首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new bioactive glass-based scaffold was developed for local delivery of drugs in case of osteomyelitis. Bioactive glass having a new composition was prepared and converted into porous scaffold. The bioactivity of the resulting scaffold was examined by in vitro acellular method. The scaffolds were loaded with two different drugs, an antibacterial or antifungal drug. The effects of the size of the scaffold, drug concentration, and dissolution medium on drug release were studied. The scaffolds were further coated with a degradable natural polymer, chitosan, to further control the drug release. Both the glass and scaffold were bioactive. The scaffolds released both the drugs for 6 weeks, in vitro. The results indicated that the bigger the size and the higher the drug concentration, the better was the release profile. The scaffolds appeared to be suitable for local delivery of the drugs in cases of osteomyelitis.  相似文献   

2.
Sodium alginate was hydrophobically modified by coupling of polybutyl methacrylate onto the alginate. The polybutyl methacrylate was previously prepared through polymerization of butyl methacrylate in the presence of 2-amino-ethanethiol as a chain transfer agent. The structure of the product was characterized by Fourier-transformed infrared spectrometry, nuclear magnetic resonance (1HNMR) and thermogravimetry. The result of fluorescence analysis showed that the hydrophobicity of the modified alginate was obviously increased. The modified alginate conjugate was used for immobilization of bovine serum albumin in the presence of calcium chloride. In addition, the release behavior of the drug-loaded alginate in deionized water and Tris–HCl buffer solution (pH 7.2) was investigated. It was found that the modified sodium alginate possessed prolonged release behavior compared to unmodified sodium alginate, and it had potential application in controlled release as a drug carrier.  相似文献   

3.
高强度聚焦超声能够以一种非侵入性的方式有效地穿透身体内部组织,聚焦在深层组织中一个很小的空间区域内,产生很强的声能,这些能量被组织吸收引起局部温度的升高。当温度到达热敏脂质体的相变温度时,磷脂烷基链构象的会发生改变,导致脂质体的通透性增强,从而能够促进药物的释放。因此,高强度聚焦超声可以被用作外源刺激控制体内特定位置热敏脂质体的药物释放。本文对高强度聚焦超声在药物控制释放领域的应用及进展进行综述。  相似文献   

4.
In this paper, ketoprofen and ketoprofen lysinate were used as model drugs in order to investigate release profiles of poorly soluble and very soluble drug from sodium alginate beads manufactured by prilling. The effect of polymer concentration, viscosity, and drug/polymer ratio on bead micromeritics and drug release rate was studied. Ketoprofen and ketoprofen lysinate loaded alginate beads were obtained in a very narrow dimensional range when the Cross model was used to set prilling operative conditions. Size distribution of alginate beads in the hydrated state was strongly dependent on viscosity of drug/polymer solutions and frequency of the vibration. The release kinetics of the drugs showed that drug release rate was related with alginate concentration and solubility of the drug. Alginate solutions with concentration higher than 0.50% (w/w) were suitable to prepare ketoprofen gastro-resistant formulation, while for ketoprofen lysinate alginate, concentration should be increased to 1.50% (w/w) in order to retain the drug in gastric environment. Differential scanning calorimetry thermograms and Fourier transform infrared analyses of drug-loaded alginate beads indicated complex chemical interactions between carboxyl groups of the drug and polymer matrix in drug-loaded beads that contribute to the differences in release profile between ketoprofen and ketoprofen lysinate. Total release of the drugs in intestinal medium was dependent on the solubility of the drug and was achieved between 4 and 6 h.  相似文献   

