首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Escherichia coli ribosomal L20 is one of five proteins essential for the first reconstitution step of the 50S ribosomal subunit in vitro. It is purely an assembly protein, because it can be withdrawn from the mature subunit without effect on ribosome activity. In addition, L20 represses the translation of its own gene by binding to two sites in its mRNA. The first site is a pseudoknot formed by a base-pairing interaction between nucleotide sequences separated by more than 280 nucleotides, whereas the second site is an irregular helix formed by base-pairing between neighbouring nucleotide sequences. Despite these differences, the mRNA folds in such a way that both L20 binding sites share secondary structure similarity with the L20 binding site located at the junction between helices H40 and H41 in 23S rRNA. Using a set of genetic, biochemical, biophysical, and structural experiments, we show here that all three sites are recognized similarly by L20.  相似文献   

2.
3.
In bacteria, the expression of ribosomal proteins is often feedback-regulated at the translational level by the binding of the protein to its own mRNA. This is the case for L20, which binds to two distinct sites of its mRNA that both resemble its binding site on 23 S rRNA. In the present work, we report an NMR analysis of the interaction between the C-terminal domain of L20 (L20C) and both its rRNA- and mRNA-binding sites. Changes in the NMR chemical shifts of the L20C backbone nuclei were used to show that the same set of residues are modified upon addition of either the rRNA or the mRNA fragments, suggesting a mimicry at the atomic level. In addition, small angle x-ray scattering experiments, performed with the rRNA fragment, demonstrated the formation of a complex made of two RNAs and two L20C molecules. A low resolution model of this complex was then calculated using (i) the rRNA/L20C structure in the 50 S context and (ii) NMR and small angle x-ray scattering results. The formation of this complex is interesting in the context of gene regulation because it suggests that translational repression could be performed by a complex of two proteins, each interacting with the two distinct L20-binding sites within the operator.  相似文献   

4.
H Hohjoh  M F Singer 《The EMBO journal》1997,16(19):6034-6043
Previous experiments using human teratocarcinoma cells indicated that p40, the protein encoded by the first open reading frame (ORF) of the human LINE-1 (L1Hs) retrotransposon, occurs in a large cytoplasmic ribonucleoprotein complex in direct association with L1Hs RNA(s), the p40 RNP complex. We have now investigated the interaction between partially purified p40 and L1Hs RNA in vitro using an RNA binding assay dependent on co-immunoprecipitation of p40 and bound RNA. These experiments identified two p40 binding sites on the full-length sense strand L1Hs RNA. Both sites are in the second ORF of the 6000 nt RNA: site A between residues 1999 and 2039 and site B between residues 4839 and 4875. The two RNA segments share homologous regions. Experiments involving UV cross-linking followed by immunoprecipitation indicate that p40 in the in vitro complex is directly associated with L1Hs RNA, as it is in the p40 RNP complex found in teratocarcinoma cells. Binding and competition experiments demonstrate that p40 binds to single-stranded RNA containing a p40 binding site, but not to single-stranded or double-stranded DNA, double-stranded RNA or a DNA-RNA hybrid containing a binding site sequence. Thus, p40 appears to be a sequence-specific, single-strand RNA binding protein.  相似文献   

5.
Hfq is a key regulator involved in multiple aspects of stress tolerance and virulence of bacteria. There has been an intriguing question as to how this RNA chaperone achieves two completely opposite functions--annealing and unwinding--for different RNA substrates. To address this question, we studied the Hfq-mediated interaction of fragments of a non-coding RNA, DsrA, with its mRNA target rpoS by using single-molecule fluorescence techniques. These experiments permitted us to observe the mechanistic steps of Hfq-mediated RNA annealing/unwinding at the single-molecule level, for the first time. Our real-time observations reveal that, even if the ring-shaped Hfq displays multiple binding sites for its interaction with RNA, the regulatory RNA and the mRNA compete for the same binding site. The competition makes the RNA-Hfq interaction dynamic and, surprisingly, increases the overall annealing efficiency by properly aligning the two RNAs. We furthermore reveal that when Hfq specifically binds to only one of the two RNAs, the unwinding process dominates over the annealing process, thus shedding a new light on the substrate selectivity for annealing or unwinding. Finally, our results demonstrate for the first time that a single Hfq hexamer is sufficient to facilitate sRNA-mRNA annealing.  相似文献   

