首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
AIMS: The aims of this study were: (i) to determine the proportions of Aeromonas spp. resistant to florfenicol (FC), oxolinic acid (OA) and oxytetracycline (OTC) along a river receiving effluents from fish farms, and (ii) to assess the relevance of using this bacterial group as an indicator for studying the consequences of the use and release of these aquacultural antimicrobials in the freshwater environment, as compared with performing antimicrobial measurements in sediments. METHODS AND RESULTS: Sediment interstitial waters sampled along a river during two distinct climatic seasons were plated on an Aeromonas-selective medium supplemented or not with OA, OTC or FC. The October 2004 campaign showed an enrichment of OA- and OTC-resistant Aeromonas immediately downstream of the fish farms and a wastewater treatment plant. Two fish farms showed similar results in March 2005. In contrast, only 10 FC-resistant Aeromonas strains could be isolated, which revealed that minimum inhibitory concentrations of FC were greater than 64 microg ml(-1) and multiple antimicrobial resistances. Contamination of sediments by antimicrobials was detected but was not always co-localized with resistance peaks or known point sources of contamination. CONCLUSIONS: Aeromonas could be valuable indicators of OA, OTC and FC resistance in the freshwater environment. Fish farms contribute to the contamination of the river by antimicrobials and resistant bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY: Considering the still very low proportion of FC-resistant Aeromonas, this study can be considered as a reference for further studies about this recently introduced veterinary antimicrobial agent.  相似文献   

2.
Antimicrobials used in salmon aquaculture pass into the marine environment. This could have negative impacts on marine environmental biodiversity, and on terrestrial animal and human health as a result of selection for bacteria containing antimicrobial resistance genes. We therefore measured the numbers of culturable bacteria and antimicrobial-resistant bacteria in marine sediments in the Calbuco Archipelago, Chile, over 12-month period at a salmon aquaculture site approximately 20 m from a salmon farm and at a control site 8 km distant without observable aquaculture activities. Three antimicrobials extensively used in Chilean salmon aquaculture (oxytetracycline, oxolinic acid, and florfenicol) were studied. Although none of these antimicrobials was detected in sediments from either site, traces of flumequine, a fluoroquinolone antimicrobial also widely used in Chile, were present in sediments from both sites during this period. There were significant increases in bacterial numbers and antimicrobial-resistant fractions to oxytetracycline, oxolinic acid, and florfenicol in sediments from the aquaculture site compared to those from the control site. Interestingly, there were similar numbers of presumably plasmid-mediated resistance genes for oxytetracycline, oxolinic acid and florfenicol in unselected marine bacteria isolated from both aquaculture and control sites. These preliminary findings in one location may suggest that the current use of large amounts of antimicrobials in Chilean aquaculture has the potential to select for antimicrobial-resistant bacteria in marine sediments.  相似文献   

3.
The effect of combination of trimethoprim with other non-sulphonamide antibacterial agents, in particular oxolinic acid and nalidixic acid, was evaluated against Gram-negative fish pathogens. The species included Aeromonas salmonicida, Yersinia ruckeri , some Vibrio spp. and Escherichia coli as a reference. The extent of synergy found by other workers with these substances against human Gram-negative bacteria was not apparent here. Some positive interaction between trimethoprim and oxolinic acid was found with Aer. salmonicida, Y. ruckeri and E. coli and between trimethoprim and nalidixic acid with Y. ruckeri in double disc diffusion tests but was not supported by fractional inhibitory concentration indices. The combinations were not effective in preventing emergence of resistance in passage on a drug gradient. Trimethoprim-resistant isolates of Aer. salmonicida were inhibited by low levels of oxolinic acid but the converse did not apply.  相似文献   

