首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For highly conserved mammalian protein, chicken is a suitable immune host to generate antibodies. Monoclonal antibodies have been successfully targeted with immunity checkpoint proteins as a means of cancer treatment; this treatment enhances tumor-specific immunity responses through immunoregulation. Studies have identified the importance of B7-H4 in immunoregulation and its use as a potential target for cancer treatment. High levels of B7-H4 expression are found in tumor tissues and are associated with adverse clinical and pathological characteristics. Using the phage display technique, this study isolated specific single-chain antibody fragments (scFvs) against B7-H4 from chickens. Our experiment proved that B7-H4 clearly induced the inhibition of T-cell activation. Therefore, use of anti-B7-H4 scFvs can effectively block the exhaustion of immunity cells and also stimulate and activate T-cells in peripheral blood mononuclear cells. Sequence analysis revealed that two isolated scFv S2 and S4 have the same VH complementarity-determining regions (CDRs) sequence. Molecule docking was employed to simulate the complex structures of scFv with B7-H4 to analyze the interaction. Our findings revealed that both scFvs employed CDR-H1 and CDR-H3 as main driving forces and had strong binding effects with the B7-H4. The affinity of scFv S2 was better because the CDR-L2 loop of the scFv S2 had three more hydrogen bond interactions with B7-H4. The results of this experiment suggest the usefulness of B7-H4 as a target for immunity checkpoints; the isolated B7-H4-specific chicken antibodies have the potential for use in future cancer immunotherapy applications.  相似文献   

2.
3.
PD-1 is an immunoinhibitory receptor that belongs to the CD28/CTLA-4 family. B7-H1 (PD-L1) and B7-DC (PD-L2), which belong to the B7 family, have been identified as ligands for PD-1. Paradoxically, it has been reported that both B7-H1 and B7-DC co-stimulate or inhibit T cell proliferation and cytokine production. To determine the role of B7-H1 and B7-DC in T cell-APC interactions, we examined the contribution of B7-H1 and B7-DC to CD4+ T cell activation by B cells, dendritic cells, and macrophages using anti-B7-H1, anti-B7-DC, and anti-PD-1 blocking mAbs. Anti-B7-H1 mAb and its Fab markedly inhibited the proliferation of anti-CD3-stimulated naive CD4+ T cells, but enhanced IL-2 and IFN-gamma production in the presence of macrophages. The inhibition of T cell proliferation by anti-B7-H1 mAb was abolished by neutralizing anti-IFN-gamma mAb. Coculture of CD4+ T cells and macrophages from IFN-gamma-deficient or wild-type mice showed that CD4+ T cell-derived IFN-gamma was mainly responsible for the inhibition of CD4+ T cell proliferation. Anti-B7-H1 mAb induced IFN-gamma-mediated production of NO by macrophages, and inducible NO synthase inhibitors abrogated the inhibition of CD4+ T cell proliferation by anti-B7-H1 mAb. These results indicated that the inhibition of T cell proliferation by anti-B7-H1 mAb was due to enhanced IFN-gamma production, which augmented NO production by macrophages, suggesting a critical role for B7-H1 on macrophages in regulating IFN-gamma production by naive CD4+ T cells and, hence, NO production by macrophages.  相似文献   

4.
5.
B7-H3 is a new member of the B7 family. The receptor for B7-H3 has not been identified, but it seems to be expressed on activated T cells. Initial studies have shown that B7-H3 provides a stimulatory signal to T cells. However, recent studies suggest a negative regulatory role for B7-H3 in T cell responses. Thus, the immunological function of B7-H3 is controversial and unclear. In this study, we investigated the effects of neutralizing anti-B7-H3 mAb in a mouse model of allergic asthma to determine whether B7-H3 contributes to the development of pathogenic Th2 cells and pulmonary inflammation. Administration of anti-B7-H3 mAb significantly reduced airway hyperreactivity with a concomitant decrease in eosinophils in the lung as compared with control IgG-treated mice. Treatment with anti-B7-H3 mAb also resulted in decreased production of Th2 cytokines (IL-4, IL-5, and IL-13) in the draining lymph node cells. Although blockade of B7-H3 during the induction phase abrogated the development of asthmatic responses, B7-H3 blockade during the effector phase did not inhibit asthmatic responses. These results indicated an important role for B7-H3 in the development of pathogenic Th2 cells during the induction phase in a murine model of asthma.  相似文献   

