首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The reduction of the Re2 5+ core in 1,2,7-Re2Cl5(PR3)3 molecules, followed by addition of 1 equiv. of a different phosphine ligand, PR3 ′, allows the preparation of the mixed monodentate phosphine compounds of the Re2 4+ type, namely 1,2,7,8-Re2Cl4(PR3)3(PR3 ′). The stereochemistry of the starting materials dictates the stereochemistry of the final products. The one-electron reduction of the 1,2,7-isomer of Re2Cl5(PMe2Ph)3 with KC8 to the corresponding anion, [1,2,7-Re2Cl5(PMe2Ph)3] (1), followed by non-redox substitution of one chloride ion by one diethylphosphine, PEt2H, afforded the first mixed monodentate phosphine compound of the dirhenium(II) core, Re2Cl4(PMe2Ph)3(PEt2H) (2), in good yield. Crystal structure determination as well as other physical methods and elemental analysis unambiguously confirmed the formation of 2. The related system 1,2,7-Re2Cl5(PMe3)3---Co(C5H5)2---PEt2H leads to several products, one of which is 1,2,7,8-Re2Cl4(PMe3)3(PEt2H) (3).  相似文献   

2.
Metathesis of [(η33−C10H16)Ru(Cl) (μ−Cl)]2 (1) with [R3P) (Cl)M(μ-Cl)]2 (M = Pd, Pt), [Me2NCH2C6H4Pd(μ-Cl)]2 and [(OC)2Rh(μ-Cl)]2 affords the heterobimetallic chloro bridged complexes (η33-C10H16) (Cl)Ru(μ-Cl)2M(PR3)(Cl) (M = Pd, Pt), (η33-C10H16) (Cl)Ru(μ-Cl)2PdC6H4CH2NMe2 and (η33-C10H16) (Cl)Ru(μ-Cl)2Rh(CO)2, respectively. Complex 1 reacts with [Cp*M(Cl) (μ-Cl)]2 (M = Rh, Ir), [p-cymene Ru(Cl) (μ-Cl]2 and [(Cy3P)Cu(μ-Cl)]2 to give an equilibrium of the heterobimetallic complexes and of educts. The structures of (η33-C10H16)Ru(μ-Cl)2Pd(PR3) (Cl) (R = Et, Bu) and of one diastereoisomer of (η33-C10H16)Ru(μ-Cl)2IrCp*(Cl) were determined by X-ray diffraction.  相似文献   

3.
Lewis acid adducts of the hydrides cis- and trans-Re(CO)(PMe3)4H (1) and (2), mer-Re(CO)2(PMe3)3H (3), fac-Re(CO)2(PMe3)3H (4) and trans-Re(CO)3(PMe3)2H (5) were studied with BH3 and 9-borabicyclo[3,3,1] norbonane (BBNH). Using BH3·THF and (BBNH)2 1 and 2 afforded Re(CO)(PMe3)32-BH4) (6) and Re(CO)(PMe3)32-BBNH2) (7) as stable and isolable products. VT IR studies established for the reaction to 7 that BBNH first attaches in a pre-equilibrium to the OCO atom of 1 or 2. At higher temperatures ReH adduct formation occurs with instantaneous transformation to 7 and elimination of PMe3·BBNH. In a similar way, the hydrides 3 and 4 were converted with BH3·THF and (BBNH)2 to yield the stable complexes Re(CO)2(PMe3)22-BH4) (8) and Re(CO)2(PMe3)22-BBNH2) (9). The intermediacy of the η1-BH4 adducts mer-/fac-Re(CO)2(PMe3)31-BH4) was confirmed by VT 1H, 31P NMR and VT IR experiments. The conversion of 5 with BH3·THF led to equilibria with adducts at the OCO terminus in trans position to H and with HRe as revealed by VT IR studies. Temperature dependent 31P equilibrium studies allowed to calculate ΔH=−4.9 kcal mol−1 and ΔS=+0.034 e.u. for this reaction. These adducts could not be isolated. Compound 5 does not react with (BBNH)2 even at elevated temperatures. DFT calculations were carried out to support the structures of the BH3 adducts of 5. In addition a vibrational analysis helped to unravel the IR band assignments of the involved compounds. DFT calculations on 8 confirmed its C2v structure. X-ray diffraction studies were carried out on single crystals of 6 and 7.  相似文献   

