首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Abstract: Conservation programs that facilitate restoration of natural areas on private land are one of the best strategies for recovery of valuable wetland acreage in critical ecoregions of the United States. Wetlands enrolled in the Conservation Reserve Enhancement Program (CREP) provide many ecological functions but may be particularly important as habitat for migrant and resident waterbirds; however, use of, and factors associated with use of, CREP wetlands as stopover and breeding sites have not been evaluated. We surveyed a random sample of CREP wetlands in the Illinois River watershed in 2004 and 2005 to quantify use of restored wetlands by spring migrating and breeding waterbirds. Waterbirds used 75% of wetlands during spring migration. Total use-day abundance for the entire spring migration ranged from 0 to 49,633 per wetland and averaged 6,437 ± 1,887 (SE). Semipermanent wetlands supported the greatest total number of use-days and the greatest number of use-days relative to wetland area. Species richness ranged from 0 to 42 (x̄ = 10.0 ± 1.5 [SE]), and 5 of these species were classified as endangered in Illinois. Density of waterfowl breeding pairs ranged from 0.0 pairs/ha to 16.6 pairs/ha (x̄ = 1.9 ± 0.5 [SE] pairs/ha), and 16 species of wetland birds were identified as local breeders. Density of waterfowl broods ranged from 0.0 broods/ha to 3.6 broods/ha and averaged 0.5 ± 0.1 (SE) broods/ha. We also modeled spring stopover use, waterbird species richness, and waterfowl reproduction in relation to spatial, physical, and floristic characteristics of CREP wetlands. The best approximating models to explain variation in all 3 dependent variables included only the covariate accounting for level of hydrologic management (i.e., none, passive, or active). Active management was associated with 858% greater use-days during spring than sites with only passive water management. Sites where hydrology was passively managed also averaged 402% greater species richness than sites where no hydrologic management was possible. Density of waterfowl broods was 120% greater on passively managed sites than on sites without water management but was 29% less on sites with active compared to passive hydrologic management. Densities of waterfowl broods also were greatest when ratios of open water to cover were 70:30. Models that accounted for vegetation quality and landscape variables ranked lower than models based solely on hydrologic management or vegetation cover in all candidate sets. Although placement and clustering of sites may be critical for maintaining populations of some wetland bird species, these factors appeared to be less important for attracting migrant waterbirds in our study area. In the context of restored CREP wetlands, we suggest the greatest gains in waterbird use and reproduction may be accomplished by emphasizing site-specific restoration efforts related to hydrology and floristic structure. (JOURNAL OF WILDLIFE MANAGEMENT 72(3):654–664; 2008)  相似文献   

2.
Livestock grazing can compromise the biotic integrity and health of wetlands, especially in remotes areas like Patagonia, which provide habitat for several endemic terrestrial and aquatic species. Understanding the effects of these land use practices on invertebrate communities can help prevent the deterioration of wetlands and provide insights for restoration. In this contribution, we assessed the responses of 36 metrics based on the structural and functional attributes of invertebrates (130 taxa) at 30 Patagonian wetlands that were subject to different levels of livestock grazing intensity. These levels were categorized as low, medium and high based on eight features (livestock stock densities plus seven wetland measurements). Significant changes in environmental features were detected across the gradient of wetlands, mainly related to pH, conductivity, and nutrient values. Regardless of rainfall gradient, symptoms of eutrophication were remarkable at some highly disturbed sites. Seven invertebrate metrics consistently and accurately responded to livestock grazing on wetlands. All of them were negatively related to increased levels of grazing disturbance, with the number of insect families appearing as the most robust measure. A multivariate approach (RDA) revealed that invertebrate metrics were significantly affected by environmental variables related to water quality: in particular, pH, conductivity, dissolved oxygen, nutrient concentrations, and the richness and coverage of aquatic plants. Our results suggest that the seven aforementioned metrics could be used to assess ecological quality in the arid and semi-arid wetlands of Patagonia, helping to ensure the creation of protected areas and their associated ecological services.  相似文献   