6.
B7-H3 (CD276) is both an inhibitory ligand for natural killer cells and T cells and a tumor antigen that is widely expressed among human solid tumors. Anti-B7-H3 mouse monoclonal antibody 8H9 has been successfully used for radioimmunotherapy for patients with B7-H3(+) tumors. We present the humanization, affinity maturation, and epitope mapping of 8H9 based on structure determination, modeling, and yeast display methods. The crystal structure of ch8H9 Fab fragment was solved to 2.5-Å resolution and used as a template for humanization. By displaying the humanized 8H9 single chain Fv (scFv) on the surface of yeast, the affinity was matured by sequential random mutagenesis and fluorescence-activated cell sorting. Six mutations (three in the complementarity-determining region and three in the framework regions) were identified and incorporated into an affinity-matured humanized 8H9 construct (hu8H9-6m) and an affinity-matured chimeric 8H9 construct (ch8H9-6m). The hu8H9-6m scFv had a 160-fold improvement in affinity (0.9 nm KD) compared with parental hu8H9 scFv (144 nm KD). The IgG formats of ch8H9-6m and hu8H9-6m (nanomolar to subnanomolar KD) had 2–9-fold enhancements in affinity compared with their parental forms, potent in vitro antibody-dependent cell-mediated cytotoxicity (0.1–0.3 μg/ml EC50), and high tumor uptake in mouse xenografts. Based on in silico docking studies and experimental validation, the molecular epitope of 8H9 was determined to be dependent on the FG loop of B7-H3, a region critical to its function in immunologic blockade and unique among anti-B7-H3 antibodies published to date.  相似文献   

7.

Key message

Four QTLs for adult-plant resistance to powdery mildew were mapped in the Zhou8425B/Chinese Spring population, and a new QTL on chromosome 3B was validated in 103 wheat cultivars derived from Zhou8425B.

Abstract

Zhou8425B is an elite wheat (Triticum aestivum L.) line widely used as a parent in Chinese wheat breeding programs. Identification of genes for adult-plant resistance (APR) to powdery mildew in Zhou8425B is of high importance for continued controlling the disease. In the current study, the high-density Illumina iSelect 90K single-nucleotide polymorphism (SNP) array was used to map quantitative trait loci (QTL) for APR to powdery mildew in 244 recombinant inbred lines derived from the cross Zhou8425B/Chinese Spring. Inclusive composite interval mapping identified QTL on chromosomes 1B, 3B, 4B, and 7D, designated as QPm.caas-1BL.1, QPm.caas-3BS, QPm.caas-4BL.2, and QPm.caas-7DS, respectively. Resistance alleles at the QPm.caas-1BL.1, QPm.caas-3BS, and QPm.caas-4BL.2 loci were contributed by Zhou8425B, whereas that at QPm.caas-7DS was from Chinese Spring. QPm.caas-3BS, likely to be a new APR gene for powdery mildew resistance, was detected in all four environments. One SNP marker closely linked to QPm.caas-3BS was transferred into a semi-thermal asymmetric reverse PCR (STARP) marker and tested on 103 commercial wheat cultivars derived from Zhou8425B. Cultivars with the resistance allele at the QPm.caas-3BS locus had averaged maximum disease severity reduced by 5.3%. This STARP marker can be used for marker-assisted selection in improvement of the level of powdery mildew resistance in wheat breeding.
  相似文献   

8.
Infertility and hypercytolipidemic utero-ovarian involution are recognized consequences of the diabetes-obesity syndrome (DOS) in C57BL mice with either obese (ob/ob) or diabetes (db/db) single gene mutations. We have evaluated the interdependent deleterious influences of both mutation types and differences in the genomic background on utero-ovarian dysfunction in C57BL mice. Control (+/?) C57BL mice were matched with littermate ob/ob and db/db mutants expressed on either the /KsJ or /6 background. Both ob/ob and db/db mutations increased body weights of /KsJ and /6 background strains relative to +/? groups. In contrast, uterine and ovarian weights were depressed by ob/ob and db/dbmutations relative to +/?, regardless of the background strain, but especially when expressed on the /KsJ background. Functionally, both ob/ob and db/db mutations induced hyperglycemic-hyperinsulinemic states coupled with depressed serum estradiol-17-β and progesterone concentrations when expressed on a /KsJ background. Microscopic analysis of utero-ovarian tissue samples revealed marked hypercytolipidemia in the follicular granulosa and endometrial epithelial tissue layers of both ob/oband db/db mutant groups relative to normal +/? cytoarchitecture. The db/db mutation consistently promoted more severe hypercytolipidemic profiles than the ob/obmutation, regardless of background strain. Thus, the severity of utero-ovarian hypercytolipidemia following the expression ofob/ob and db/db mutations in C57BL mice is influenced, or moderated, by the genomic background on which the mutation is expressed.  相似文献   