4.
Reactions of [(PPh3)2Pt(η3-CH2CCPh)]OTf with each of PMe3, CO and Br result in the addition of these species to the metal and a change in hapticity of the η3-CH2CCPh to η1-CH2CCPh or η1-C(Ph)=C=CH2. Thus, PMe3 affords [(PMe3)3Pt(η1-C(Ph)=C=CH2)]+, CO gives both [trans-(PPh3)2Pt(CO)(η1-CH2CCPh)]+ and [trans-(PPh3)2Pt(CO)(η1-C(Ph)=C=CH2)]+, and LiBr yields cis-(PPh3)2PtBr(η1-CH2CCPh), which undergoes isomerization to trans-(PPh3)2PtBr(η1-CH2CCPh). Substitution reactions of cis- and trans-(PPh3)2PtBr(η1-CH2CCPh) each lead to tautomerization of η1-CH2CCPh to η1-C(Ph)=C=CH2, with trans-(PPh3)2PtBr(η1-CH2CCPh) affording [(PMe3)3Pt(η1-C(Ph)=C=CH2)]+ at ambient temperature and the slower reacting cis isomer giving [trans-(PPh3)(PMe3)2Pt(η1-C(Ph)=C=CH2)]+ at 54 °C . All new complexes were characterized by a combination of elemental analysis, FAB mas spectrometry and IR and NMR (1H, 13C{1H} and 31P{1H}) spectroscopy. The structure of [(PMe3)3Pt(η1-C(Ph)=C=CH2)]BPh4·0.5MeOH was determined by single-crystal X-ray diffraction analysis.  相似文献   

5.
Several novel dimers of the composition [M2Cl4(trans-dppen)2] (M=Ni (1), Pd (2), Pt (3)) containing trans-1,2-bis(diphenylphosphino)ethene (trans-dppen) have been prepared and characterized by X-ray diffraction methods, NMR spectroscopy (195Pt{1H}, 31P{1H}), elemental analyses, and melting points. The intramolecular [2+2] photocycloaddition of the two diphosphine-bridges in 3 produces [Pt2Cl4(dppcb)] (4), where dppcb is the new tetradentate phosphine cis,trans,cis-1,2,3,4-tetrakis(diphenylphosphino)cyclobutane. Neither 1 nor the free diphosphine trans-dppen shows this reaction. In the case of 2 the photocycloaddition is slower than in 3. This difference can be explained by the shorter distance between the two aliphatic double bonds in 3 than in 2, but also different transition probabilities within ground and excited states of the used metals could be involved. Furthermore, variable-temperature 31P{1H} NMR spectroscopy of 2 or 3 reveals a negative activation entropy of 2 for the [2+2] photocycloaddition, but a positive of 3. The removal of chloride from 4 by precipitating AgCl with AgBF4, and subsequent treatment with 2,2′-bipyridine (bipy) or 1,10-phenanthroline (phen) leads to [Pt2(dppcb)(bipy)2](BF4)4 (5) and [Pt2(dppcb)(phen)2](BF4)4 (6), respectively. In an analogous reaction of 4 with PMe2Ph or PMePh2, [Pt2(dppcb)(PMe2Ph)4](BF4)4 (7) and [Pt2(dppcb)(PMePh2)4](BF4)4 (8) are formed. Complexes 1–8 show square–planar coordinations, where the compounds 4–8 have also been characterized by the above mentioned methods together with fast atom bombardment mass spectrometry (7, 8). The crystal structure of 4 reveals two conformations, which arise from an energetic competition between the sterical demands of dppcb and an ideal square–planar environment of Pt(II). The free tetraphosphine dppcb can be obtained easily from 4 by treatment with NaCN. It has been characterized fully by the above methods including 13C{1H} and 1H NMR spectroscopy. The X-ray structure analysis shows the pure MMMP-enantiomer in the solid crystal, which is therefore optically active. This chirality is induced by a conformation of dppcb, where all four PPh2 groups are non-equivalent. Variable-temperature 31P{1H} NMR spectroscopy of dppcb confirms this explanation, since the single signal at room temperature is split into two doublets at 183 K. The goal of this article is to demonstrate the facile production of a new tetradentate phosphine from a diphosphine precursor via Pt(II) used as a template.  相似文献   

