首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
This study demonstrated how the impact of eutrophication in a deep lake at the southern border of the Alps (Lake Garda) was regulated by specific modes of atmospheric circulation relevant for the Mediterranean area. At the decadal scale, nutrients and phytoplankton increased concurrently since the 1970s. At the annual scale, year-to-year fluctuations in nutrients and phytoplankton were controlled through a chain of causal factors centred on deeply penetrative mixing events determining an upward transport of phosphorus from the hypolimnion to the trophogenic layers. The extent of mixing was in turn controlled by lake and air winter temperature, which were ultimately regulated by the winter fluctuations of the East Atlantic pattern (EA). In its negative state, the EA shows an intense high pressure over the West Atlantic, causing a north-easterly air flow bringing cold air from continental Europe to Mediterranean, thus favouring greater lake mixing and nutrient fertilisation. Cyanobacteria (mostly Planktothrix rubescens) were the organisms which greatly benefitted from the long-term increase in phosphorus concentrations and the year-to-year fluctuations in surface phosphorus availability controlled by the EA. Given the same availability of phosphorus in the water column, positive winter EA phases weakened the eutrophication effects and phytoplankton development.  相似文献   

2.
Dokulil  M. T.  Jagsch  A. 《Hydrobiologia》1992,243(1):389-394
Following restoration measures (ring canalization, treatment plant with phosphorus precipitation), phosphorus loading declined step-wise from 26.21 t year–1 to 9.18 t year–1 during the period 1979–1984 while P-retention increased from 48% to 78%. Phosphorus loading was poorely correlated with precipitation. Inorganic nitrogen load, largely NO3– N, did not decline but was significantly correlated with precipitation (r = 0.95) throughout the investigation period (1978–1989).Total phosphorus loading reached acceptable levels in 1984 when compared to critical loading calculated according to Vollenweider (1976). Phosphorus input to the lake has remained at these levels in recent years.Average annual chlorophyll-a concentrations and biovolume of phytoplankton in the top 20 m layer of the lake decreased, in correspondence with the respective phosphorus concentrations, from eutrophic to mesotrophic levels. The decline was accompanied by a drastic reduction of blue-green algal populations, and especially of Oscillatoria rubescens D.C..  相似文献   

3.
Big Soda Lake is an alkaline, saline lake with a permanent chemocline at 34.5 m and a mixolimnion that undergoes seasonal changes in temperature structure. During the period of thermal stratification, from summer through fall, the epilimnion has low concentrations of dissolved inorganic nutrients (N, Si) and CH4, and low biomass of phytoplankton (chlorophyll a ca. 1 mgm -3). Dissolved oxygen disappears near the compensation depth for algal photosynthesis (ca. 20 m). Surface water is transparent so that light is present in the anoxic hypolimnion, and a dense plate of purple sulfur photosynthetic bacteria (Ectothiorhodospira vacuolata) is present just below 20 m (Bchl a ca. 200 mgm-3). Concentrations of N H4 +, Si, and CH4 are higher in the hypolimnion than in the epilimnion. As the mixolimnion becomes isothermal in winter, oxygen is mixed down to 28 m. Nutrients (NH4 +, Si) and CH4 are released from the hypolimnion and mix to the surface, and a diatom bloom develops in the upper 20 m (chlorophyll a > 40 mgm-3). The deeper mixing of oxygen and enhanced light attenuation by phytoplankton uncouple the anoxic zone and photic zone, and the plate of photosynthetic bacteria disappears (Bchl a ca.10mgm-3). Hence, seasonal changes in temperature distribution and mixing create conditions such that the primary producer community is alternately dominated by phytoplankton and photosynthetic bacteria: the phytoplankton may be nutrient-limited during periods of stratification and the photosynthetic bacteria are light-limited during periods of mixing.  相似文献   