3.
Our objective was to determine use by avian species (e.g., piscivores, marsh birds, waterfowl, selected passerines) of 29 wetlands in areas with low (<200 μeq l−1) acid-neutralizing capacity (ANC) in southeastern Maine. We documented bird, pair, and brood use during 1982–1984 and in 1982 we sampled 10 wetlands with a sweep net to collect invertebrates. We related mean numbers of invertebrates per wetland to water chemistry, basin characteristics, and avian use of different wetland types. Shallow, beaver (Castor canadensis)-created wetlands with the highest phosphorus levels and abundant and varied macrophyte assemblages supported greater densities of macroinvertebrates and numbers of duck broods (88.3% of all broods) in contrast to deep, glacial type wetlands with sparse vegetation and lower invertebrate densities that supported fewer broods (11.7%). Low pH may have affected some acid-intolerant invertebrate taxa (i.e., Ephemeroptera), but high mean numbers of Insecta per wetland were recorded from wetlands with a pH of 5.51. Other Classes and Orders of invertebrates were more abundant on wetlands with pH > 5.51. All years combined use of wetlands by broods was greater on wetlands with pH ≤ 5.51 (77.4%) in contract to wetlands with pH > 5.51 that supported 21.8% of the broods. High mean brood density was associated with mean number of Insecta per wetland. For lentic wetlands created by beaver, those habitats contained vegetative structure and nutrients necessary to provide cover to support invertebrate populations that are prey of omnivore and insectivore species. The fishless status of a few wetlands may have affected use by some waterfowl species and obligate piscivores.  相似文献   

4.
Abstract Since 1990 under the Eastern Habitat Joint Venture over 100 small wetlands have been restored in Prince Edward Island, Canada. Wetlands were restored by means of dredging accumulated sediment from erosion to emulate pre‐disturbance conditions (i.e., open water and extended hydroperiod). In 1998 and 1999 we compared waterfowl pair and brood use on 22 restored and 24 reference wetlands. More pairs and broods of Ring‐necked Ducks, Gadwall, Green‐winged Teal, and American Black Ducks used restored versus reference wetlands. In restored wetlands waterfowl pair density and species richness were positively correlated with wetland/cattail area, percent cattail cover, and close proximity to freshwater rivers. In addition, a waterfowl reproductive index was positively correlated with percent cattail cover. Green‐winged Teal pair occurrence in restored wetlands was positively correlated with greater amounts of open water and water depths. American Black Duck pairs occurred on most (86%) restored wetlands. Restored small wetlands likely served as stopover points for American Black Duck broods during overland or stream movements, whereas they likely served as a final brood‐rearing destination for Green‐winged Teal broods. We suggest that wetland restoration is a good management tool for increasing populations of Green‐winged Teal and American Black Ducks in Prince Edward Island.  相似文献   

5.
There is increasing recognition of the importance of wetlands in the prairie pothole region (PPR) of the northern United States for stopover habitat for spring-migrating waterfowl. The quality and quantity of stopover habitat found near breeding areas can affect speed and success of migration and subsequent breeding events. Conservation and management of wetlands in the region has traditionally focused narrowly on reproductive phases of the life cycle, and little to no research has examined how ducks use a diversity of available wetlands in the region during migration. We conducted weekly surveys on 1,061 wetlands during spring 2018 and 2019 to examine factors affecting duck use of wetlands in the intensively modified southern PPR landscape of Iowa, USA, for wetland restoration and conservation strategies. We compared wetland types, which included farmed, seasonal, and semi-permanent wetlands, and lakes. The highest duck use per unit area occurred on semi-permanent wetlands, followed by seasonal, and then farmed wetlands, and lakes. Ducks were highly clustered in our study, with 75% of all use-days occurring on only 37 wetlands comprising 41% of all wetland area surveyed. We used hurdle models to examine how local and landscape factors measured within and around wetlands influenced duck use during spring migration. Multiple factors related to duck use at local and landscape scales, such as wetland area, vegetation abundance, and number of wetlands in the surrounding landscape. Among semi-permanent wetlands, local factors within wetlands were more important than landscape factors in determining duck use. Collectively, our findings suggest semi-permanent wetlands within the PPR play a key role in transitioning birds from wintering areas to breeding areas and that management of semi-permanent wetlands should promote interspersion of emergent vegetation and open water and growth of submersed aquatic plants to improve their function for migrants. © 2021 The Authors. The Journal of Wildlife Management published by Wiley Periodicals LLC on behalf of The Wildlife Society.  相似文献   