5.
Poly-lactic-co-glycolic acid (PLGA) microcarriers (0.8 ± 0.2 μm) have been fabricated with a load of 20 μg/gPLGA by an emulsion-based-proprietary technology to sustained deliver human bone morphogenetic protein 2 (hBMP2), a growth factor largely used for osteogenic induction. hBMP2 release profile, measured in vitro, showed a moderate “burst” release of 20% of the load in first 3 days, followed by a sustained release of 3% of the load along the following 21 days. PLGA microbeads loaded with fluorescent marker (8 mg/gPLGA) and hydroxyapatite (30 mg/gPLGA) were also fabricated and successfully dispersed within three-dimensional (3D) alginate scaffold (Ca-alginate 2% wt/wt) in a range between 50 and 200 mg/cm3; the presence of microcarriers within the scaffold induced a variation of its stiffness between 0.03 and 0.06 MPa; whereas the scaffold surface area was monitored always in the range of 190–200 m2/g. Uniform microcarriers dispersion was obtained up to 200 mg/cm3; higher loading values in the 3D scaffold produced large aggregates. The release data and the surface area were, then, used to simulate by finite element modeling the hBMP2 mass transfer within the 3D hydrogel bioengineered with stem cells, in dynamic and static cultivations. The simulation was developed with COMSOL Multiphysics® giving a good representation of hBMP2 mass balances along microbeads (bulk eroded) and on cell surface (cell binding). hBMP2 degradation rate was also taken into account in the simulations. hBMP2 concentration of 20 ng/cm3 was set as a target because it has been described as the minimum effective value for stem cells stimulation versus the osteogenic phenotype. The sensitivity analysis suggested the best microbeads/cells ratio in the 3D microenvironment, along 21 days of cultivations in both static and dynamic cultivation (perfusion) conditions. The simulated formulation was so assembled experimentally using human mesenchymal stem cells and an improved scaffold stiffness up to 0.09 MPa (n = 3; p ≤ 0.01) was monitored after 21 days of cultivation; moreover a uniform extracellular matrix deposition within the 3D system was detected by Von Kossa staining, especially in dynamic conditions. The results indicated that the described tool can be useful for the design of 3D bioengineered microarchitecture by quantitative understanding.  相似文献   

6.
The purpose of this study was to investigate the effect of combined Ca2+ cross-linking and freeze-thawing cycle method on metronidazole (model drug) drug release and prepare a wound film dressing with improved swelling property. The hydrogel films were prepared with sodium alginate (SA) using the freeze-thawing method alone or in combination with ionotropic gelation with CaCl2. The gel properties such as morphology, swelling, film thickness, and content uniformity and in vitro dissolution profiles using Franz diffusion cell were investigated. The cross-linking process was confirmed by differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. In vitro protein adsorption test, in vivo wound-healing test, and histopathology were also performed. The hydrogel (F2) composed of 6% sodium alginate and 1% metronidazole prepared by combined Ca2+ cross-linking and freeze-thawing cycles showed good swelling. This will help to provide moist environment at the wound site. With the in vivo wound-healing and histological studies, F2 was found to improve the wound-healing effect compared with the hydrogel without the drug, and the conventional product.KEY WORDS: alginate, Ca2+ cross-linking, freeze-thawing, swelling, wound dressing  相似文献   

7.
Thermo-sensitive semi-IPN hydrogels were prepared via in situ copolymerization of N-isopropylacrylamide (NIPAAm) with poly(ethylene glycol)-co-poly(ε-caprolactone) (PEG-co-PCL) macromer in the presence of sodium alginate by UV irradiation technology. The effects of the sodium alginate content, temperature, and salt on the swelling behavior of the as-obtained hydrogels were studied. The results showed that the swelling ratio of the hydrogels increased with the increasing sodium alginate content at the same temperature, and decreased with the increase in temperature. The salt sensitivity of the semi-IPN hydrogels was dependent on the content of sodium alginate introduced in the hydrogels. The mechanical rheology of the hydrogels and in vitro release behavior of bovine serum albumin (BSA) in situ encapsulated within the hydrogels were also investigated. It was found that the introduction of sodium alginate with semi-IPN structure improved mechanical strength of the hydrogels and the cumulative release percentage of BSA from the hydrogels. Such double-sensitive semi-IPN hydrogel materials could be exploited as potential candidates for drug delivery carriers.  相似文献   

8.
Acoustically active liposomes (AAL), previously developed as ultrasound contrast agents, contain small amounts of air. These AAL have potential to carry pharmaceutics and their acoustic activity could enable them to respond to ultrasound stimulation by releasing their contents. Since liposomes can entrap many kinds of drugs, if such entrapment did not affect their echogenicity, then the release of contents could potentially be controlled by ultrasound stimulation. The aim of this research was to investigate the capacity of acoustically active liposomes for hydrophilic molecule encapsulation and to determine their sensitivity to ultrasound-triggered release. Liposomes, composed of phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, and cholesterol, were made acoustically active by hydrating a lipid film, sonication, freezing in the presence of mannitol, lyophilization, and rehydration. As a test molecule, calcein was added in the hydration step. The procedure for generating acoustically active liposomes was compatible with an encapsulation efficiency of 15% or more. The presence of mannitol during freeze-drying was essential not only for generation of acoustic activity but also for efficient encapsulation. Ultrasound-triggered release was achieved by applying 1 MHz ultrasound at 2 W/cm2 for 10 s. The inclusion of 4% diheptanolyphosphatidylcholine (DHPC) increased the sensitivity of liposomes to ultrasound stimulation and resulted in very efficient stimulated release of contents (1/3 released in 10 s, 2/3 released in six such applications). Release of contents was highly correlated with the loss of air induced either by ultrasound or rapid pressure reduction. These encapsulation and triggered release techniques are highly efficient, and hence may be applicable to drug delivery.  相似文献   