4.
Heo  Woo-Myung  Kim  Bomchul 《Hydrobiologia》2004,524(1):229-239
The effects of artificial destratification on limnological conditions and on phytoplankton were surveyed for 6 years (1995-2000) in Lake Dalbang (South Korea), a water supply reservoir receiving nutrients from agricultural non-point sources. In order to reduce odor problems caused by cyanobacterial blooms, six aerators were installed in 1996 and operated regularly during the warm season. Aeration destratified the water column of the reservoir and produced homogeneous physical and chemical parameters. The maximum surface temperature in summer decreased from 28.9 °C before aeration to 20.0-26.4 °C after aeration, whereas the maximum hypolimnetic temperature increased from 8.0 to 17.0-23.7 °C. Despite these changes, surface water concentrations of total phosphorus (TP) and chlorophyll a(CHLA) and their seasonal patterns did not change with destratification. Phosphorus loading was concentrated in heavy rain events during the summer monsoon, and TP and CHLA reached maximal concentrations in late summer after the monsoon. Because the hypolimnion was never anoxic prior to aeration, internal loading did not seem to be substantial. Cyanobacteria were the dominant phytoplankton in summer before aeration, but diatoms replaced them after operation of the aerator. Cyanobacteria blooms were eliminated. In contrast, total algal biomass in the water column (as CHLA integrated over depth) increased from 190 mg m–2 in 1995 to 1150, 300, 170, and 355 mg m–2 in 1997, 1998, 1999, and 2000, respectively. The increased ratio of mixing depth to euphotic depth to 2.5 may have resulted in a net reduction in the amount of underwater irradiance experienced by phytoplankton cells, and this may have favored the switch to diatom dominance. Furthermore, the mixing may have allowed diatoms to flourish in summer by lowering their settling loss that would be critical in stratified water columns. In conclusion, the destratification in this reservoir was effective in preventing cyanobacteria blooms, but not in reducing the total algal standing crop.  相似文献   

5.
1. Planktothrix rubescens is the dominant photoautotrophic organism in Lake Zürich, a prealpine, deep, mesotrophic freshwater lake with an oxic hypolimnion. Over long periods of the year, P. rubescens accumulates at the metalimnion and growth occurs in situ at irradiance near the photosynthesis compensation point. Experiments were conducted to evaluate the contribution of photoheterotrophy, heterotrophy and light‐dependent uptake of nitrogenous organic compounds to the carbon and nitrogen budget of this cyanobacterium under conditions of restricted availability of light quanta. 2. We used both purified natural populations of P. rubescens from the depth of 9 m and an axenic culture grown under low irradiance at 11 μmol m?2 s?1 on a light : dark cycle (10 : 14 h) to determine the uptake rates of various amino acids, urea, glucose, fructose, acetate and inorganic carbon. The components were added to artificial lake water in low amounts that simulated the naturally occurring potential concentrations. 3. The uptake rates of acetate and amino acids (glycine, serine, glutamate and aspartate) were strongly enhanced at low irradiance as compared with the dark. However, no difference was observed in the uptake of arginine, which was taken up at high rates under both treatments. The uptake rates of glucose, fructose and urea were very low under all conditions. Similar results were obtained for both axenic P. rubescens and for purified natural populations of P. rubescens that were separated from bacterioplankton and other phytoplankton. 4. Metalimnetic P. rubescens that was stratified at low irradiance for weeks exhibited much higher uptake rates than filaments that were entrained in the deepening surface mixed layer and experienced higher irradiance. The added organic compounds contributed up to 62% to the total carbon uptake of metalimnetic P. rubescens. On the basis of a molar C : N ratio of 4.9, the nitrogen uptake as organic compounds satisfied up to 84% of the nitrogen demand. 5. The experiments indicate that photoheterotrophy and light‐dependent uptake of nitrogenous organic compounds may contribute significantly to the carbon and nitrogen budget of filaments at low irradiance typical for growth of P. rubescens in the metalimnion and at the bottom of the surface mixed layer.  相似文献   

6.
Investigations lasting several years at the artificial Lake Saidenbach have shown that, due to the poor light situation expressed in terms of average daily radiation (Riley 1957), mean daily exposure (Reynolds 1973), extinction depth and the ratio zmis/zeu, no mass development of the phytoplankton should actually occur during the spring complete circulation. In practice, however, the period of complete circulation of the water in spring is not only a prerequisite for, but often also the factor causing, the mass development (usually Asterionella formosa). The poor light situation and the fact that the vertical phytoplankton profile shows significant differences between the plankton concentrations at different depths indicate that the spring complete circulation does not represent a complete recirculation, and thus mixing, of the water down to the bottom but involves only episodic and local partial recirculations interspersed with periods of relatively slight turbulence. The actual mixing depth during this period of complete circulation is therefore obviously less than the mean depth of the water concerned, which is commonly assumed to equal. This permits the algae in the upper layers to grow. Respiratory losses of the phytoplankton at greater depths probably remain slight due to their adaptation to low light intensities in winter.  相似文献   

