phase of an estrous cycle when ovariectomized. Replacement therapy with estradiol and progesterone was started immediately after ovariectomy to mimic luteal phase concentrations of these steroids. Average estradiol (pg/ml) and progesterone (ng/ml) resulting from this replacement were 2.5 and 6.2 respectively; these values were similar (P greater than 0.05) to those on the day before ovariectomy (2.3 and 7.2, respectively). Nevertheless, basal concentrations of LH and FSH increased from 0.7 and 43 ng/ml before ovariectomy to 2.6 and 96 ng/ml, respectively, 24 h after ovariectomy. This may indicate that other ovarian factors are required to maintain low baselines of LH and FSH. Beginning 24 h after ovariectomy, replacement of steroids were adjusted as follows: 1) progesterone infusion was terminated and 2 additional estradiol implants were given every 12 h for 36 h (n = 5); 2) progesterone infusion was maintained and 2 additional estradiol implants were given every 12 h for 36 h (n = 3); or 3) progesterone infusion was terminated and 2 additional empty implants were given every 12 h for 36 h (n = 6). When estradiol implants were given every 12 h for 36 h, estradiol levels increased in plasma to 5 to 7 pg/ml, which resembles the increase in estradiol that occurs at proestrus. After ending progesterone infusion, levels of progesterone in plasma decreased to less than 1 ng/ml by 8 h. Preovulatory-like LH and FSH surges were induced only when progesterone infusion was stopped and additional estradiol implants were given. These surges were synchronous, occurring 61.8 +/- 0.4 h (mean +/- SE) after ending infusion of progesterone. We conclude that estradiol, at concentrations which simulate those found during proestrus, induces preovulatory-like LH and FSH surges in heifers and that progesterone, at concentrations found during the luteal phase of the estrous cycle, inhibits estradiol-induced gonadotropin surges. Furthermore, ovarian factors other than estradiol and progesterone may be required to maintain basal concentrations of LH and FSH in heifers.  相似文献   

20.
Some physiological and behavioural responses were observed in German Brown, Holstein-Friesian and White Fulani heifers during four different quarters of the year in an attempt to assess their adaptability to the seasonal equatorial climate of Southern Nigeria. Rectal temperatures under shade conditions showed slight but significant (P<0.05) fluctuations. Holstein heifers experienced hyperthermia and panted in the sun, unlike the Brown and Fulani cattle. Breathing rate showed a highly significant (P<0.01) seasonal variation. The heifers were generally most comfortable during the wettest periods of the year. The Holstein and Fulani showed the highest and lowest responses respectively. The Fulani did not seek shade; the Holstein sought shade more frequently than the Brown heifers. The Brown are more adaptable than the Holstein to the hot humid environment in which the Fulani cattle are relatively comfortable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号