6.
The reaction of RuCl3(H2O), with C5Me4CF3J in refluxing EtOH gives [Ru25-C5Me1CF2)2 (μ-Cl2] (20 in 44% yield. Dimer 2 antiferromagnetic (−2J=200 cm1). The crystal structures of 2 (rhombohedral system, R3 space group, Z=9, R=0.0589) and [Rh25-C5Me4CF3(2Cl2(μ-Cl)2] (3) (rhombohedral system. space group, Z = 9, R = 0.0641) were solved; both complexes have dimeric structures with a trans arrangement of the η5-C5Me4CF4 rings. Comparison of the geometry of 2 and 3 with those of the corresponding η5-C5Me5 complexes shows that lowering the ring symmetry causes significant distortion of the M2(μ-Cl)2 moiety. The analysis of the MCl3 fragment conformations in 2 and 3 and in the η5-C5ME5 analogues shows that they are correlated with the M---M distances. The Cl atoms are displaced by Br on reaction of 2 with KBr in MeOH to give the diamagnetic dimer [Ru25-C5Me4CF3)2Br2 (μ-Br2] (4). Complex 2 reacts with O2 in CH2Cl2 solution at ambient temperature to form a mixture of isomeric η6-fulvene dimers [Ru26-C5Me3CF3 = CH2)2Cl2(μ-Cl)2] (5). Reactions of 5 with CO and allyl chloride give Ru(η5-C5Me3CF3CH2Cl)(CO)2Cl (6) and Ru(η5-C5Me3CF3CF3CH2Cl)(η3-C3H5)Cl2 (7) respectively.  相似文献   

7.
The dinuclear Pt---Si complex {(Ph3P)Pt{μ-η2-H---SiH(IMP)]}2 (trans-1a–cis-1b=3:1; IMP=2-isopropyl-6-methylphenyl) reacted with basic phosphines such as 1,2-bis(diphenylphosphino)ethane (dppe) and dimethylphenylphosphine (PMe2Ph) to afford different dinuclear Pt---Si complexes with loss of H2, {(P)2Pt[μ-SiH(IMP)]}2 [P=dppe, trans-2a (major), cis-2b (trace); PMe2Ph, 3 (trans only)]. Complexes 2 and 3 were characterized by multinuclear NMR spectroscopy and X-ray crystallography (2a). In contrast, the reaction of 1a,b with the sterically demanding tricyclohexylphosphine (PCy3) afforded {(Cy3P)Pt{μ-η2-H---SiH(IMP)]}2 (trans-4a–cis-4b 2:1) analogous to 1a,b where the central Pt2Si2(μ-H)2 core remains intact but the PPh3 ligands have been replaced by PCy3. Complexes 4a and 4b was characterized by multinuclear NMR and IR spectroscopies.  相似文献   

8.
The reversible equilibrium conversion under H2 of [RuCl(dppb) (μ-Cl)]2 (1) to generate (η2-H2) (dppb) (μ-Cl)3RuCl(dppb) in CH2Cl2 (dppb = Ph2P(CH2)4PPh2) has been studied at 0–25 °C by UV-Vis and 31P{1H} NMR spectroscopy, and by stoppe kinetics; the equilibrium constant and corresponding thermodynamic parameters, and the forward and reverse rate constants at 25 °C have been determined. A measured ΔH° value of 0 kJ mol−1 allows for an estimation of an exothermicity of 60 kJ mol−1 for binding an η2-H2 at an Ru(II) centre; a ΔS° value of 60 J mol−1 K−1 indicates that in solution 1 contain s coordinated CH2Cl2. The kinetic and thermodynamic data are compared to those obtained from a previously studied hydrogenation of styrene catalyzed by 1. Preliminary findings on related systems containing Ph2P(CH2)3PPh2 and (C6H11)2P(C6H11)2 are also noted.  相似文献   