9.

Introduction

Sjögren syndrome (SjS) is a systemic autoimmune disease in which an immunological attack primarily against the salivary and lacrimal glands results in the loss of acinar cell tissue and function, leading to stomatitis sicca and keratoconjunctivitis sicca. In recent years, two genetic regions, one on chromosome 1 (designated autoimmune exocrinopathy 2 or Aec2) and the second on chromosome 3 (designated autoimmune exocrinopathy 1 or Aec1) derived from nonobese diabetic (NOD) mice, have been shown to be necessary and sufficient to replicate SjS-like disease in nonsusceptible C57BL/6 mice.

Methods

Starting with the SjS-susceptible C57BL/6-derived mouse, referred to as C57BL/6.NOD-Aec1Aec2, we generated a large set of recombinant inbred (RI) lines containing portions of Aec2 as a means of identifying more precisely the genetic elements of chromosome 1 responsible for disease development.

Results

Disease profiling of these RI lines has revealed that the SjS susceptibility genes of Aec2 lie within a region located at approximately 79 ± 5 cM distal to the centromere, as defined by microsatellite markers. This chromosomal region contains several sets of genes known to correlate with various immunopathological features of SjS as well as disease susceptibility genes for both type 1 diabetes and systemic lupus erythematosus in mice. One gene in particular, tumor necrosis factor (ligand) superfamily member 4 (or Ox40 ligand), encoding a product whose biological functions correlate with both physiological homeostasis and immune regulations, could be a potential candidate SjS susceptibility gene.

Conclusions

These new RI lines represent the first step not only in fine mapping SjS susceptibility loci but also in identifying potential candidate SjS susceptibility genes. Identification of possible candidate genes permits construction of models describing underlying molecular pathogenic mechanisms in this model of SjS and establishes a basis for construction of specific gene knockout mice.
  相似文献   

10.
11.
A newly identified costimulatory molecule, programmed death-1 (PD-1), provides a negative signal that is essential for immune homeostasis. However, it has been suggested that its ligands, B7-H1 (PD-L1) and B7-dendritic cells (B7-DC; PD-L2), could also costimulate T cell proliferation and cytokine secretion. Here we demonstrate the involvement of PD-1/B7-H1 and B7-DC interaction in the development of colitis. We first examined the expression profiles of PD-1 and its ligands in both human inflammatory bowel disease and a murine chronic colitis model induced by adoptive transfer of CD4(+)CD45RB(high) T cells to SCID mice. Second, we assessed the therapeutic potential of neutralizing anti-B7-H1 and/or B7-DC mAbs using this colitis model. We found significantly increased expression of PD-1 on T cells and of B7-H1 on T, B, and macrophage/DCs in inflamed colon from both inflammatory bowel disease patients and colitic mice. Unexpectedly, the administration of anti-B7-H1, but not anti-B7-DC, mAb after transfer of CD4(+)CD45RB(high) T cells suppressed wasting disease with colitis, abrogated leukocyte infiltration, and reduced the production of IFN-gamma, IL-2, and TNF-alpha, but not IL-4 or IL-10, by lamina propria CD4(+) T cells. These data suggest that the interaction of PD-1/B7-H1, but not PD-1/B7-DC, might be involved in intestinal mucosal inflammation and also show a possible role of interaction between B7-H1 and an as yet unidentified receptor for B7-H1 in inducing T cell activation.  相似文献   