9.
Adeno-associated virus (AAV)-based gene therapy holds promise as a fundamental treatment for genetic disorders. For clinical applications, it is necessary to control AAV release timing to avoid an immune response to AAV. Here we propose an ultrasound (US)-triggered on-demand AAV release system using alginate hydrogel microbeads (AHMs) with a release enhancer. By using a centrifuge-based microdroplet shooting device, the AHMs encapsulating AAV with tungsten microparticles (W-MPs) are fabricated. Since W-MPs work as release enhancers, the AHMs have high sensitivity to the US with localized variation in acoustic impedance for improving the release of AAV. Furthermore, AHMs were coated with poly-l -lysine (PLL) to adjust the release of AAV. By applying US to the AAV encapsulating AHMs with W-MPs, the AAV was released on demand, and gene transfection to cells by AAV was confirmed without loss of AAV activity. This proposed US-triggered AAV release system expands methodological possibilities in gene therapy.  相似文献   

10.
An aminoquinazoline series targeting the essential bacterial enzyme GlmU (uridyltransferase) were previously reported (Biochem. J. 2012, 446, 405). In this study, we further explored SAR through a combination of traditional medicinal chemistry and structure-based drug design, resulting in a novel scaffold (benzamide) with selectivity against protein kinases. Virtual screening identified fragments that could be fused into the core scaffold, exploiting additional binding interactions and thus improving potency. These efforts resulted in a hybrid compound with target potency increased by a 1000-fold, while maintaining selectivity against selected protein kinases and an improved level of solubility and protein binding. Despite these significant improvements no significant antibacterial activity was yet observed within this class.  相似文献   

11.
The purpose of this research was to study the influence of type of chitosan with different molecular weights, ie, 190 and 419 kDa, on properties of pellets prepared by extrusion/ spheronization. The formulations, consisting of acetaminophen as model drug, chitosan, microcrystalline cellulose (MCC), and dibasic calcium phosphate dihydrate with/without sodium alginate, were extruded using a twin-screw extruder and water as the granulating liquid. With 30% wt/wt MCC and no added sodium alginate, spherical pellets were produced containing low and high molecular weight chitosan at a maximum amount of 60% and 40% wt/wt, respectively. With sodium alginate (2.5% wt/wt), pellets with either type of chitosan (60% wt/wt), MCC (17.5% wt/wt), and acetaminophen (20% wt/wt) could be produced indicating an improved pelletforming ability. Type and amount of chitosan and added sodium alginate affected physical properties of pellets including size, roundness, crushing force, and drug release. Low molecular weight chitosan produced pellets with higher mean diameter, sphericity, and crushing force. Additionally, the pellets made of low molecular weight chitosan and added sodium alginate showed faster drug release in 0.1 N HCl but had slower drug release in pH 7.4 phosphate buffer. This indicated that drug release from pellets could be modified by the molecular weight of chitosan. In conclusion, the molecular weight of chitosan had a major influence on formation, physical properties, and drug release from the obtained pellets. Published: August 10, 2007  相似文献   

12.
The purpose of present research work was to prepare calcium alginate beads containing water-soluble drug metronidazole using 32 factorial design, with drug concentration and curing time as variables. Curing time was kept as low as possible to improve entrapment with increasing drug concentration. Mostly the drugs which had been encapsulated were water insoluble to facilitate drug encapsulation; a characteristic drug release as whole process is aqueous based. Entrapment efficiency was in the range of 81% to 96% wt/wt, which decreased with decrease in polymer concentration and increase in curing time. The beads were spherical with size range between 1.4 and 1.9 mm. Scanning electron microscope (SEM) photomicrographs revealed increase in the leaching of drug crystals with increased curing time and high drug concentrations. In acidic environment, the swelling ratio was 200% in 30 minutes, but in basic medium, it increased to a maximum of 1400% within 120 minutes. In acidic medium, the swelling and drug release properties were influenced by drug solubility, whereas in phosphate buffer these properties were governed by the gelling of polymer and exhibited curvilinear and quadratic functions of both the variables, respectively.  相似文献   