6.
Lillie  Richard A.  Evrard  James O. 《Hydrobiologia》1994,279(1):235-246
Waterfowl and limnological data were monitored on Waterfowl Production Area (WPA) wetlands in northwestern Wisconsin over a 6-yr period (1983–88) to determine the impact of macroinvertebrates and macrophytes on waterfowl utilization. Interrelationships between limnological conditions and Waterfowl Breeding Pair Densities (BPDs reported as pairs/ha water surface) were analyzed using correlation and general linear model analysis techniques.Annual changes in waterfowl BPDs differed between wetlands according to differences in the structure of macrophyte communities and basin morphometry. The strength of associations differed between the two dominant waterfowl species. In a wetland dominated by dense stands of submersed vegetation, annual fluctuations in blue-winged teal (Anas discors) BPDs corresponded directly with changes in macrophyte biomass, but not with changes in macroinvertebrate density. In a nearby less densely vegetated wetland of similar water chemistry and trophic status, fluctuations in teal BPDs corresponded directly with changes in macroinvertebrate density, but not with changes in macrophyte biomass. These associations occurred despite a significant positive correlation between macroinvertebrates and macrophyte biomass in the latter habitat. Annual fluctuations in mallard (Anas platyrhynchos) BPDs were not correlated significantly with either macrophyte biomass or macroinvertebrate density in either wetland.  相似文献   

7.
Industrial wind energy production is a relatively new phenomenon in the Prairie Pothole Region and given the predicted future development, it has the potential to affect large land areas. The effects of wind energy development on breeding duck pair use of wetlands in proximity to wind turbines were unknown. During springs 2008–2010, we conducted surveys of breeding duck pairs for 5 species of dabbling ducks in 2 wind energy production sites (wind) and 2 paired reference sites (reference) without wind energy development located in the Missouri Coteau of North Dakota and South Dakota, USA. We conducted 10,338 wetland visits and observed 15,760 breeding duck pairs. Estimated densities of duck pairs on wetlands in wind sites were lower for 26 of 30 site, species, and year combinations and of these 16 had 95% credible intervals that did not overlap zero and resulted in a 4–56% reduction in breeding pairs. The negative median displacement observed in this study (21%) may influence the prioritization of grassland and wetland resources for conservation when existing decision support tools based on breeding-pair density are used. However, for the 2 wind study sites, priority was not reduced. We were unable to directly assess the potential for cumulative impacts and recommend long-term, large-scale waterfowl studies to reduce the uncertainty related to effects of broad-scale wind energy development on both abundance and demographic rates of breeding duck populations. In addition, continued dialogue between waterfowl conservation groups and wind energy developers is necessary to develop conservation strategies to mitigate potential negative effects of wind energy development on duck populations. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