4.
The spatial pattern of antibiotic resistance in culturable sediment bacteria from four freshwater streams was examined. Previous research suggests that the prevalence of antibiotic resistance may increase in populations via indirect or coselection from heavy metal contamination. Sample bacteria from each stream were grown in media containing one of four antibiotics—tetracycline, chloramphenicol, kanamycin, and streptomycin—at concentrations greater than the minimum inhibitory concentration, plus a control. Bacteria showed high susceptibilities to the former two antibiotics. We summarized the latter two more prevalent (aminoglycoside) resistance responses and ten metals concentrations per sediment sample, by Principal Components Analysis. Respectively, 63 and 58% of the variability was explained in the first principal component of each variable set. We used these multivariate summary metrics [i.e., first principal component (PC) scores] as input measures for exploring the spatial correlation between antibiotic resistance and metal concentration for each stream sampled. Results show a significant and negative correlation between metals PC scores versus aminoglycoside resistance scores and suggest that selection for metal tolerance among sediment bacteria may influence selection for antibiotic resistance differently in sediments than in the water column. Our most important finding comes from geostatistical cross-variogram analysis, which shows that increasing metal concentration scores are spatially associated with decreasing aminoglycoside resistance scores—a negative correlation, but holds for contaminated streams only. We suspect our field results are influenced by metal bioavailability in the sediments and by a contaminant promoted interaction or “cocktail effect” from complex combinations of pollution mediated selection agents.  相似文献   

5.
Administration of flumequine and oxolinic acid to turbot, Scophthalmus maximus L., by bath resulted in significant levels of both drugs in the muscle tissue. Bath treatment using 150 mg L?1 of flumequine and 200 mg L?1 of oxolinic acid for 72 h gave muscle concentrations of 10.2 and 6.2 μg g?1, respectively. Excretion of both antibacterials was rapid, reaching concentrations of 0.8 and 0.9 μg g?1, respectively, for flumequine and oxolinic acid 24 h after the end of treatment. At day 3 post‐treatment the concentration of flumequine was below the limit of quantitation (0.1 μg g?1) of the analytical method. Based on a minimum inhibitory concentration (MIC) of 0.0625 μg ml?1 for susceptible strains, bath treatment maintain muscle levels in excess of 0.5 μg ml?1, corresponding to eight times the MIC‐value for approximately 118 h for oxolinic acid and 104 h for flumequine.  相似文献   

6.
This study was performed to determine the efficacy of orally administered oxolinic acid and Vetoquinol, an oxolinic acid ester, in the treatment of experimental induced furunculosis in Atlantic salmon Salmo salar held in seawater. Two strains of the causative bacterium Aeromonas salmonicida subsp. salmonicida, 1 sensitive (VI-88/09/03175) and 1 resistant (3475/90) to oxolinic acid, were used. In 2 trials, cohabitational challenges were performed by introducing 8 fish challenged in advance by an intraperitoneal injection of 2.2 x 10(4) colony forming units of strain 3475/90 (Trial 1) or strain VI-88/09/03175 (Trial 2) to 10 aquaria each containing 40 healthy fish. The treatment groups in both trials consisted of 4 groups receiving either oxolinic acid (2 groups) or Vetoquinol (2 groups) and 1 control group. An unchallenged, unmedicated group was used to determine the natural mortality in the population. The recommended therapeutic dose of 25 mg oxolinic acid kg-1 fish at Days 1, 2, 4, 6, 8 and 10 following initiation of treatment was used. Oral medication initiated at Day 10 (Trial 1) or Day 11 (Trial 2) following challenge significantly (p < 0.05) lowered the specific mortality in all drug-treated groups compared to the untreated control groups. Mortality in Vetoquinol-treated groups was significantly (p < 0.05) lower than in oxolinic acid-treated groups in Trial 1 whereas no significant (p < 0.05) difference in survival rate was found between the medicated groups in Trial 2.  相似文献   

7.
The effect of cooking on residues of the quinolones oxolinic acid and flumequine in fish was investigated. Salmon containing residues of oxolinic acid and flumequine was boiled or baked in the oven. Samples of raw and cooked muscle, skin, and bone, as well as of the water in which the fish was boiled and juice from the baked fish, were analysed. Oxolinic acid and flumequine did not degrade at the temperatures reached when cooking the fish. However, fish muscle free from drug residues may be contaminated during boiling and baking due to leakage of the drug from reservoirs in the fish.  相似文献   