13.
The objective of this study was to investigate the release behaviour of propranolol hydrochloride from psyllium matrices in the presence hydrophilic polymers. The dissolution test was carried out at pH 1.2 and pH 6.8. Binary mixtures of psyllium and hydroxypropyl methylcellulose (HPMC) used showed that an increase in the percentage of HPMC in the binary mixtures caused a significant decrease in the release rate of propranolol. Psyllium–alginate matrices produced lower drug release as compared to when the alginate was the matrix former alone. When sodium carboxy methyl cellulose (NaCMC) was incorporated into the psyllium, the results showed that matrices containing the ratio of psyllium–NaCMC in the 1:1 ratio are able to slow down the drug release significantly as compared to matrices made from only psyllium or NaCMC as retardant agent suggesting that there could be a synergistic effect between psyllium and NaCMC. The double-layered tablets showed that the psyllium and HPMC in the outer shell of an inner formulation of psyllium alone had the greatest effect of protecting the inner core and thus producing the lowest drug release (DE = 38%, MDT = 93 min). A significant decrease in the value of n in Q = kt n from 0.70 to 0.51 as the psyllium content was increased from 50 to 150 mg suggests that the presence of psyllium in HPMC matrices affected the release mechanism. Psyllium powder had the ability in the combination with other hydrophilic polymers to produce controlled release profiles. Care and consideration should as such be taken when formulating hydrophilic matrices in different combinations.  相似文献   

14.
A method is reported that enables selective suppression of absorption of radioactive strontium from ingested food material, permitting calcium to remain available to the body. Studies were carried out by measuring blood levels and bone uptake of Sr89 and Ca45 at different time intervals after orogastric intubation of rats. The addition of sodium alginate, derived from brown marine algae, to the radioactive isotopes increased the overall physiological discrimination against strontium by amounts up to 60% after 24 hours. This discrimination was further increased by feeding sodium alginate mixed with standard diet in the proportions of 20:80 and 30:70. The observed ratio was reduced by administration of sodium alginate from 0.25 to 0.09.Determination of the limiting dosage in rats is restricted to the amounts which rats will consume. In the event of an inadvertent release of radioactive strontium, human subjects probably could increase their intake of alginate at will, permitting a greater effectiveness of sodium alginate than could be obtained in experimental animals.  相似文献   

15.
The objective of the study was to develop calcium alginate films, containing Lactobacillus plantarum ATCC 8040 with preserved and stable viability and antibacterial activity. L. plantarum-loaded films containing different calcium concentrations were physically characterized for mechanical and bioadhesive properties and lactobacilli release. The viability and antibacterial activity of L. plantarum was studied before and after processing, and during 6 months of storage. A multiresistant clinical isolate, VIM-2-metalo-β-lactamase producing Pseudomonas aeruginosa, was used as an indicator strain. Interference between L. plantarum and films enhanced films elasticity, water absorption ability, release of lactobacilli, and decreased films adherence. A decrease of L. plantarum viability in alginate films (≤1 log unit) was observed after freeze drying. L. plantarum, at cell concentrations of 108 cfu/ml, was inhibitory active. The viability and antibacterial activity of the immobilized lactobacilli remained stable during 6 months of storage. The study has proved the potential of alginate films to deliver L. plantarum in high numbers to individuals.  相似文献   

16.
The aim of this work was to establish whether alginate gel formed spontaneously in hard gelatin capsules which modifies release of a model drug, theophylline. The effects of the alginate composition, the calcium addition, and the dissolution medium on drug release were also investigated. After the capsule shell dissolved in water, at neutral pH the gel layer of sodium alginate was formed immediately as the sodium alginate hydrated and swelled on contact with the aqueous medium. In acidic pH, the contents remained intact and the matrix shape was the same. Theophylline release from capsules containing different grades of alginate demonstrated different release patterns, depending on alginate composition and the pH of the medium. The capsules containing sodium/calcium salts of alginate showed the slowest drug release at neutral pH but the fastest in acidic medium. The presence of calcium acetate in the formulations influenced the drug release kinetics. The drug release in acidic medium showed a non-Fickian diffusion-controlled release, while those in water at neutral pH exhibited a Super Case II transport mechanism. The study also provides evidence that the behavior of alginate in forming the hydrated gel layer may explain the drug release behavior at different pHs. Published: July 6, 2007  相似文献   

