共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Betulinic acid (BA), a pentacyclic triterpene derived from the bark of the white birch tree, has been reported to have a variety of pharmacological effects, including antioxidant, anti-inflammatory, antitumor, immunomodulatory, and antiarthritis properties. However, the role of BA in rheumatoid arthritis (RA) remains unclear. Thus, the objective of this study was to examine the effects of BA on RA fibroblast-like synoviocytes (RA-FLS) proliferation, migration, and inflammatory response, and further explore the potential underlying mechanisms. Our results showed that BA inhibited the proliferation, migration, and invasion of RA-FLSs. BA also attenuated tumor necrosis factor-α (TNF-α), enhanced matrix metalloproteinases (MMPs) expression, and inflammatory cytokines production in RA-FLS. Furthermore, BA prevented the activation of Akt/NF-κB pathway in RA-FLS exposed to TNF-α. In conclusion, these findings indicated that BA inhibits cell proliferation, migration, and inflammatory response in RA-FLS; and the Akt/NF-κB signaling pathway was involved in the protective effect of BA on RA-FLS. Thus, BA might be a potential therapeutic agent for the treatment of RA. 相似文献
3.
4.
Xin Ge Jie Gao Qiu-Wangyue Sun Chen-Xing Wang Wei Deng Guang-Yan Mao Huai-Qi Li Song-Song Guo Jie Cheng Yu-Nong Wu Jin-Hai Ye 《Journal of cellular physiology》2020,235(5):4856-4864
In various kinds of carcinomas, the special AT-rich sequence-binding protein 2 (SATB2) with its atypical expression promotes the metastasis and progression of the tumor, though in the oral squamous cell carcinoma (OSCC) its inherent mechanism and the status of SATB2 remain unclear. The role played by the SATB2 expression in the OSCC cell lines and tissue samples in the target of miR-34a downstream is the intended endeavor of this study. In te OSCCs the miR-34a expression was determined by quantitative real-time polymerase chain reaction (q-PCR), while the SATB2 expression in the cell lines and tissue samples in OSCC was analyzed with the q-PCR and the western blot. Studies in both in vitro and in vivo of the effects of miR-34a on the initiation of OSCC were conducted. As a direct target of the miR-34a the SATB2 was verified with the luciferase reporter assay. In cases where the miR-34a levels were low, the SATB2 in OSCCs seemed to be overexpressed. Besides, both in the in vitro and in vivo a suppression of migration, invasion, and cell growth was caused by miR-34a by down regulating the SATB2 expression. The SATB2 being a direct target of miR-34a was confirmed by the cotransfection of miR-34a mimics specifically the decrease in the expression of luciferase of SATB2–3′UTR-wt reporter. As a whole, our study confirmed the inhibition of miR-34a in the invasion, proliferation, and migration of the OSCCs, playing a potential tumor suppressor role with SATB2 as its downstream target. 相似文献
5.
《FEBS letters》2014,588(23):4497-4503
Smad7 has a key role in apoptosis of mammalian ovarian granulosa cells (GCs), as it antagonizes and fine-tunes transforming growth factor β (TGFβ) signaling. This study demonstrates that miR-92a regulates GC apoptosis in pig ovaries by targeting Smad7 directly. The expression level of miR-92a was down-regulated in atretic porcine follicles, whereas miR-92a expression led to inhibition of GC apoptosis. The Smad7 gene was identified as a direct target of miR-92a using a dual-luciferase reporter assay. Transfection of GCs with miR-92a mimics decreased Smad7 mRNA and protein levels, whereas expression of an miR-92a inhibitor in GCs had the opposite effect. In addition, knockdown of Smad7 prevented GC apoptosis in cells that expressed the miR-92a inhibitor. 相似文献
6.
7.
8.