12.
Inter- and intra-species differences in consumption of sweet tastants formed during the evolution of vertebrates are thought to be due to polymorphism of the Tas1r3 gene encoding T1R3, a sweet taste receptor subunit. The aim of the study was to assess the effect of Tas1r3 polymorphism on nutritional behavior of laboratory mice using the first filial generation (F1) hybrids produced by crossing inbred strains with different sensitivity to sweet: 129P3/J males (129, carriers of a recessive SacD sweet taste receptor allele) and C57BL/6 females (B6, dominant SacB allele) or females of the Tas1r3 gene knockout strain, C57BL/6-Tas1r3KO (B6-Tas1r3KO). SacD/B and SacD/0 hybrids, sharing identical background genotypes, differed only by sets of Sac alleles. In a briefaccess test (BAT) or a 48-h two-bottle free choice test, the presence of the dominant SacD allele in SacD/B hybrids determined increased preference for low sucrose concentrations (1–4%) and higher concentrations of nonmetabolized sweeteners (saccharin Na, sucralose, acesulfame K). A comparison between the 129 parental strain and SacD/0 hybrids or between the B6 parental strain and hybrids from crossing B6 × B6-Tas1r3KO revealed no influence of hemizygosity of SacD or SacB on preference for sweeteners in BAT. A small decrease in sucrose and saccharin preference associated with the lack of the SacB allele was observed during long-term exposure to solutions with low concentrations of these substances. The data obtained indicate the relevance of studying the Tas1r3 polymorphism effects on preference and consumption of sweet tastants using F1 interstrain hybrids and BAT.  相似文献   

13.
This study was performed to determine the biological activity in mice of eight species of Solidago (goldenrod) and to determine some of the chemical groups present in these species. Biologically active substances were present in all of the species tested. Tests of six species were positive for alkaloids. All but one of the species contained demonstrable saponins. All of the species contained tannins, whereas six or seven species were positive for flavonoids. Quaternary bases were not found in any of the species tested. A comparison of the biological activity in mice of these species of Solidago, extracts of which were injected intraperitoneally, showed their descending order of activity to be: (1)S. flexicaulis L., (2)S. hispida Muhl., (3)S. juncea Ait., (4)S. serotina Ait., (5)S. canadensis L., (6)S. rugosa Ait., (7)S. uliginosa Nutt., and (8)S. squarrosa Muhl.  相似文献   

14.

Background

Platelet-derived growth factor receptor α (PDGFRα) expression is increased in activated hepatic stellate cells (HSCs) in cirrhotic liver, while normal hepatocytes express PDGFRα at a negligible level. However, cancerous hepatocytes may show upregulation of PDGFRα, and hepatocellular carcinoma is preceded by chronic liver injury. The role of PDGFRα in non-cancerous hepatocytes and liver fibrosis is unclear. We hypothesized that upon liver injury, PDGFRα in insulted hepatocytes contributes to liver fibrosis by facilitating intercellular crosstalk between hepatocytes and HSCs.

Methods

Hepatocytes were isolated from normal and thioacetamide (TAA)-induced cirrhotic livers for assessment of PDGFRα expression. Conditional knock-out (KO) C57BL/6 mice, in which PDGFRα was selectively deleted in hepatocytes, were generated. Liver fibrosis was induced by injecting TAA for 8?weeks. Hep3B cells were transfected with a small interfering RNA (siRNA) (PDGFRα or control) and co-cultured with LX2 cells.

Results

PDGFRα expression was increased in hepatocytes from fibrotic livers compared to normal livers. Conditional PDGFRα KO mice had attenuated TAA-induced liver fibrosis with decreased HSC activation and proliferation. Immunoblot analyses revealed decreased expression of phospho-p44/42 MAPK in TAA-treated KO mice; these mice also showed almost complete suppression of the upregulation of mouse double minute 2. Although KO mice exhibited increased expression of transforming growth factor (TGF)-β and Smad2/3, this was compensated for by increased expression of inhibitory Smad7. LX2 cells co-cultured with PDGFRα siRNA-infected Hep3B cells showed decreased PDGFRα, α smooth muscle actin, collagen α1(I), TGFβ, and Smad2/3 expression. LX2/PDGFRα-deleted hepatocyte co-culture medium showed decreased PDGF-BB and PDGF-CC levels.

Conclusions

Deletion of PDGFRα in hepatocytes attenuated the upregulation of PDGFRα in HSCs after TAA treatment, resulting in decreased liver fibrosis and HSC activation. This suggests that in the event of chronic liver injury, PDGFRα in hepatocytes plays an important role in liver fibrosis by affecting PDGFRα expression in HSCs.
  相似文献   

15.