7.
1. Measurements of total phosphorus (TP) concentrations since 1975 and a 50‐year time series of phytoplankton biovolume and species composition from Lake Mondsee (Austria) were combined with palaeolimnological information on diatom composition and reconstructed TP‐levels to describe the response of phytoplankton communities to changing nutrient conditions. 2. Four phases were identified in the long‐term record. Phase I was the pre‐eutrophication period characterised by TP‐levels of about 6 μg L?1 and diatom dominance. Phase II began in 1966 with an increase in TP concentration followed by the invasion of Planktothrix rubescens in 1968, characterising mesotrophic conditions. Phase III, from 1976 to 1979, had the highest annual mean TP concentrations (up to 36 μg L?1) and phytoplankton biovolumes (3.57 mm3 L?1), although reductions in external nutrient loading started in 1974. Phases II and III saw an expansion of species characteristic of higher nutrient levels as reflected in the diatom stratigraphy. Oligotrophication (phase IV) began in 1980 when annual average TP concentration, Secchi depth and algal biovolume began to decline, accompanied by increasing concentrations of soluble reactive silica. 3. The period from 1981 to 1986 was characterised by asynchronous trends. Annual mean and maximum total phytoplankton biovolume initially continued to increase after TP concentration began to decline. Reductions in phytoplankton biovolume were delayed by about 5 years. Several phytoplankton species differed in the timing of their responses to changing nutrient conditions. For example, while P. rubescens declined concomitantly with the decline in TP concentration, other species indicative of higher phosphorus concentrations, such as Tabellaria flocculosa var. asterionelloides, tended to increase further. 4. These data therefore do not support the hypotheses that a reduction in TP concentration is accompanied by (i) an immediate decline in total phytoplankton biovolume and (ii) persistence of the species composition characterising the phytoplankton community before nutrient reduction.  相似文献   

8.
The primary production of phytoplankton in Lake Vechten   总被引:6,自引:6,他引:0  
The primary production of the phytoplankton of Lake Vechten (The Netherlands) (area, 4.7 ha; mean depth, 6 m), an unpolluted and stratified sandpit was investigated from 1969 to 1980 (except in 1971, 1975 and 1976) by the in situ 14C-technique. Other data collected include: solar radiation, transparency, oxygen and thermal structure. In winter and spring diatoms, Cryptophyceae and Chlorococcales were important algal groups, while in summer Dinophyceae and Chrysophyceae were important. The chlorophyll-a concentration was compared to the cellular biovolumes (= fresh weight) of the most abundant phytoplankton species. The primary production maxima occurred in winter, spring and during the summer stratification. The vertical profiles of photosynthesis exhibit light inhibition at surface to a maximum of 4 m. The maximum of zooplankton grazing in May–June caused a sharp decrease in the phytoplankton biomass and seston concentration accompanied by the highest transparency (clear water phase).The values for cellular C-fixation range from 10 to 1307 mg C · M–2 · day–1 (annual mean of 280 mg C · m–2 · day–1). High dark fixation (up to 100%) was encountered in the metalimnion and hypolimnion from July to October together with peaks of 14C-fixation due to a crowding of phytoplankton and phototrophic anoxic bacteria. Extracellular excretion by phytoplankton, investigated in 1977 to 1979, was 15% of the annual mean of the total C-fixation. The photosynthetic efficiency, turnover rates, and activity coefficients were low, particularly in the summer months when Ceratium hirundinella was predominant. The seasonal variations were controlled mainly by solar radiation and probably phosphate, the former being more important in the non-stratification period and the latter during the stratification period.  相似文献   