9.
The trinuclear complexes [Ag(PR3)2]2[Ni(mnt)2] and [AgL]2[Ni(mnt)2] have been prepared by reactions of (NEt4)2[Ni(mnt)2] and Ag2SO4 with alkyl phosphines (PR3=P(CH3)3 (PMe3) for 1, P(C2H5)3 (PEt3) for 2 and P(C6H11)3 (PCy3) for 3), or with chelating diphosphines (L=1,1′-bis(diphenylphosphino)ferrocene (dppf) for 4 and bis(diphenylphosphino)methane (dppm) for 5). The structures of all the complexes have been determined by X-ray crystallography. Interactions between the [Ag(PR3)2]+ and [Ni(mnt)2]2− groups occur in compounds 1 and 2 with Ni---Ag distances of 3.063(4) and 2.9311(6) Å, respectively. Only one sulfur atom of each mnt ligand bridged [Ag(PR3)2]+ cations and [Ni(mnt)2]2− anions in compound 1 through 3 with Ag---S distances of about 2.7 Å. There is no interaction between Ag and Ni in compound 3 due to the flexibility of the cyclohexyl groups. Interactions between [AgL]+ and [Ni(mnt)2]2− groups also occur in compound 4 with a much shorter Ag---Ni distance of 2.7213(7) Å, while silver atoms and the NiS4 plane in compound 4 make a chair conformation with Ag---S distances of about 2.8 Å. In compound 5, dppm bridges two silver atoms, and interaction between silver atoms occurs at a distance of 2.9859(11) Å, and only one sulfur atom of mnt is used to bridge Ni and Ag atoms with Ag---S distances of 2.582(3) and 2.663(3) Å.  相似文献   

10.
Reactions of [Rh(COD)Cl]2 with the ligand RN(PX2)2 (1: R = C6H5; X = OC6H5) give mono- or disubstituted complexes of the type [Rh2(COD)Cl22−C6H5N(P(OC6H5)2)2}] or [RhCl{ν2−C6H5 N(P(OC6H5)2)2 }]2 depending on the reaction conditions. Reaction of 1 with [Rh(CO)2Cl]2 gives the symmetric binuclear complex, [Rh(CO)Cl{μ−C6H5N(P(OC6H5)2)2} 2, whereas the same reaction with 2 (R = CH3; X = OC6H5) leads to the formation of an asymmetric complex of the type [Rh(CO)(μ−CO)Cl{μ−CH3N(P(OC6H5)2)2}2 containing both terminal and bridging CO groups. Interestingly the reaction of 3 (R = C6H5, X = OC6H4Br−p with either [Rh(COD)Cl]2 or [Rh(CO)2Cl]2 leads only to the formation of the chlorine bridged binuclear complex, [RhCl{ν2−C6H5N(P(OC6H4Br−p)2)2}]2. The structural elucidation of the complexes was carried out by elemental analyses, IR and 31P NMR spectroscopic data.  相似文献   