Background

We previously engineered Bacillus subtilis to express an antigen of interest fused to TasA in a biofilm. B. subtilis has several properties such as sporulation, biofilm formation and probiotic ability that were used for the oral application of recombinant spores harboring Echinococcus granulosus paramyosin and tropomyosin immunogenic peptides that resulted in the elicitation of a specific humoral immune response in a dog model.

Results

In order to advance our understanding of the research in oral immunization practices using recombinant B. subtilis spores, we describe here an affordable animal model. In this study, we show clear evidence indicating that a niche is required for B. subtilis recombinant spores to colonize the densely populated mice intestinal microbiota. The reduction of intestinal microbiota with an antibiotic treatment resulted in a positive elicitation of local humoral immune response in BALB/c mice after oral application of recombinant B. subtilis spores harboring TasA fused to E. granulosus (102-207) EgTrp immunogenic peptide. Our results were supported by a lasting prevalence of spores in mice feces up to 50 days after immunization and by the presence of specific secretory IgA, isolated from feces, against E. granulosus tropomyosin.

Conclusions

The reduction of mouse intestinal microbiota allowed the elicitation of a local humoral immune response in mice after oral application with spores of B. subtilis harboring immunogenic peptides against E. granulosus.
  相似文献   

16.
Adult mice were treated with dextran sulfate sodium (DSS) and infected with Citrobacter rodentium for developing a novel murine colitis model. C57BL/6N mice (7-week-old) were divided into four groups. Each group composed of control, dextran sodium sulfate-treated (DSS), C. rodentium-infected (CT), and DSS-treated and C. rodentium-infected (DSS-CT) mice. The DSS group was administered 1% DSS in drinking water for 7 days. The CT group was supplied with normal drinking water for 7 days and subsequently infected with C. rodentium via oral gavage. The DSS-CT group was supplied with 1% DSS in drinking water for 7 days and subsequently infected with C. rodentium via oral gavage. The mice were sacrificed 10 days after the induction of C. rodentium infection. The DSS-CT group displayed significantly shorter colon length, higher spleen to body weight ratio, and higher histopathological score compared to the other three groups. The mRNA expression levels of tumor necrosis factor (TNF)-α and interferon (INF)-γ were significantly upregulated; however, those of interleukin (IL)-6 and IL-10 were significantly downregulated in the DSS-CT group than in the control group. These results demonstrated that a combination of low DSS concentration (1%) and C. rodentium infection could effectively induce inflammatory bowel disease (IBD) in mice. This may potentially be used as a novel IBD model, in which colitis is induced in mice by the combination of a chemical and a pathogen.  相似文献   

17.
The FDA approval of bevacizumab (Avastin®, Genentech/Roche), a monoclonal antibody raised against human VEGF-A, as second-line therapy for colon and lung carcinoma validated the approach of targeting human tumors with angiogenesis inhibitors. While the VEGF/VEGFR pathway is a viable target for anti-angiogenesis tumor therapy, additional targets involved in tumor neovascularization have been identified. One promising target present specifically on tumor vasculature is endoglin (CD105), a member of the TGF-β receptor complex expressed on vascular endothelium and believed to play a role in angiogenesis. Monoclonal antibody therapy and preventive vaccination against CD105 has met with some success in controlling tumor growth. This report describes the in vivo proof-of-concept studies for two novel therapeutic vaccines, Lm-LLO-CD105A and Lm-LLO-CD105B, directed against CD105 as a strategy to target neovascularization of established tumors. Listeria-based vaccines directed against CD105 lead to therapeutic responses against primary and metastatic tumors in the 4T1-Luc and NT-2 mouse models of breast cancer. In a mouse model for autochthonous Her-2/neu-driven breast cancer, Lm-LLO-CD105A vaccination prevented tumor incidence in 20% of mice by week 58 after birth while all control mice developed tumors by week 40. In comparison with previous Listeria-based vaccines targeting tumor vasculature, Lm-LLO-CD105A and Lm-LLO-CD105B demonstrated equivalent or superior efficacy against two transplantable mouse models of breast cancer. Support is provided for epitope spreading to endogenous tumor antigens and reduction in tumor vascularity after vaccination with Listeria-based CD105 vaccines. Reported here, these CD105 therapeutic vaccines are highly effective in stimulating anti-angiogenesis and anti-tumor immune responses leading to therapeutic efficacy against primary and metastatic breast cancer.  相似文献   