8.
1. Fish and ducks often belong to the same local food web, and several studies indicate that there is a general negative effect of fish on breeding ducks. This pattern has so far been addressed mainly within the framework of competition for common invertebrate prey, while predation by large fish as a force behind settlement and abundance patterns in ducks remains largely unknown. This is the first study to address the effect of fish predation on breeding ducks, isolated from that of competition, and the first experiment to explore the ability of ducks to identify and avoid lakes with high risk of fish predation. 2. We used a before–after control–impact design and 11 naturally fishless lakes. Waterfowl on the lakes were surveyed during the breeding season of 2005. Large adult pike (Esox lucius) were added to two lakes in early spring 2008, and waterfowl surveys were repeated on all 11 lakes. 3. Pike introduction did not affect the number of pairs on lakes during the nesting season in any of three focal duck species (mallard Anas platyrhynchos, teal Anas crecca, and goldeneye Bucephala clangula). During the brood‐rearing season, however, there was a decrease in duck days in teal and goldeneye in lakes with pike, with similar trends observed in mallard. The number of goldeneye ducklings was also significantly lower in lakes with pike. We were unable to determine whether the response was attributable to direct pike predation or to broods leaving experimental lakes, but in either case, our study demonstrates high fitness costs for ducks breeding on lakes with pike. 4. The apparent inability of nesting ducks to detect pike and the clear fitness implications may influence the annual recruitment of ducks on a larger scale as pike are both common and widespread. Vegetation complexity and food abundance are likely to be of overriding importance when breeding ducks are choosing a nesting site. As pike have a strong influence on breeding birds, relying on vegetation and cues of food abundance, while ignoring indicators of predation risk from fish, could lead to lakes with pike acting as an ecological trap.  相似文献   

9.
Habitat use by birds may be related to single or interacting effects of habitat characteristics, food resources and predators, but little is known about factors affecting habitat use by wetland species in boreal ecosystems. We surveyed brood‐rearing females and ducklings of four common boreal duck species to assess the effects of habitat structure and food resources on the use of wetlands by brood‐rearing ducks. Although wetland use by duck broods was related to habitat structure and food abundance, their relative importance varied among duck species. For the Common Goldeneye Bucephala clangula, a diving duck, aquatic invertebrates and large emerging insects were the most important factors associated with wetland use. Common Teal Anas crecca broods were observed more often on wetlands with greater Dipteran emergence, whereas in Mallard Anas platyrhynchos both habitat structure and large emerging insects were important. The occurrence of Eurasian Wigeon Anas penelope broods was related to emerging Diptera and habitat structure but the associations were not strong. The varying habitat and food requirements of common duck species could influence the success of wetland management programmes, and consideration of these factors may be particularly important for initiatives aimed at harvested species or species of conservation concern.  相似文献   

10.
The Mississippi Alluvial Valley (MAV) is an internationally important migration and wintering region for Nearctic waterfowl. Most of the MAV is a lowland forested floodplain that contains vast stands of red oaks (Quercus spp.). These trees produce acorns and, when forests flood, diverse communities of aquatic invertebrates emerge, providing diverse nutritious foods for wintering ducks. The MAV is within the Lower Mississippi Valley Joint Venture (LMV JV) region of the North American Waterfowl Management Plan, but no combined MAV-wide estimates of acorn and invertebrate biomass exist to determine foraging carrying capacity for conservation planning or actions by the LMV JV or other partners in regions containing southern red oaks. We sampled acorns that fell to the ground or were submersed under shallow water deemed accessible to foraging ducks and aquatic invertebrates in the MAV of Louisiana, Mississippi, Missouri, and Tennessee, USA, during fall-winter 2009–2011. In good and poor masting years, acorn abundance was non-linearly related to the percentage of the forest canopy made up of red oaks and peaked in late autumn or winter when most other waterfowl resources are depleted or decomposed. This finding is novel and represents a deviation from how the LMV JV has traditionally assumed food resources exist for waterfowl in hardwood bottomlands. We used a daily ration model to estimate energy use days (EUDs) from combined acorn and invertebrate biomasses relative to red oak canopy coverage. For good and poor acorn masting years at the mean MAV-wide red oak canopy coverage of 45%, EUD = 2,273.1 days/ha and 161.2 days/ha, respectively. The LMV JV currently uses EUD = 385–502 days/ha for forests with 40–50% red oak canopy coverage. Because acorns and aquatic macro-invertebrates are a food resource that persists through winter and reaches peak abundance later in winter, we contend conservation planners have undervalued the potential of bottomland hardwoods to provide energy for wintering ducks.  相似文献   