8.
AIMS: To carry out a preliminary assessment of the occurrence of resistance to antimicrobials in bacteria that has been isolated from a variety of aquaculture species and environments in Australia. METHOD AND RESULTS: A total of 100 Gram-negative (Vibrio spp. and Aeromonas spp. predominantly) and four Gram-positive bacteria isolated from farmed fish, crustaceans and water from crab larval rearing tanks were obtained from diagnostic laboratories from different parts of Australia. All the isolates were tested for sensitivity to 19 antibiotics and Minimal Inhibitory Concentrations were determined by the agar dilution method. Plasmid DNA was isolated by the alkali lysis method. Resistance to ampicillin, amoxycillin, cephalexin and erythromycin was widespread; resistance to oxytetracycline, tetracycline, nalidixic acid and sulfonamides was common but resistance to chloramphenicol, florfenicol, ceftiofur, cephalothin, cefoperazone, oxolinic acid, gentamicin, kanamycin and trimethoprim was less common. All strains were susceptible to ciprofloxacin. Multiple resistance was also observed and 74.4% of resistant isolates had between one and ten plasmids with sizes ranging 2-51 kbp. CONCLUSIONS: No antibiotics are registered for use in aquaculture in Australia but these results suggest that there has been significant off-label use. SIGNIFICANCE AND IMPACT OF STUDY: Transfer of antibiotic resistant bacteria to humans via the food chain is a significant health concern. In comparison with studies on terrestrial food producing animals, there are fewer studies on antibiotic resistance in bacteria from aquaculture enterprises and this study provides further support to the view that there is the risk of transfer of resistant bacteria to humans from consumption of aquaculture products. From the Australian perspective, although there are no products registered for use in aquaculture, antimicrobial resistance is present in isolates from aquaculture and aquaculture environments.  相似文献   

9.
Antibiotic resistance in bacteria causing disease is an ever growing threat to the world. Recently, environmental bacteria have become established as important both as sources of antibiotic resistance genes and in disseminating resistance genes. Low levels of antibiotics and other pharmaceuticals are regularly released into water environments via wastewater, and the concern is that such environmental contamination may serve to create hotspots for antibiotic resistance gene selection and dissemination. In this study, microcosms were created from water and sediments gathered from a lake in Sweden only lightly affected by human activities. The microcosms were exposed to a mixture of antibiotics of varying environmentally relevant concentrations (i.e., concentrations commonly encountered in wastewaters) in order to investigate the effect of low levels of antibiotics on antibiotic resistance gene abundances and dynamics in a previously uncontaminated environment. Antibiotic concentrations were measured using liquid chromatography-tandem mass spectrometry. Abundances of seven antibiotic resistance genes and the class 1 integron integrase gene, intI1, were quantified using real-time PCR. Resistance genes sulI and ermB were quantified in the microcosm sediments with mean abundances 5 and 15 gene copies/106 16S rRNA gene copies, respectively. Class 1 integrons were determined in the sediments with a mean concentration of 3.8×104 copies/106 16S rRNA gene copies. The antibiotic treatment had no observable effect on antibiotic resistance gene or integron abundances.  相似文献   

10.
The effect of ascorbic acid on plasmid-coded antibiotic resistance in Staphylococcus aureus was investigated. Several strains of S. aureus were cultured in the presence of 1 mM ascorbate for 6 h. This treatment induced an increased loss of resistance markers in 4 of 6 strains tested, and agarose gel electrophoresis showed this disappearance of plasmid DNA in ascorbate-induced susceptible colonies. The presence of ascorbate induced a 50-75% decrease in minimal inhibitory concentrations of different antibiotics for resistant strains. When ascorbate is added, formerly subinhibitory concentrations of penicillin or tetracycline have an increased inhibitory effect on resistant strains and even induced the death of 25-93% of the initial population. These results suggest that ascorbate can induce the loss of several plasmids of S. aureus, and that the levels of antibiotic resistance are also affected by the presence of this compound.  相似文献   