9.
Olsson  Håkan  Blomqvist  Peter  Olofsson  Hans 《Hydrobiologia》1992,(1):147-155
Lake Hecklan, in central Sweden, was fertilized with phosphorus and nitrogen during thermal stratification (late May-early Oct) 1984–1987. The nutrient additions were relatively small and raised the total phosphorus concentrations from 6 to 10 µg l–1. The working hypothesis was that this moderate increase in the phosphorus concentration could increase the phytoplankton biomass without adverse changes in the planktonic community structure. The fertilization increased the phytoplankton biomass from 0.1 to a maximum of 2 mm3 l–1. Chrysophyceae and Cryptophyceae dominated throughout the experimental period. Thus, the phytoplankton composition remained typical for a Swedish forest lake and provided a potential for increased zooplankton growth. An increased growth of zooplankton was indicated by increased biomass of Cladocera and Copepoda in 1984 and 1985, and by increased fecundity of herbivorous zooplankton.  相似文献   

10.
Seasonal changes in the phytoplankton community of a small tropical reservoir were monitored over a four year period comprising of an initial two seasonal cycles during which the water column stratified strongly for extended periods each year, and two further seasonal cycles after installation of a mechanical aeration system to induce artificial destratification. In the unmanaged reservoir, the concentration of chlorophyll a at 0.5 m reached maximum values (on one occasion > 90 mg m−3) when the water column was stratified and the epilimnion was very shallow (ca 2 m depth). The hypolimnion at this time was anoxic (less than 2% oxygen saturation) and had a high concentration of bacteriochlorophyll (100–200 mg m−3). The phytoplankton community of the unmanaged reservoir was generally dominated by cyanobacteria (Cylindrospermopsis raciborskii, Anabaena tenericaulis) during the warmer months of the year (November–March) (but replaced by chlorophyta, dinophyceae and euglenophyceae after periods of intense rain) and by bacillariophyceae (Synedra ulna var. chaseana, S. tenera) during the cooler, dry months. In the artificially destratified reservoir (8 h aeration day−1), the phytoplankton community was largely dominated by diatoms except after depletion of the silica content of the water column which caused diatoms to be replaced by cyanobacteria (dominated by A. tenericaulis) and a range of chlorophytes. The changing pattern of stratification and circulation of the water column in the unmanaged reservoir caused repeated disruption of the established phytoplankton assemblage with peaks of high biomass associated with transient cyanobacterial blooms. Continuous aeration and the consequent increase in the ratio mixed: euphotic depth provided conditions suitable for dominance of the phytoplankton by diatoms, as long as silica was available, and resulted in average chlorophyll levels higher than in the unmanaged reservoir (120 ± 10 v. 64 ± 9 mg m−2). Hierarchical fusion analysis based on the biomass of species differentiated the phytoplankton samples into cluster groups that could be related primarily to stratification or mixing of the water column.  相似文献   

11.
12.
Consequences of internal wave motion for phytoplankton and in particular for the distribution and production of the harmful and buoyant cyanobacterium Planktothrix rubescens were investigated based on data from two field campaigns conducted in Lake Ammer during summer 2009 and 2011. In both years, P. rubescens dominated the phytoplankton community and formed a deep chlorophyll maximum (DCM) in the metalimnion. Internal wave motions caused vertical displacement of P. rubescens of up to 6 m and 10 m, respectively. Vertical displacements of isotherms and of iso-concentration lines of P. rubescens from the same depth range coincided, suggesting that P. rubescens did not or could not regulate its buoyancy to prevent wave-induced vertical displacements. Diatoms dominated the phytoplankton community in the epilimnion and were vertically separated from P. rubescens. The thickness of the diatom layer, but not the diatom concentrations within the layer, changed in phase with the changes in the thickness of the epilimnion caused by internal wave motions. Seiche induced vertical displacements of P. rubescens caused fluctuations in the light intensity available at the depth of the P. rubescens layer. The interplay between seiche induced vertical displacements of the P. rubescens layer and the daily cycle of incident light lead to differences in the daily mean available light intensity between lake ends by up to a factor of ∼3. As a consequence, the daily mean specific oxygen production rate of P. rubescens differed by up to a factor of ∼7 between lake ends. The horizontal differences in the specific oxygen production rate of P. rubescens were persistent over several days suggesting that the associated production of P. rubescens biomass may lead to phytoplankton patchiness. The effect of internal seiches on the spatial heterogeneity and the persistence of horizontal differences in production, however, depend on the timing and the synchronization between internal wave motion and the daily course of incident light intensity. Vertical displacements caused by internal waves could be distinguished from other factors influencing the distribution of P. rubescens (e.g. active buoyancy control, production, vertical mixing) by a temperature-based data transformation. This technique may be of general use for separating wave-induced transport from other processes (e.g. sedimentation, vertical mixing) that affect the distributions of dissolved substances and suspended particles.  相似文献   