17.
Structure-activity relationships are presented around a series of pyrazolopyrimidinediones that inhibit the growth of Helicobacter pylori by targeting glutamate racemase, an enzyme that provides d-glutamate for the construction of N-acetylglucosamine-N-acetylmuramic acid peptidoglycan subunits assimilated into the bacterial cell wall. Substituents on the inhibitor scaffold were varied to optimize target potency, antibacterial activity and in vivo pharmacokinetic stability. By incorporating an imidazole ring at the 7-position of scaffold, high target potency was achieved due to a hydrogen bonding network that occurs between the 3-position nitrogen atom, a bridging water molecule and the side chains Ser152 and Trp244 of the enzyme. The lipophilicity of the scaffold series proved important for expression of antibacterial activity. Clearances in vitro and in vivo were monitored to identify compounds with improved plasma stability. The basicity of the imidazole may contribute to increased aqueous solubility at lower pH allowing for improved oral bioavailability.  相似文献   

18.
The effects of mixing, the sodium alginate concentration, and calcium chloride concentration on the release of sulphamethoxazole (model drug) impregnated in calcium alginate beads were investigated and evaluated. The release behaviour of the sulphamethoxazole from the calcium alginate beads was studied in a 0.1N HCl aqueous solution at 37v°C. The release rate of the sulphamethoxazole depends heavily on the type of mixers during the formation of the drug-alginate beads. The highest release rate was achieved when four-bladed rectangular agitator was used while the lowest release was achieved when magnetic stirrer was used. The amount of the released sulphamethoxazole varies slightly with the variation of the alginate concentration. The total release of sulphamethoxazole when 1% w/v solution of sodium alginate was used found to be 80% of the total drug content while 72% and 68% of the total drug content for 1.5% and 2% sodium alginate solutions. Three different calcium chloride concentrations were used (i.e., 5%, 10%, and 15% CaCl2). The effect of the calcium chloride concentration on the release of the sulphamethoxazole is very pronounced.  相似文献   

19.
Bovine serum albumin-loaded beads were prepared by ionotropic gelation of alginate with calcium chloride and chitosan. The effect of sodium alginate concentration and chitosan concentration on the particle size and loading efficacy was studied. The diameter of the beads formed is dependent on the size of the needle used. The optimum condition for preparation alginate–chitosan beads was alginate concentration of 3% and chitosan concentration of 0.25% at pH 5. The resulting bead formulation had a loading efficacy of 98.5% and average size of 1,501 μm, and scanning electron microscopy images showed spherical and smooth particles. Chitosan concentration significantly influenced particle size and encapsulation efficiency of chitosan–alginate beads (p < 0.05). Decreasing the alginate concentration resulted in an increased release of albumin in acidic media. The rapid dissolution of chitosan–alginate matrices in the higher pH resulted in burst release of protein drug.  相似文献   

20.
Embedding of mammalian cells into hydrogel scaffolds of predesigned architecture by rapid prototyping technologies has been intensively investigated with focus on tissue engineering and organ printing. The study demonstrates that such methods can be extended to cells originating from the plant kingdom. By using 3D plotting, microalgae of the species Chlamydomonas reinhardtii were embedded in 3D alginate‐based scaffolds. The algae survived the plotting process and were able to grow within the hydrogel matrix. Under illumination, the cell number increased as indicated by microscopic analyses and determination of the chlorophyll content which increased 16‐fold within 12 days of cultivation. Photosynthetic activity was evidenced by measurement of oxygen release: within the first 24 h, an oxygen production rate of 0.05 mg L?1 h?1 was detected which rapidly increased during further cultivation (0.25 mg L?1 h?1 between 24 and 48 h). Furthermore, multichannel plotting was applied to combine human cells and microalgae within one scaffold in a spatially organized manner and hence, to establish a patterned coculture system in which the algae are cultivated in close vicinity to human cells. This might encourage the development of new therapeutic concepts based on the delivery of oxygen or secondary metabolites as therapeutic agents by microalgae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号