11.
The phosphinoalkenes Ph2P(CH2)nCH=CH2 (n= 1, 2, 3) and phosphinoalkynes Ph2P(CH2)n C≡CR (R = H, N = 2, 3; R = CH3, N = 1) have been prepared and reacted with the dirhodium complex (η−C5H5)2Rh2(μ−CO) (μ−η2−CF3C2CF3). Six new complexes of the type (ν−C5H5)2(Rh2(CO) (μ−η11−CF3C2CF3)L, where L is a P-coordinated phosphinoalkene, or phosphinoalkyne have been isolated and fully characterized; the carbonyl and phosphine ligands are predominantly trans on the Rh---Rh bond, but there is spectroscopic evidence that a small amount of the cis-isomer is formed also. Treatment of the dirhodium-phosphinoalkene complexes with (η−CH3C5H4)Mn(CO)2thf resulted in coordination of the manganese to the alkene function. The Rh2---Mn complex [(η−C5H5)2Rh2(CO) (μ−η11−CF3C2CF3) {Ph2P(CH2)3CH=CH2} (η−CH3C5H4)Mn(CO)2] was fully characterized. Simi treatment of the dirhodium-phosphinoalkyne complexes with Co2(CO)8 resulted in the coordination of Co2(CO)6 to the alkyne function. The Rh2---Co2 complex [(η−C5H5)2Rh2(CO) (μ−η11−CF3C2CF3) {Ph2PCH2C≡CCH3}Co2(CO)2], C37H25Co2F6O7PRh2, was fully characteriz spectroscopically, and the molecular structure of this complex was determined by a single crystal X-ray diffraction study. It is triclinic, space group (Ci1, No. 2) with a = 18.454(6), B = 11.418(3), C = 10.124(3) Å, = 112.16(2), β = 102.34(3), γ = 91.62(3)°, Z = 2. Conventional R on |F| was 0.052 fo observed (I > 3σ(I)) reflections. The Rh2 and Co2 parts of the molecule are distinct, the carbonyl and phosphine are mutually trans on the Rh---Rh bond, and the orientations of the alkynes are parallel for Rh2 and perpendicular for Co2. Attempts to induce Rh2Co2 cluster formation were unsuccessful.  相似文献   

12.
Some (η3-crotyl) (2,5-dichlorophenyl)palladium(II) complexes containing phosphine and phosphite ligands Pd(η3-CH2CH-CHMe)(Ar)(PR3) (Ar = C6H3Cl2-2,5) were isolated as crystalline solids or generated in solution. These existed as a mixture of two geometrical isomers arising from a different way of risposition of the crotyl-methyl group and the aryl ligand. The electronic nature of the PR3 ligand controlled the relative rates of the interconversion between the two isomers and the reductive elimination of the complexes which released MeCH=CHCH2Ar and CH2=CHCH(Me)(Ar). Electron-withdrawing phosphite ligands were particularly effective in enhancing the reductive elimination rate, making the contribution of the isomerization path almost negligible and allowing the formation of two coupling products to be followed separately by spectroscopic means. The observations demonstrated the occurrence of C---C coupling between mutually cis carbon ligands in (η3-allyl)(hydrocarbyl)palladium(II) complexes. The η1-crotyl complex, (Pd(η1-CH2CH=CHMe)(Ar) (dppen) (dppen = cis-Ph2PCH=CHPPh2) was isolated and shown to exist as a sole regio-isomer in solution. Reductive elimination of this η1-crotyl complex gave MeCH=CHCH2Ar exclusively.  相似文献   

13.
Treatment of the A-ring aromatic steroids estrone 3-methyl ether and β-estradiol 3, 17-dimethyl ether with Mn(CO)5+BF4 in CH2Cl2 yields the corresponding [(steroid)Mn(CO)3]BF4 salts 1 and 2 as mixtures of and β isomers. The X-ray structure of [(estrone 3-methyl ether)Mn(CO)3]BF4 · CH2Cl2 (1) having the Mn(CO)3 moiety on the side of the steroid is reported: space group P21 with a=10.3958(9), b=10.9020(6), c=12.6848(9) Å, β=111.857(6)°, Z=2, V=1334.3(2) Å3, calc=.481 cm−3, R=0.0508, and wR=0.0635. The molecule has the traditional ‘piano stool’ structure with a planar arene ring and linear Mn---C---O linkages. The nucleophiles NaBH4 and LiCH2C(O)CMe3 add to [(β-estradiol 3,17-dimethyl ether)Mn(CO)3]BF4 (2) in high yield to give the corresponding - and β-cyclohexadienyl manganese tricarbonyl complexes (3). The nucleophiles add meta to the arene -OMe substituent and exo to the metal. The and β isomers of 3 were separated by fractional crystallization and the X-ray structure of the β isomer with an exo-CH2C(O)CMe3 substituent is reported (complex 4): space group P212121 with a=7.5154(8), b=15.160(2), c=25.230(3) Å, Z=4, V=2874.4(5) Å3, calc=1.244 g cm−3, R=0.0529 and wR2=0.1176. The molecule 4 has a planar set of dienyl carbon atoms with the saturated C(1) carbon being 0.592 Å out of the plane away from the metal. The results suggest that the manganese-mediated functionalization of aromatic steroids is a viable synthetic procedure with a range of nucleophiles of varying strengths.  相似文献   