13.
Particulate elemental ratios (C:N, N:P and C:Chl a) of seston in hypersaline (70–90 g kg–1) Mono Lake, California, were examined over an 11-year period (1990–2000) which included the onset and persistence of a 5-year period of persistent chemical stratification. Following the onset of meromixis in mid-1995, phytoplankton and dissolved inorganic nitrogen were substantially reduced with the absence of a winter period of holomixis. C:N, N:P and C:Chl a ratios ranged from 5 to 18 mol mol–1, 2 to 19 mol mol–1 and 25 to 150 g g–1, respectively, and had regular seasonal patterns. Deviations from those expected of nutrient-replete phytoplankton indicated strong nutrient limitation in the summer and roughly balanced growth during the winter prior to the onset of meromixis. Following the onset of meromixis, winter ratios were also indicative of modest nutrient limitation. A 3-year trend in C:N and N:P ratios toward more balanced growth beginning in 1998 suggest the impacts of meromixis weakened due to increased upward fluxes of ammonium associated with weakening stratification and entrainment of ammonium-rich monimolimnetic water. A series of nutrient enrichment experiments with natural assemblages of Mono Lake phytoplankton conducted during the onset of a previous episode of meromixis (1982–1986) confirm the nitrogen will limit phytoplankton before phosphorus or other micronutrients. Particulate ratios of a summer natural assemblage of phytoplankton collected under nitrogen-depleted conditions measured initially, following enrichment, and then after return to a nitrogen-depleted condition followed those expected based on Redfield ratios and laboratory studies.  相似文献   

14.
Allometric relationships of phytoplankton communities were studied on the basis of a five-year data-set in a deep oligotrophic alpine lake in Austria. The seasonal phytoplankton succession in Mondsee is characterised by diatoms during winter mixing and a distinct metalimnetic population of Planktothrix rubescens during stratification in summer. The variation of phytoplankton photosynthetic efficiency between seasons was assessed using in situ carbon-uptake rates (5 years data) and Fast Repetition Rate Fluorometry (FRRF) (2 years data). The light-saturated, chlorophyll-specific rate of photosynthesis (P*max), irradiance at the onset of saturation (E k) and maximum light-utilisation efficiency (α*) were determined for winter mixing and summer stratification. Fluorescence-based parameters as the functional absorption cross section of Photosystem II (σ PSII) and the photochemical quantum yield (F v/F m) were additionally analysed in 2003 and 2004 to study the underlying physiological mechanisms for the variability in photosynthetic performance. Beyond their sensitivity to changing environmental conditions like thermal stratification, phytoplankton populations differ in their photosynthetic behaviour according to their size structure. Therefore Photosynthesis vs. Irradiance (P/E)-relationships were analysed in detail within a 1-year period from size fractionated cell counts, chlorophyll-a and carbon-uptake.  相似文献   