11.
ABSTRACT Staging areas and migratory stopovers of wetland birds can function as geographic bottlenecks; common dependence among migratory wetland bird species on these sites has major implications for wetland conservation. Although 90% of playa wetlands in the Rainwater Basin (RWB) region of Nebraska, USA, have been destroyed, the area still provides essential stopover habitat for up to 10 million waterfowl each spring. Our objectives were to determine local (within wetland and immediate watershed) and landscape-scale factors influencing wetland bird abundance and species richness during spring migration at RWB playas. We surveyed 36–40 playas twice weekly in the RWB and observed approximately 1.6 million individual migratory wetland birds representing 72 species during spring migrations 2002–2004. We tested a priori hypotheses about whether local and landscape variables influenced overall species richness and abundance of geese, dabbling ducks, diving ducks, and shorebirds. Wetland area had a positive influence on goose abundance in all years, whereas percent emergent vegetation and hunting pressure had negative influences. Models predicting dabbling duck abundance differed among years; however, individual wetland area and area of semipermanent wetlands within 10 km of the study wetland consistently had a positive influence on dabbling duck abundance. Percent emergent vegetation also was a positive predictor of dabbling duck abundance in all years, indicating that wetlands with intermediate (50%) vegetation coverage have the greatest dabbling duck abundance. Shorebird abundance was positively influenced by wetland area and number of wetlands within 10 km and negatively influenced by water depth. Wetland area, water depth, and area of wetlands within 10 km were all equally important in models predicting overall species richness. Total species richness was positively influenced by wetland area and negatively influenced by water depth and area of semipermanent wetlands within 10 km. Avian species richness also was greatest in wetlands with intermediate vegetation coverage. Restoring playa hydrology should promote intermediate percent cover of emergent vegetation, which will increase use by dabbling ducks and shorebirds, and decrease snow goose (Chen caerulescens) use of these wetlands. We observed a reduction in dabbling duck abundance on wetlands open to spring snow goose hunting and recommend further investigation of the effects of this conservation order on nontarget species. Our results indicate that wildlife managers at migration stopover areas should conserve wetlands in complexes to meet the continuing and future habitat requirements of migratory birds, especially dabbling ducks, during spring migration.  相似文献   

12.
Occupancy patterns can assist with the determination of habitat limitation during breeding or wintering periods and can help guide population and habitat management efforts. American black ducks (Anas rubripes; black ducks) are thought to be limited by habitat and food availability during the winter, but breeding sites may also limit the size or growth potential of the population. The Canadian Wildlife Service conducts an annual breeding waterfowl survey that we used to explore the hypothesis that black duck carrying capacity is limited by wetlands available for breeding in Québec, Canada. We applied single-visit, multi-species occupancy models to the 1990–2015 population survey data to determine if there was evidence the black duck population was limited by breeding habitat. Using a dynamic (multi-season) occupancy modeling approach, we estimated latent occupancy (occupancy accounting for imperfect detection) of black ducks and then used latent occupancy estimates to derive occupancy, colonization, and extirpation rates. We jointly modeled the occupancy dynamics of black ducks and other duck species in wetlands where both species were present. Throughout the duration of the survey, 44% of wetlands were never observed to be occupied by black ducks. Occupancy models showed wetland size was positively associated with occupancy at the first time step (initial occupancy) and colonization. All 2-species models indicated initial black duck occupancy, persistence (continued occupancy), and colonization were positively associated with the presence of a second species. Colonization rate over the 26-year period ranged from 7% to 27% across all models. Extirpation rates were similar and were constant through time within each model. Low occupancy rates, combined with approximately equal colonization and extirpation rates, suggest there are available wetlands for breeding black ducks in their core breeding area. If breeding habitats are not saturated, this suggests migration or wintering areas may be more limiting to black duck population abundance. © 2019 The Wildlife Society.  相似文献   

13.
14.
Hanson  A.  Ellingwood  C.  Kerekes  J.  Smith  A. 《Hydrobiologia》1994,279(1):521-524
The Sackville Waterfowl Park, contains a 19 hectare shallow freshwater wetland created by reflooding a saltwater marsh that was drained three centuries ago. Its primary purpose is to provide wetland habitat and wildlife viewing opportunities to tourists and residents. This newly created, eutrophic wetland supports high densities of waterfowl, 2.1 and 3.3 brood ha–1 in 1991 and 1992 respectively. It is hoped that long term monitoring of the Park's waterfowl population and wetland habitat will contribute to a better understanding of factors controlling breeding waterfowl populations.  相似文献   

15.