14.
Rapid reactions occur between [OsVI(tpy)(Cl)2(N)]X (X = PF6, Cl, tpy = 2,2′:6′,2″-terpyridine) and aryl or alkyl phosphi nes (PPh3, PPh2Me, PPhMe2, PMe3 and PEt3) in CH2Cl2 or CH3CN to give [OsIV(tpy)(Cl)2(NPPh3)]+ and its analogs. The reaction between trans-[OsVI(tpy)(Cl)2(N)]+ and PPh3 in CH3CN occurs with a 1:1 stoichiometry and a rate law first order in both PPh3 and OsVI with k(CH3CN, 25°C) = 1.36 ± 0.08 × 104 M s−1. The products are best formulated as paramagnetic d4 phosphoraniminato complexes of OsIV based on a room temperature magnetic moment of 1.8 μB for trans-[OsIV(tpy)(Cl)2(NPPh3)](PF6), contact shifted 1H NMR spectra and UV-Vis and near-IR spectra. In the crystal structures of trans-[OsIV(tpy)(Cl)2( NPPh3)](PF6)·CH3CN (monoclinic, P21/n with a = 13.384(5) Å, b = 15.222(7) Å, c = 17.717(6) Å, β = 103.10(3)°, V = 3516(2) Å3, Z = 4, Rw = 3.40, Rw = 3.50) and cis-[OsIV(tpy)(Cl)2(NPPh2Me)]-(PF6)·CH3CN (monoclinic, P21/c, with a = 10.6348(2) Å, b = 15.146(9) ÅA, c = 20.876(6) Å, β = 97.47(1)°, V = 3334(2) Å3, Z = 4, R = 4.00, Rw = 4.90), the long Os-N(P) bond lengths (2.093(5) and 2.061(6) Å), acute Os-N-P angles (132.4(3) and 132.2(4)°), and absence of a significant structural trans effect rule out significant Os-N multiple bonding. From cyclic voltammetric measurements, chemically reversible OsV/IV and OsIV/III couples occur for trans-[OsIV(tpy)(Cl)2(NPPh3)](PF6) in CH3CN at +0.92 V (OsV/IV) and −0.27 V (OsIV/III) versus SSCE. Chemical or electrochemical reduction of trans-[OsIV(tpy)(Cl)2(NPPh3)](PF6) gives isolable trans-OsIII(tpy)(Cl)2(NPPh3). One-electron oxidation to OsV followed by intermolecular disproportionation and PPh3 group transfer gives [OsVI(tpy)Cl2(N)]+, [OSIII(tpy)(Cl)2(CH3CN)]+ and [Ph3=N=PPh3]+ (PPN+). trans-[OsIV(tpy)(Cl)2(NPPh3)](PF6) undergoes reaction with a second phosphine under reflux to give PPN+ derivatives and OsII(tpy)(Cl)2(CH3CN) in CH3CN or OsII(tpy)(Cl)2(PR3) in CH2Cl2. This demonstrates that the OsVI nitrido complex can undergo a net four-electron change by a combination of atom and group transfers.  相似文献   