15.
Marc W. Beutel 《Hydrobiologia》2001,466(1-3):107-117
Walker Lake (area = 140 km2, Z mean = 19.3 m) is a large, terminal lake in western Nevada. As a result of anthropogenic desiccation, the lake has decreased in volume by 75% since the 1880s. The hypolimnion of the lake, now too small to meet the oxygen demand exerted by decaying matter, rapidly goes anoxic after thermal stratification. Field and laboratory studies were conducted to examine the feasibility of using oxygenation to avoid hypolimnetic anoxia and subsequent accumulation of ammonia in the hypolimnion, and to estimate the required DO capacity of an oxygenation system for the lake. The accumulation of inorganic nitrogen in water overlaying sediment was measured in laboratory chambers under various DO levels. Rates of ammonia accumulation ranged from 16.8 to 23.5 mg-N m–2 d–1 in chambers with 0, 2.5 and 4.8 mg L–1 DO, and ammonia release was not significantly different between treatments. Beggiatoa sp. on the sediment surface of the moderately aerated chambers (2.5 and 4.8 mg L–1 DO) indicated that oxygen penetration into sediment was minimal. In contrast, ammonia accumulation was reversed in chambers with 10 mg L–1 DO, where oxygen penetration into sediment stimulated nitrification and denitrification. Ammonia accumulation in anoxic chambers (18.1 and 20.6 mg-N m–2 d–1) was similar to ammonia accumulation in the hypolimnion from July through September of 1998 (16.5 mg-N m–2 d–1). Areal hypolimnetic oxygen demand averaged 1.2 g O2 m–2 d–1 for 1994–1996 and 1998. Sediment oxygen demand (SOD) determined in experimental chambers averaged approximately 0.14 g O2 m–2 d–1. Continuous water currents at the sediment-water interface of 5–6 cm s–1 resulted in a substantial increase in SOD (0.38 g O2 m–2 d–1). The recommended oxygen delivery capacity of an oxygenation system, taking into account increased SOD due to mixing in the hypolimnion after system start-up, is 215 Mg d–1. Experimental results suggest that the system should maintain high levels of DO at the sediment-water interface (10 mg L–1) to insure adequate oxygen penetration into the sediments, and a subsequent inhibition of ammonia accumulation in the hypolimnion of the lake.  相似文献   

16.
The phytoplankton productivity and chlorphyll-a concentration of Oguta Lake, the largest natural lake in south-eastern Nigeria, are presented (Dec. 1983. Nov. 1984). The gross productivity ranged from 1.3 to 3.77 g C.m–2.day–1 for the water column, dropped during the period of heavy rainfall and varied with depth. The chlorophyll-a concentration had monthly means ranging from 2.31 to 4.00 mg.m–3, with a drop during the rains, but little depth variation. Both productivity and chlorophyll-a showed non-significant correlation with the physico-chemical features of the water. The values of the biological parameters showed the lake as mesotrophic. The values are compared with those of other African lakes.  相似文献   

17.
Trophic status of Tilitso,a high altitude Himalayan lake   总被引:1,自引:1,他引:0  
The trophic status and water quality of Lake Tilitso (4920 m above sea level) in a high altitude region in central Nepal were surveyed in September, 1984. The lake is rather large with a maximum depth of 95 m and a surface area of 10.2 km2. The lake water was turbid due to glacier silt and the euphotic layer was only 5 m deep. The nutrient concentration was very low with total phosphorus concentration 1–6 μg l−1, and DTN concentration 0.10–0.22 mg l−1. The phytoplankton biomass and chlorophyll-a concentration were also low. Primary production was estimated to be about 12 mg C m−2 d−1. The concentrations of particulate matter and most cations and bacterial number were higher in the epilimnion than in the hypolimnion. The trophic status of this lake was estimated as ultraoligotrophic.  相似文献   

18.
Fussmann  Gregor 《Hydrobiologia》1993,(1):353-360
Quantitative samples were taken in the pelagial zone of hypertrophic Heiligensee (Berlin, Germany) in the late summer and autumn of 1990. Abundances of 26 species occurring in the plankton, as well as physical and chemical parameters (water temperature, O2, total phosphorus, SRP, NO3 , NO2 NH4 + , chlorophyll a) were determined at different depths. Erosion of the hypolimnion due to autumnal storms and decrease in temperature was interrupted by fine weather periods with the occurrence of re-stratification, thus allowing mass production of algae and rotifers (Synchaeta oblonga, S. tremula, Keratella cochlearis) through exploitation of newly available nutrients. Warm stenothermal summer species (e.g. Pompholyx sulcata, Trichocerca pusilla, Liliferotrocha subtilis) became less abundant as a consequence of the progressive mixing process, whereas the appearance of new species was a rare event. The late summer occurrence of Liliferotrocha subtilis in the fraction < 30 µm (up to 3500 ind. l–1) is remarkable. Keratella cochlearis showed morphological variation from spineless summer forms to spine-bearing autumnal forms, the latter particularly dominating the deeper water layers. The prevailing phenomenon was the dramatic decrease of the total number of individuals and of species towards completion of autumnal turnover. The impact of falling temperature, increasing mixing depth and mass production of phytoplankton on the rotifer plankton community is discussed.  相似文献   