Wetland ecosystems perform a multitude of services valued by society and provide critical habitat for migratory birds and other wildlife. Despite their importance, wetlands have been lost to different local, regional, and global drivers. Remaining wetlands are extremely sensitive to changing temperature and precipitation regimes. Management of grassland areas in wetland catchments may be an effective strategy for counteracting potentially negative impacts of climate change on wetlands. Our objective was to estimate the effects of climate changes on wetland hydrology, and to explore strategies for increasing surface-water inputs to wetlands. We coupled a field study with process-based simulation modeling of wetland-water levels. We found that climate change could decrease the number of wetlands that hold ponded water during the waterfowl breeding season by 14% under a hot wet scenario or 29% under a hot dry scenario if no upland-management actions were taken. Upland burning reduced pond losses to 9% (hot wet) and 26% (hot dry). Upland grazing resulted in the smallest loss of ponded wetlands, 6% loss under the hot-and-wet scenario and 22% loss under the hot-and-dry scenario. Overall, water inputs could be increased by either burning or grazing of upland vegetation thereby reducing pond losses during the waterfowl breeding season. While field results suggest that both grazing and burning can reduce the vegetative structure that could lead to increases in runoff in grassland catchments, our model simulations indicated that additional actions may be needed for managers to minimize future meteorologically driven water losses.

  相似文献   

16.
Waterfowl with more body mass and a greater body condition during the non-breeding season are thought to be more likely to survive and have increased productivity during the following breeding season. Body mass and body condition in waterfowl should reflect the resources available to them locally. We analyzed the relationship of landscape composition on mallard (Anas platyrhynchos) body mass and body condition (mass-wing length index) among age and sex groups. We calculated these variables from hunter-harvested mallards during the 2019–2020 and 2020–2021 duck hunting seasons in the Lower Mississippi Alluvial Valley of Arkansas, USA. We used linear mixed-effects models to analyze changes in body mass and body condition with changes in the percent landscape composition of water cover, woody wetlands, herbaceous wetlands, rice, soybeans, and disturbance. We found that body mass and condition of harvested mallards were positively associated with greater proportions of water cover and woody wetlands but negatively associated with greater proportions of herbaceous wetlands and human disturbance from human infrastructure. Management actions focused on providing flooded and woody wetland areas on the landscape that allow waterfowl to access food resources, while decreasing the disturbance around wetlands in the form of road density and human infrastructure, should increase body mass and body condition in mallards spending the non-breeding season in the Lower Mississippi Alluvial Valley.  相似文献   

17.
Predator management regularly improves waterfowl nesting success, often beyond levels believed necessary for population maintenance. If recruitment, survival of breeding females, and/or breeding site fidelity is increased on predator-reduced sites, then local breeding populations may increase in subsequent years. During 2005–2008, we annually conducted breeding pair surveys on >600 wetlands at 6 township-sized (93.2 km2) trapped sites and 4 non-trapped sites for the 5 most common upland nesting ducks in eastern North Dakota, USA. For each species, we developed a series of competing regression models that related breeding pair abundance to wetland size, predator management, and upland habitats adjacent to sampled wetlands. In contrast to previous studies, we found limited and equivocal evidence that breeding populations increased following predator management. We discuss multiple potential explanations for this lack of effect and suggest that managers should not assume that increased production as a product of elevated nest success will be compounded over years. © The Wildlife Society, 2013  相似文献   