15.
A new compound containing a cubane tungsten chalcogenide cluster [W43-Te)4(CN)12]6− and Ca2+ complex units has been prepared by the reaction of aqueous solution of K6[W43-Te)4(CN)12] · 5H2O with the solution of a Ca(NO3)2 and phen(1,10-phenanthroline) (1:2 molar ratio) in a solvent mixture of H2O/EtOH. The structure of [{Ca(phen)2(H2O)}{Ca(phen)(H2O)4}{Ca(phen)2(H2O)3}][W4Te4(CN)12] · 5H2O 1 has been determined by X-ray crystallography. Compound 1 contains [{Ca(phen)(H2O)4}{Ca(phen)2(H2O)3}][W43- Te)4(CN)12] units bridged by {Ca(phen)2(H2O)}2+ units to form an one-dimensional zigzag chain structure. Interestingly, compound 1 showed a heterogeneous catalytic activity in the transesterification of a range of esters with methanol under the mild conditions. Moreover, it can be reused without any loss of activity through 10 runs with ester.  相似文献   

16.
The chloro complexes trans-[Pt(Me)(Cl)(PPh3)2], after treatment with AgBF4, react with 1-alkynes HC---C---R in the presence of NEt3 to afford the corresponding acetylide derivatives trans-[Pt(Me) (C---C---R) (PPh3)2] (R = p-tolyl (1), Ph (2), C(CH3)3 (3)). These complexes, with the exception of the t-butylacetylide complex, react with the chloroalcohols HO(CH2)nCl (n = 2, 3) in the presence of 1 equiv. of HBF4 to afford the alkyl(chloroalkoxy)carbene complexes trans-[Pt(Me) {C[O(CH2)nCl](CH2R) } (PPh3)2][BF4] (R = p-tolyl, N = 2 (4), N = 3 (5); R=Ph, N = 2 (6)). A similar reaction of the bis(acetylide) complex trans-[Pt(C---C---Ph)2(PMe2Ph)2] with 2 equiv. HBF4 and 3-chloro-1-propanol affords trans-[Pt(C---CPh) {C(OCH2CH2CH2Cl)(CH2Ph) } (PMe2Ph)2][BF4] (7). T alkyl(chloroalkoxy)-carbene complex trans-[Pt(Me) {C(OCH2CH2Cl)(CH2Ph) } (PPh3)2][BF4] (8) is formed by reaction of trans-[Pt(Me)(Cl)(PPh3)2], after treatment with AgBF4 in HOCH2CH2Cl, with phenylacetylene in the presence of 1 equiv. of n-BuLi. The reaction of the dimer [Pt(Cl)(μ-Cl)(PMe2Ph)]2 with p-tolylacetylene and 3-chloro-1-propanol yields cis-[PtCl2{C(OCH2CH2CH2Cl)(CH2C6H4-p-Me}(PMe2Ph)] (9). The X-ray molecular structure of (8) has been determined. It crystallizes in the orthorhombic system, space group Pna21, with a = 11.785(2), B = 29.418(4), C = 15.409(3) Å, V = 4889(1) Å3 and Z = 4. The carbene ligand is perpendicular to the Pt(II) coordination plane; the PtC(carbene) bond distance is 2.01(1) Å and the short C(carbene)-O bond distance of 1.30(1) Å suggests extensive electronic delocalization within the Pt---C(carbene)---O moietry.  相似文献   