19.
  1. Daphnia are key organisms in pelagic food webs, acting as a food resource for fish and predatory zooplankton and regulating phytoplankton through grazing. Its population dynamic follows regular seasonal patterns, with spring peaks followed by summer population declines (midsummer declines, MSDs). Midsummer declines show high inter-annual variation, which has been attributed to different causes. However, the mechanisms controlling the MSD remain poorly understood, especially in deep stratified lakes.
  2. We tried to disentangle the factors causing Daphnia MSDs in Lake Lugano and Lake Iseo (in Switzerland and Italy), two deep peri-alpine lakes with similar trophic status and vertical mixing dynamics, characterised by phosphorus accumulation in the hypolimnion and variable mixing during late-winter turnovers.
  3. Specifically, we assessed the effects of three different hypothetical pathways according to which: (1) winter air temperature controls MSDs by influencing mixing depth during turnovers and epilimnetic phosphorus replenishment; (2) vernal air temperature influences MSD by accelerating the timing of spring population peak; and (3) summer temperature influences MSDs by increasing fish predation. We assessed the relative strength of these pathways using structural equation modelling on long-term datasets for the two lakes (29 years for Lake Lugano and 19 years for Lake Iseo).
  4. Between the hypothesised pathways, the one driven by winter air temperature (through P replenishment) influenced Daphnia abundance in spring in both lakes, but the effects propagated to summer Daphnia abundance only in Lake Lugano. Additionally, summer Daphnia abundance was influenced by the summer air temperature through a positive (although weak) effect. By comparison, vernal air temperature had no detectable effects on summer Daphnia abundance.
  5. The results revealed marked differences between the meromictic study lakes and the shallow hypertrophic water bodies that were the focus of previous research on Daphnia MSD, and also between the two study lakes. The influence of epilimnetic P replenishment on the summer Daphnia abundance in Lake Lugano, which was recovering from past eutrophication, may have reflected the greater susceptibility of deep, stratified lakes to P depletion after spring compared to shallow hypertrophic lakes or reservoirs. This effect might not have been detected in Lake Iseo because P was more consistently depleted during the study period (i.e. variance in the predictor was too low to detect an effect).
  6. This study highlighted the complexity of the effects of climate variability on Daphnia MSD in deep lakes, showing that the responses can differ even between two neighbouring lakes with similar vertical mixing dynamics and trophic status. At the same time, the results suggest that future increases in winter air temperature, caused by global warming, may cause critically low densities of Daphnia during spring and summer and compromise the ability of zooplankton to control phytoplankton biomass.
  相似文献   

20.
Liukkonen  Mikko  Kairesalo  Timo  Keto  Juha 《Hydrobiologia》1993,(1):415-426
Lake Vesijärvi was loaded by sewage from the City of Lahti for 60 years until 1976 when the discharge was diverted. Paleolimnological analyses of the varved bottom sediment indicate that the sedimentation rate within the Enonselka basin, the most eutrophic part of the lake, has been as high as 2 cm yr–1, and total phosphorus accumulation was 20–40 g P m–2 yr–1, during the last 20 years. Within the less eutrophic Laitialanselkä basin, the sedimentation rate did not exceed 1 cm yr–1, and the formation of varved sediment only began at the end of the 1960's, i.e. about 10 years later than in Enonselkä.Planktonic diatom production was highest in the Enonselka basin. The most abundant diatoms in the sediment between 1970–1985 were Asterionella formosa, Aulacoseira islandica and Stephanodiscus spp. Fragilaria crotonensis and Tabellaria fenestrata had low abundances in the middle of the 1970's but increased again at the end of the 1970's. Asterionella formosa and Diatoma elongatum reached their maxima between 1979–1984 when the hypolimnion of the Enonselk/:a basin was aerated artificially. In the Laitialanselkä basin, the production of planktonic diatoms has been lower and the species composition of the diatom community differed from that in Enonselkä. However, at the end of 1980's the total accumulation of diatoms in Laitialanselkä approached levels which were observed at the end of 1950's in Enonselkä, prior to the rapid eutrophication period.The production and thereby the sedimentation of diatoms has decreased towards the end of the 1980's in Enonselkä, indicating reduced nutrient availability in the lake water. This reduction was due to the decreased external loading of phosphorus as well as to the decreased release of phosphorus from the sediment as a result of improved oxygen balance in the hypolimnion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号