18.
ABSTRACT We evaluated food habits of 4 species of spring-migrant calidrid sandpipers in the Prairie Pothole Region (PPR) of North Dakota. Sandpipers foraged in several wetland classes and fed primarily on aquatic dipterans, mostly larvae, and the midge family Chironomidae was the primary food eaten. Larger sandpiper species foraged in deeper water and took larger larvae than did smaller sandpipers. The diverse wetland habitats that migrant shorebirds use in the PPR suggest a landscape-level approach be applied to wetland conservation efforts. We recommend that managers use livestock grazing and other tools, where applicable, to keep shallow, freshwater wetlands from becoming choked with emergent vegetation limiting chironomid production and preventing shorebird use.  相似文献   

19.
Aim Waterbirds may play an important role in the maintenance of aquatic ecosystem biodiversity by transporting plants and invertebrate propagules between different wetlands. The aim of this study is to provide the first quantitative analysis of the transport of plant and animal propagules by a community of waterbirds. Location Doñana marshes in south‐west Spain. Methods We quantified the number of intact seeds and invertebrate eggs in 386 faecal samples from 11 migratory waterfowl species (10 ducks and coot), collected from 3 November to 3 December 1998 (when birds were arriving from further north), and 22–25 February 1999 (when birds were leaving Doñana). Results Intact seeds of at least 7 plant genera, and invertebrate eggs (ephippia of at least 2 crustacea, statoblasts of at least 2 bryozoans and eggs of Corixidae) occurred in 65.6% of the faecal samples in early winter and 67.8% in late winter. Main conclusions The abundance of different propagule types varied between waterfowl species in a seasonal and species specific manner, probably owing to differences in foraging strategies, bill and gut morphology, and seasonal shifts in propagule availability or distribution. Lamellar density was positively correlated with the abundance of intact propagules. Our results confirm that waterfowl play an important role in the dispersal of organisms in aquatic environments by internal transport. Wherever there is a propagule bank accessible to waterbirds, transport can occur even when propagule production and waterfowl movements do not overlap in time.  相似文献   

20.
Wetlands in the Upper Mississippi River and Great Lakes Region (UMRGLR) must annually sustain populations of migrating waterfowl from the mid-continent of North America. We used multi-stage sampling to estimate plant and invertebrate food biomasses (kg/ha) for ducks in 3 wetland habitat types at 6 stop-over locations in the UMRGLR during 2006 and 2007. Total biomass was greatest in palustrine emergent (PEM; = 208 kg/ha, SE = 23, median = 120), followed by palustrine forested (PF; = 87 kg/ha, SE = 7; median = 43), and lacustrine–riverine (LR; = 52 kg/ha, SE = 7; median = 27) wetlands. Ducks that foraged in forested and LR wetlands encountered the least food abundance during spring in the UMRGLR. Our estimates of food abundance were the lowest reported among other landscape scale surveys from mid-continent North America. About 1 in every 5 PEM wetlands and over half of our PF and LR wetlands that we sampled contained <50 kg/ha of food, suggesting many had little or no forage value to ducks during spring. Biomass of plant foods generally exceeded invertebrate biomass in all habitat types, although invertebrate biomass estimates exceeded plant biomass in 8 of 29 sites when considered by wetland type and year. Total food biomass estimates varied widely ( = 6–425 kg/ha) between years and among habitats; thus, using global arithmetic means to estimate food abundance for conservation planning obscures fine scale temporal and spatial variation that may be necessary for management on local and sub-regional levels. Distributions of food biomass estimates were right-skewed, causing us to question whether arithmetic means realistically represent levels of food abundance that all ducks encounter during spring migration. Alternative measures of central tendency (e.g., median) may be more biologically realistic, particularly if spring-migrating ducks are not distributed in an ideal-free manner with respect to food abundance. Future research should determine how ducks distribute themselves in relation to variation in food abundance in space and time during spring migration to strengthen the biological approach to conservation planning in non-breeding Joint Venture areas of the North American Waterfowl Management Plan. © 2011 The Wildlife Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号