6.
7.
Griaznova O  Traut RR 《Biochemistry》2000,39(14):4075-4081
Escherichia coli ribosomal protein L10 binds the two L7/L12 dimers and thereby anchors them to the large ribosomal subunit. C-Terminal deletion variants (Delta10, Delta20, and Delta33 amino acids) of ribosomal protein L10 were constructed in order to define the binding sites for the two L7/L12 dimers and then to make and test ribosomal particles that contain only one of the two dimers. None of the deletions interfered with binding of L10 variants to ribosomal core particles. Deletion of 20 or 33 amino acids led to the inability of the proteins to bind both dimers of protein L7/L12. The L10 variant with deletion of 10 amino acids bound one L7/L12 dimer in solution and when reconstituted into ribosomes promoted the binding of only one L7/L12 dimer to the ribosome. The ribosomes that contained a single L7/L12 dimer were homogeneous by gel electrophoresis where they had a mobility between wild-type 50S subunits and cores completely lacking L7/L12. The single-dimer ribosomal particles supported elongation factor G dependent GTP hydrolysis and protein synthesis in vitro with the same activity as that of two-dimer particles. The results suggest that amino acids 145-154 in protein L10 determine the binding site ("internal-site") for one L7/L12 dimer (the one reported here), and residues 155-164 ("C-terminal-site") are involved in the interaction with the second L7/L12 dimer. Homogeneous ribosomal particles containing a single L7/L12 dimer in each of the distinct sites present an ideal system for studying the location, conformation, dynamics, and function of each of the dimers individually.  相似文献   

8.
9.
The attachment sites of the primary binding proteins L1, L2 and L23 on 23 S ribosomal RNA of Escherichia coli were examined by a chemical and ribonuclease footprinting method using several probes with different specificities. The results show that the sites are confined to localized RNA regions within the large ribonuclease-protected ribonucleoprotein fragments that were characterized earlier. They are as follows: (1) L1 recognizes a tertiary structural motif in domain V centred on two interacting internal loops; the main protein interaction sites occur at the internal loop/helix junctions. (2) The L2 site constitutes a single irregular stem/loop structure in the centre of domain IV where non-Watson-Crick pairing is likely to occur. (3) L23 recognizes a tertiary structural motif involving a single terminal loop structure and part of an adjacent internal loop at the centre of domain III. Each of the three primary binding proteins, whose presence is essential for ribosomal assembly, has been associated with important ribosomal functions: L1 lies in the E-site for deacylated tRNA binding while L2 and L23 have been implicated in the P and A substrate sites, respectively, of the peptidyl transferase centre. Moreover, each of the protein sites, but particularly those of L2 and L23, lies at the centre of RNA domains where they can maximally influence both the assembly of secondary binding proteins and the function of the RNA region.  相似文献   

10.
11.
The binding sites of ribosomal proteins L18 and L25 on 5S RNA from Escherichia coli were probed with ribonucleases A, T1, and T2 and a double helix specific cobra venom endonuclease. The results for the protein-RNA complexes, which were compared with those for the free RNA [Douthwaite, S., & Garrett, R. A. (1981) Biochemistry 20, 7301--7307], reveal an extensive interaction site for protein L18 and a more localized one for L25. Generally comparable results, with a few important differences, were obtained in a study of the binding sites of the two E. coli proteins on Bacillus stearothermophilus 5S RNA. Several protein-induced changes in the RNA structures were identified; some are possibly allosteric in nature. The two prokaryotic 5S RNAs were also incubated with total 50S subunit proteins from E. coli and B. stearothermophilus ribosomes. Homologous and heterologous reconstitution experiments were performed for both RNAs. The effects of the bound proteins on the ribonuclease digestion of the RNAs could generally be correlated with the results obtained with the E. coli proteins L18 and L25, although there was evidence for an additional protein-induced conformational change in the B. stearothermophilus 5S RNA, which may have been due to a third ribosomal protein L5.  相似文献   

12.
The Bacillus stearothermophilus ribosomal protein S15 (BS15) binds both a three-helix junction in the central domain of 16 S ribosomal RNA and its cognate mRNA. Native gel mobility-shift assays show that BS15 interacts specifically and with high affinity to the 5'-untranslated region (5'-UTR) of this cognate mRNA with an apparent dissociation constant of 3(+/-0.3) nM. In order to localize the structural elements that are essential for BS15 recognition, a series of deletion mutants of the full cognate mRNA were prepared and tested in the same gel-shift assay. The minimal binding site for BS15 is a 50 nucleotide RNA showing a close secondary structure resemblance to the BS15 binding region from 16 S rRNA. There are two major structural motifs that must be maintained for high-affinity binding. The first being a purine-rich three-helix junction, and the second being an internal loop. The sequence identity of the internal loops differs greatly between the BS15 mRNA and rRNA sites, and this difference is correlated to discrimination between wild-type BS15 and a BS15(H45R) mutant. The association and dissociation kinetics measured for the 5'-UTR-BS15 interaction are quite slow, but are typical for a ribosomal protein-RNA interaction. The BS15 mRNA and 16 S rRNA binding sites share a common secondary structure yet have little sequence identity. The mRNA and rRNA may in fact present similar if not identical structural elements that confer BS15 recognition.  相似文献   