11.
The literature pertaining to the use of registered antibacterial agents in Mediterranean finfish farming is reviewed, with an emphasis on the Greek fish-farming industry. This review provides a scientific resource dedicated to the design of future antibacterial dosing regimes in Mediterranean fish farming, where insufficient supporting information is currently available. This paper addresses the paucity in knowledge concerning pharmacokinetics and the efficacy and environmental impact of commonly used antibacterials needed to direct future research and promote good practices in the euryhaline fish farming industry. Several registered antibacterials are currently available for combating bacterial infections, including tetracyclines, (fluoro) quinolones, potentiated sulfa, penicillin and chloramphenicol derivatives. Based on the available data, oxytetracycline (OTC) and quinolone drugs (oxolinic acid – OA and flumequine – FLU) are the most widely used in Mediterranean aquaculture. As a result these drugs have received the most extensive studies, whereas, there is considerable paucity of reliable data on pharmacokinetic and the depletion characteristics of other drugs used, particularly potentiated sulfa, penicillin derivatives and florfenicol. We find there is incomplete data on drug efficacy and minimum inhibitory concentrations (MIC) for common antibacterials used against the major bacterial pathogens of Mediterranean fish species. Furthermore, a considerable lack of data on environmental drug concentrations around Mediterranean fish farms was also identified, highlighting the need for more extensive environmental studies to monitor contamination in environmental components i.e., water and sediment, and in non-target species (flora and fauna). Prudent selection and use of antibacterials can encourage lower dosage applications, enhance treatment efficacy, and help to minimize contamination of the environment. Selection of readily bioavailable drugs which have low environmental persistence, low aquatic toxicity and high antibacterial efficacy is advised, to reduce potential losses to the environment and associated toxic effects on target species and the development of bacterial resistance. Lack of present data made it impossible to provide thorough and accurate guidance on selection and use of antibacterials and approaches for minimizing environmental impacts for the treatment of major euryhaline aquaculture species.  相似文献   

12.
Infections with bacteria that contain hydrolytic beta-lactamase enzymes are becoming a serious problem in the United States. Mutations at Met-69, an amino acid proximal to the active site Ser-70 in the TEM-1 and SHV-1 beta-lactamases, have emerged as a puzzling cause of bacterial resistance to inhibitors of beta-lactamases. Site-saturation mutagenesis of the 69 position in SHV beta-lactamase was performed to determine how mutations of this non-catalytic residue play a role in increasing 50% inhibitory concentrations (IC(50) concentrations) for clinically important beta-lactamase enzyme inhibitors. Two distinct phenotypes are evident in the variant beta-lactamases studied: significantly increased minimum inhibitory concentrations (microg/ml) and IC(50) concentrations to clavulanic acid for the Met69Ile, Leu, and Val substitutions, and unanticipated increased minimum inhibitory concentrations and hydrolytic activity toward ceftazidime, an advanced generation cephalosporin antibiotic, for the Met69Lys, Tyr- and Phe-substituted enzymes. Molecular modeling studies emphasize the conserved structure of these substitutions despite great variation in substrate specificity. This study demonstrates the key role of Met-69 in defining substrate specificity of SHV beta-lactamases and alerts us to new phenotypes that may emerge clinically.  相似文献   

13.
J. D. Anderson 《CMAJ》1980,122(7):765-769
The extensive foreign experience with fusidic acid prior to its belated introduction to Canada is reviewed. Fusidic acid is a steroid antibiotic with minimal toxic and hormonal effects that is mainly excreted through the liver. It has a predominantly bactericidal action and does not shown cross-resistance with other antibiotics. Since organisms resistant to this drug form easily in vitro when exposed to low concentrations, complementary treatment with another antibiotic may be required in some clinical situations. Although fusidic acid is active in vitro against a number of organisms, to date it has mainly been used to treat serious infections due to Staphylococcus aureus. The agent appears to be particularly valuable in the treatment of bone and joint infections and in pediatric practice. Fusidic acid will soon be available in Canada for both oral and intravenous administration. Attainable antibiotic levels in many tissues and body fluids greatly exceed the minimum inhibitory concentrations.  相似文献   