17.
Kinetic results are reported for intramolecular PPh3 substitution reactions of Mo(CO)21-L)(PPh3)2(SO2) to form Mo(CO)22-L)(PPh3)(SO2) (L = DMPE = (Me)2PC2H4P(Me)2 and dppe=Ph2PC2H4PPh2) in THF solvent, and for intermolecular SO2 substitutions in Mo(CO)32-L)(η2-SO2) (L = 2,2′-bipyridine, dppe) with phosphorus ligands in CH2Cl2 solvent. Activation parameters for intramolecular PPh3 substitution reactions: ΔH values are 12.3 kcal/mol for dmpe and 16.7 kcal/mol for dppe; ΔS values are −30.3 cal/mol K for dmpe and −16.4 cal/mol K for dppe. These results are consistent with an intramolecular associative mechanism. Substitutions of SO2 in MO(CO)32-L)(η2-SO2) complexes proceed by both dissociative and associative mechanisms. The facile associative pathways for the reactions are discussed in terms of the ability of SO2 to accept a pair of electrons from the metal, with its bonding transformations of η2-SO2 to η1-pyramidal SO2, maintaining a stable 18-e count for the complex in its reaction transition state. The structure of Mo(CO)2(dmpe)(PPh3)(SO2) was determined crystallographically: P21/c, A=9.311(1), B = 16.344(2), C = 18.830(2) Å, ß=91.04(1)°, V=2865.1(7) Å3, Z=4, R(F)=3.49%.  相似文献   

18.
The solution of [RhCl(PPh3)3] in acidic 1-ethyl-3-methylimidazolium chloroaluminate(III) ionic liquid (AlCl3 molar fraction, xAlCl3=0.67) was investigated by 1H and 31P{1H} NMR. One triphenyl phosphine is lost from the complex and is protonated in the acidic media, and cis-[Rh(PPh3)2ClX], (2), where X is probably [AlCl4], is formed. On, standing, 2 is converted to trans-[Rh(H)(PPh3)2X], (3). The reaction of 2 and H2 also produces trans-[Rh(H)(PPh3)2X], (3). 1H and 31P{1H} NMR support the suggestion that a weak ligand such as [AlCl4], present in solution may interact with the metal centre. When [RhCl(PPh3)3] is dissolved in CH2Cl2/AlCl3/HCl for comparison, two exchanging isomers of what is probably [RhH{(μ-Cl)2AlCl2}{(μ-Cl)AlCl3}(PPh3)2], (6) and (7), are formed.  相似文献   

19.
Several phosphine exchange processes on 17-electron CpMoCl2(PR3)2 systems have been investigated. The exchange of two PPh3 ligands with either two PMe3 ligands or with Ph2PCH2PPh2 (dppe) is complete within a few minutes at −80 °C. Equally fast is the exchange of two PEt3 ligands with two PMe3 ligands. On the other hand, the exchange of two PEt3 ligands with dppe is much slower ( to a few hours at r.t.), with excess dppe accelerating the exchange and free PEt3 retarding it. The self-exchange reaction of PMe3 is extremely slow (less than 25% exchange at r.t. in 6 h at r.t.) and an analysis of the initial rate of this reaction shows a two-term rate law with one [PMe3]-dependent and one independent term. Finally, PMe3 self-exchange on Cp*MoCl2(PMe3)2 proceeds over one order of magnitude faster than for the corresponding Cp system, with a substantially [PMe3]-independent rate law. All these data are indicative of a dominant dissociative exchange mechanism involving rupture of the Mo---PR3 bond in the slow step and formation of a 15-electron intermediate. The rate of phosphine dissociation qualitatively correlates with the Mo---P distance in the 17-electron starting complex. Only for the Cp---MoCl2(PMe3)2 system is phosphine dissociation sufficiently slowed down so that the alternative associative exchange pathway becomes competitive. Possible reasons for a low activation barrier in these dissociative exchanges are discussed.  相似文献   

20.
The first η2-olefinic monocarbon metallacarbone closo-2-(Ph3P)-1-N,2-[μ-(η2-CH2CH=Ch2)]-1-N-(σ-CH2CH=CH2)-2,1- RhCB10H10 has been prepared by the reaction of the dimeric anion {[Ph3PRhB10H10CNH2]2-μ-H}[PPN]+ with allyl bromide and characterized by a combination of spectroscopic methods and a single-crystal X-ray diffraction study. The variable temperature 1H and 13C NMR studies revealed the fluxional behavior of the η2-olefinic complex in CD2Cl2 solution which is associated with the allyl side-chain exchange process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号