18.
Development of effective vaccination approaches to treat established tumors represents a focus of intensive research because such approaches offer the promise of enhancing immune system priming against tumor Ags via restimulation of pre-existing (memory) antitumoral helper and effector immune cells. However, inhibitory mechanisms, which function to limit the recall responses of tumor-specific immunity, remain poorly understood and interfere with therapies anticipated to induce protective immunity. The mouse renal cell carcinoma (RENCA) tumor model was used to investigate variables affecting vaccination outcomes. We demonstrate that although a whole cell irradiated tumor cell vaccine can trigger a functional antitumor memory response in the bone marrows of mice with established tumors, these responses do not culminate in the regression of established tumors. In addition, a CD103+ regulatory T (Treg) cell subset accumulates within the draining lymph nodes of tumor-bearing mice. We also show that B7-H1 (CD274, PD-L1), a negative costimulatory ligand, and CD4+ Treg cells collaborate to impair the recall responses of tumor-specific memory T cells. Specifically, mice bearing large established RENCA tumors were treated with tumor cell vaccination in combination with B7-H1 blockade and CD4+ T cell depletion (triple therapy treatment) and monitored for tumor growth and survival. Triple treatment therapy induced complete regression of large established RENCA tumors and raised long-lasting protective immunity. These results have implications for developing clinical antitumoral vaccination regimens in the setting in which tumors express elevated levels of B7-H1 in the presence of abundant Treg cells.  相似文献   

19.
When alien pollinator species enter a native community of pollinators in which resource partitioning has been established, the pollination network between plants and pollinators may be modified through the interactions between the pollinators over the use of floral resources. We observed the floral-use patterns of native (Bombus hypocrita and B. deuteronymus) and alien (B. terrestris) bumblebee species in a coastal grassland in northern Japan. We analyzed the factors determining resource partitioning patterns. B. hypocrita tended to visit flowers with shallow or wide open corollas, such as Rosa rugosa, whereas B. deuteronymus visited flowers with complex or deeper corollas, such as Lathyrus japonicus. Given the wider floral preference of B. terrestris, floral use by the alien bumblebees consistently overlapped with that of native bumblebees. The visitation of B. terrestris to R. rugosa flowers was positively correlated with that of B. hypocrita. These bumblebee species frequently used similar floral resources, in part because of the large overlap in the seasonality of their foraging activity. The visitation frequency of B. deuteronymus to L. japonicus flowers was independent of the visitation frequency of other bumblebee species. The major visitation periods of the bumblebees to L. japonicus flowers reciprocally differed between B. deuteronymus and B. terrestris, suggesting phenological resource partitioning between these species. Our study suggests that phenological niche partitioning is more common in specialized flowers (L. japonicus) than in generalized flowers (R. rugosa).  相似文献   

20.
T follicular helper (T(FH)) cells are critical initiators in the development of T cell-dependent humoral immunity and the generation of protective immunity. We demonstrate that T(FH) cell accumulation and Ab production are negatively regulated by B7-H1 (programmed death ligand 1) in response to both helminth infection and active immunization. Following immunization of B7-H1(-/-) mice with keyhole limpet hemocyanin or helminth Ags, there is a profound increase in induction of T(FH) cells as a result of increased cell cycling and decreased apoptosis relative to wild-type mice. The increase in T(FH) cells in the absence of B7-H1 was associated with significant elevations in Ag-specific Ig response. Cotransfer experiments in vivo demonstrated that B7-H1 expression on B cells was required for negatively regulating T(FH) cell expansion and production of Ag-specific Ig. Treatment of immunized wild-type mice with anti-B7-H1 or anti-programmed death 1 mAbs, but not anti-B7-DC, led to a significant expansion of the T(FH) cell population and an enhanced Ag-specific Ig response. Our results demonstrate that the coinhibitory B7-H1/programmed death 1 pathway can limit the expansion of T(FH) cells and constrain Ag-specific Ig responses. This finding has direct implications for investigations examining the feasibility of therapeutically manipulating this pathway and reveals new insights into the regulation of the humoral immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号