14.
Antibiotic resistance has become a major worldwide priority, and identifying natural antimicrobial compounds may help overcome this problem. In this study, ethanolic extracts of 12 plants commonly used in traditional medicine were tested against two strains of methicillin-resistant Staphylococcus aureus (ATCC 33591 and ATCC 43300) in terms of minimum inhibitory concentrations (MICs). Furthermore, the effect of combining plant extracts with clindamycin antibiotic was also investigated using the checkerboard method. Among the tested plants, Camellia sinensis, Thymus vulgaris, Rosmarinus officinalis and Salvia officinalis exhibited potent inhibitory activity against both strains with MICs ranges (125–500 µg ml−1). Synergistic activity was confirmed for the four plants combined with clindamycin with fractional inhibitory concentration index <0·5. However, no antagonistic activity was found for these combinations. Our findings suggest that using an antibiotics-plants combination might be a successful technique to reduce antibiotic consumption, which would overcome the antibiotics resistance or delay its onset.  相似文献   

15.
Biochemical Effects of Oxolinic Acid on Proteus vulgaris   总被引:1,自引:0,他引:1       下载免费PDF全文
Oxolinic acid (1-ethyl-1,4-dihydro-6,7-methylenedioxy-4-oxo-3-quinolinecarboxylic acid) is an antimicrobial agent effective against a variety of gram-negative pathogens, including Proteus. With the exception of Staphylococcus aureus, oxolinic acid is inactive against gram-positive bacteria and against fungi. Our results suggest that oxolinic acid exerted its primary action on synthesis of deoxyribonucleic acid (DNA). The rate of thymidine-2-(14)C incorporation into DNA was significantly depressed in the presence of 0.1 mug of oxolinic acid per ml and was markedly inhibited at 1 mug/ml. No evidence of complexing with DNA was observed. Pulse labeling with radioactive precursors revealed that at levels approximating the minimal inhibitory concentration, oxolinic acid had no effect on rate of incorporation of (14)C-valine into protein, uracil-2-(14)C into ribonucleic acid, or sodium acetate-1-(14)C into lipid. Filamentous forms of P. vulgaris ATCC 881 were observed after in vitro exposure to subinhibitory levels of oxolinic acid. Concentrations of oxolinic acid in excess of the minimal inhibitory concentration (0.39 mug/ml) did not cause lysis of cells of P. vulgaris or leakage of cytoplasmic materials. Mg(++) ions diminished the in vitro activity of oxolinic acid, possibly through formation of Mg(++) chelates  相似文献   

16.
Differential effects of antibiotics inhibiting gyrase.   总被引:17,自引:1,他引:16       下载免费PDF全文
Both oxolinic acid and coumermycin A1, inhibitors of DNA gyrase, block DNA synthesis in Escherichia coli. At low concentrations of oxolinic acid, the rate of bacterial DNA synthesis first declines rapidly but then gradually increases. This gradual increase in synthesis rate depended on the presence of wild-type recA and lexA genes; mutations in either gene blocked the increase in synthesis rate. In such mutants, oxolinic acid caused a rapid decline, followed by a slow, further decrease in DNA synthesis rate. Coumermycin A1, however, produced a more gradual decline in synthesis rate which is unaffected by defects in the recA or lexA genes. An additional difference between the two drugs was observed in a dnaA mutant, in which initiation of replication is temperature sensitive. Low concentrations of oxolinic acid, but not coumermycin A1, reduced thermal inhibition of DNA synthesis rate.  相似文献   