13.
C Chiaruttini  M Milet    M Springer 《The EMBO journal》1996,15(16):4402-4413
In the IF3-L35-L20 operon encoding translation initiation factor 3 (IF3) and the two ribosomal proteins L35 and L20, the expression of the genes that code for the two ribosomal proteins is negatively regulated at the translational level by the cellular concentration of L20. This translational repressor directly regulates the expression of the gene encoding L35 and, via translational coupling, that of its own gene. Mutations that affect the control of the L35 gene were found exclusively at two sites: the first is located approximately 300 nucleotides upstream, and the second immediately 5' of the translation initiation site of the L35 gene. Mutations that fall between these two sites have little or no effect on the control, and the lack of effect of a deletion in the intervening region confirms this finding. RNA structure mapping in vitro suggests that the first site pairs with the second. We show that this pairing is also likely to occur in vivo because single mutations in either of these sites affect control, but base pair compensatory mutations re-establish control. We propose that these two distant sites can base-pair to form a long-range pseudoknot which is required for the control of the expression of the L35 gene.  相似文献   

14.
15.
L1 has a dual function as a ribosomal protein binding rRNA and as a translational repressor binding mRNA. The crystal structure of L1 from Thermus thermophilus has been determined at 1.85 angstroms resolution. The protein is composed of two domains with the N- and C-termini in domain I. The eight N-terminal residues are very flexible, as the quality of electron density map shows. Proteolysis experiments have shown that the N-terminal tail is accessible and important for 23S rRNA binding. Most of the conserved amino acids are situated at the interface between the two domains. They probably form the specific RNA binding site of L1. Limited non-covalent contacts between the domains indicate an unstable domain interaction in the present conformation. Domain flexibility and RNA binding by induced fit seems plausible.  相似文献   

16.
17.
Escherichia coli ribosomal protein (r-protein) L20 is essential for the assembly of the 50S ribosomal subunit and is also a translational regulator of its own rpmI-rplT operon, encoding r-proteins L35 and L20 in that order. L20 directly represses the translation of the first cistron and, through translational coupling, that of its own gene. The translational operator of the operon is 450 nt in length and includes a long-range pseudoknot interaction between two RNA sequences separated by 280 nt. L20 has the potential to bind both to this pseudoknot and to an irregular hairpin, although only one site is occupied at a time during regulation. This work shows that the rpmI-rplT operon is regulated by competition between L20 and the ribosome for binding to mRNA in vitro and in vivo. Detailed studies on the regulatory mechanisms of r-protein synthesis have only been performed on the rpsO gene, regulated by r-protein S15, and on the alpha operon, regulated by S4. Both are thought to be controlled by a trapping mechanism, whereby the 30S ribosomal subunit, the mRNA, and the initiator tRNA are blocked as a nonfunctional preternary complex. This alternative mode of regulation of the rpmI-rplT operon raises the possibility that control is kinetically and not thermodynamically limited in this case. We show that the pseudoknot, which is known to be essential for L20 binding and regulation, also enhances 30S binding to mRNA as if this structure is specifically recognised by the ribosome.  相似文献   

18.
The RNA binding sites of the protein complex of L7/12 dimers and L10, and of protein L11, occur within the 5'-one third of 23S RNA. Binding of the L7/12-L10 protein complex to the 23S RNA is stimulated by protein L11 and vice-versa. This is the second example to be established of mutual stimulation of RNA binding by two ribosomal proteins or protein complexes, and suggests that this may be an important principle governing ribosomal protein-RNA assembly. When the L7/12-L10 complex is bound to the RNA, L10 becomes strongly resistant to trypsin. Since the L7/12 dimer does not bind specifically to the 23S RNA, this suggests that L10 constitutes a major RNA binding site of the protein complex. Only one of the L7/12 dimers is bound strongly in the (L7/12-L10)-23S RNA complex; the other can dissociate with no concurrent loss of L10.  相似文献   

19.
20.
The control of ribosomal protein synthesis has been investigated extensively in Eukarya and Bacteria. In Archaea, only the regulation of the MvaL1 operon (encoding ribosomal proteins MvaL1, MvaL10 and MvaL12) of Methanococcus vannielii has been studied in some detail. As in Escherichia coli , regulation takes place at the level of translation. MvaL1, the homologue of the regulatory protein L1 encoded by the L11 operon of E . coli , was shown to be an autoregulator of the MvaL1 operon. The regulatory MvaL1 binding site on the mRNA is located about 30 nucleotides downstream of the ATG start codon, a sequence that is not in direct contact with the initiating ribosome. Here, we demonstrate that autoregulation of MvaL1 occurs at or before the formation of the first peptide bond of MvaL1. Specific interaction of purified MvaL1 with both 23S RNA and its own mRNA is confirmed by filter binding studies. In vivo expression experiments reveal that translation of the distal MvaL10 and MvaL12 cistrons is coupled to that of the MvaL1 cistron. A mRNA secondary structure resembling a canonical L10 binding site and preliminary in vitro regulation experiments had suggested a co-regulatory function of MvaL10, the homologue of the regulatory protein L10 of the β-operon of E . coli . However, we show that MvaL10 does not have a regulatory function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号