17.
The minimum inhibitory concentrations (MICs) of 6 different antibiotics (chloramphenicol, clindamycin, erythromycin, streptomycin, tetracycline and vancomycin) were determined for 143 strains of lactic acid bacteria and bifidobacteria using the Etest. Different MICs were found for different species and strains. Based on the distribution of these MIC values, most of the strains were either susceptible or intrinsically resistant to these antibiotics. However, the MIC range of some of these antibiotics showed a bimodal distribution, which suggested that some of the tested strains possess acquired antibiotic resistance. Screening for resistance genes was performed by PCR using specific primers, or using a DNA microarray with around 300 nucleotide probes representing 7 classes of antibiotic resistance genes. The genes identified encoded resistance to tetracycline [tet(M), tet(W), tet(O) and tet(O/W)], erythromycin and clindamycin [erm(B)] and streptomycin [aph(E) and sat(3)]. Internal portions of some of these determinants were sequenced and found to be identical to genes described in other bacteria. All resistance determinants were located on the bacterial chromosome, except for tet(M), which was identified on plasmids in Lactococcus lactis. The contribution of intrinsic multidrug transporters to the antibiotic resistance was investigated by cloning and measuring the expression of Bifidobacterium breve genes in L. lactis.  相似文献   

18.
A previously published liquid chromatographic method for determining residues of nine quinolones in chicken, porcine, bovine and ovine muscle was adapted and applied to fish tissue for simultaneous determination of three quinolones (flumequine, oxolinic acid and sarafloxacin). The analytes were extracted from homogenised muscle using an acetonitrile basic solution. After centrifugation, partial evaporation and cleaning with hexane, direct injection was possible. Separation was achieved on PLRP-S column and detection was performed with a programmable fluorescence detector. Chromatographic conditions were optimised to be compatible with the determination of the three quinolones in a single run. The linearity, recovery, accuracy and precision of the method were evaluated from fortified tissue samples at concentration levels ranging from 15 to 120 microg kg(-1) for sarafloxacin and 75 to 600 microg kg(-1) for oxolinic acid and flumequine according to the EU maximum residue limit of each quinolone. The limits of detection were estimated to be 2, 5 and 7 microg kg(-1), respectively, for sarafloxacin, oxolinic acid and flumequine. The limits of quantification were validated at 15 microg kg(-1) for sarafloxacin and 75 microg kg(-1) for oxolinic acid and flumequine. Mean extraction recoveries of quinolones in fish ranged from 56.9 to 71.0%. This simple and rapid method is suitable for residue control.  相似文献   

19.
Identification of the tip-encoded receptor in bacterial sensing.   总被引:5,自引:2,他引:3       下载免费PDF全文
Relaxation of titratable supercoils in bacterial nucleoids was measured following treatment of topA mutants with coumermycin or oxolinic acid, inhibitors of DNA gyrase. Relaxation occurred after treatment of the mutants with either inhibitor. We detected no significant difference in relaxation between topA- and topA+ strains treated with coumermycin. This finding, together with previous observations, supports the idea that relaxation caused by coumermycin probably arises from the relaxing activity of gyrase itself. The source of DNA relaxation caused by oxolinic acid was not identified. Nucleoid supercoiling can be increased by adding oxolinic acid to a strain that carries three topoisomerase mutations: delta topA, gyrB225, and gyrA (Nalr) (S. H. Manes, G. J. Pruss, and K. Drlica, J. Bacteriol. 155:420-423, 1983). We found that this increase in supercoiling requires partial sensitivity to the drug and at the delta topA and gyrA mutations. Full resistance to oxolinic acid in the presence of the delta topA, gyrB225, and gyrA mutations was conferred by an additional mutation that maps at or near gyrB.  相似文献   

20.
Bacterial antibiotic resistance is typically quantified by the minimum inhibitory concentration (MIC), which is defined as the minimal concentration of antibiotic that inhibits bacterial growth starting from a standard cell density. However, when antibiotic resistance is mediated by degradation, the collective inactivation of antibiotic by the bacterial population can cause the measured MIC to depend strongly on the initial cell density. In cases where this inoculum effect is strong, the relationship between MIC and bacterial fitness in the antibiotic is not well defined. Here, we demonstrate that the resistance of a single, isolated cell—which we call the single‐cell MIC (scMIC)—provides a superior metric for quantifying antibiotic resistance. Unlike the MIC, we find that the scMIC predicts the direction of selection and also specifies the antibiotic concentration at which selection begins to favor new mutants. Understanding the cooperative nature of bacterial growth in antibiotics is therefore essential in predicting the evolution of antibiotic resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号