Ming Zong Tianbao Lu Shasha Fan Hui Zhang Ruhan Gong Lishan Sun Zhiyan Fu Lieying Fan 《Arthritis research & therapy》2015,17(1)
IntroductionFibroblast-like synoviocytes (FLS) play an important role in the pathogenesis of rheumatoid arthritis (RA). This study aimed to investigate the role of glucose 6-phosphate isomerase (GPI) in the proliferation of RA-FLS.MethodsThe distribution of GPI in synovial tissues from RA and osteoarthritis (OA) patients was examined by immunohistochemical analysis. FLS were isolated and cultured, cellular GPI level was detected by real-time polymerase chain reaction (PCR) and Western blot analysis, and secreted GPI was detected by Western blot and enzyme-linked immunosorbent assay (ELISA). Doxorubicin (Adriamycin, ADR) was used to induce apoptosis. Cell proliferation was determined by MTS assay. Flow cytometry was used to detect cell cycle and apoptosis. Secreted pro-inflammatory cytokines were measured by ELISA.ResultsGPI was abundant in RA-FLS and was an autocrine factor of FLS. The proliferation of both RA and OA FLS was increased after GPI overexpression, but was decreased after GPI knockdown. Meanwhile, exogenous GPI stimulated, while GPI antibody inhibited, FLS proliferation. GPI positively regulated its receptor glycoprotein 78 and promoted G1/S phase transition via extracellular regulated protein kinases activation and Cyclin D1 upregulation. GPI inhibited ADR-induced apoptosis accompanied by decreased Fas and increased Survivin in RA FLS. Furthermore, GPI increased the secretion of tumor necrosis factor-α and interleukin-1β by FLS.ConclusionsGPI plays a pathophysiologic role in RA by stimulating the proliferation, inhibiting the apoptosis, and increasing pro-inflammatory cytokine secretion of FLS. 相似文献
9.
10.
2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-2,3-dihydrochromen-4-one (eriodictyol), a flavonoid compound, was proved to possess anti-inflammatory, antioxidative, and antiarthritis activities. However, the effects of eriodictyol on the rheumatoid proliferation, apoptosis, and inflammatory response of arthritis fibroblast-like synoviocytes (RA-FLS) remain unclear. Thus, the objective of this study was to examine the effects of eriodictyol on RA-FLS survival, apoptosis, and inflammatory response, and further explore the potential underlying mechanisms. Our results showed that eriodictyol inhibited the survival of RA-FLSs and promoted its apoptosis. Eriodictyol significantly reduced RA-FLS secretion of tumor necrosis factor α, interleukin 6 (IL-6), IL-8, and IL-1β. Furthermore, eriodictyol prevented the activation of the protein kinase B (AKT) pathway and increased the expression of forkhead box O1 (FOXO1) in RA-FLS. FOXO1 silence reversed the effects of eriodictyol on RA-FLS survival, apoptosis, and inflammation. In conclusion, these findings indicated that eriodictyol inhibits the cell survival and inflammatory response in RA-FLS, and the AKT/FOXO1 signaling pathway is involved in the effect of eriodictyol on the RA-FLS. Thus, eriodictyol might be a potential therapeutic agent for the treatment of rheumatoid arthritis. 相似文献
11.
目的:研究miR-218是否通过下调SOX4影响滋养层细胞系HTR-8细胞的迁移和侵袭。方法:妊娠期高血压疾病(HDCP)患者46例,平均年龄(31 ±4.6)岁,收缩期血压≥ 140 mmHg和/或舒张期血压> 90 mmHg;以血压正常孕妇50例为对照,实时荧光定量PCR(RT-PCR)检测两组患者静脉血中miR-218的表达情况。转染miR-218mimic和miR-NC至离体培养的HTR-8细胞中,将细胞分为对照组(加入DMEM)、空质粒组(加入miR-NC)和过表达miR-218组(加入miR-218 mimic)3组,检测细胞的迁移侵袭情况以及细胞中MMP-2和MMP-9的表达,,生物信息学预测miR-218潜在靶基因为SOX4,利用荧光素酶素试验验证SOX4是miR-218的靶基因;再通过转染过表达SOX4的质粒至HTR-8细胞,HTR-8细胞分为过表达miR-218组、过表达miR-218+空质粒组、过表达miR-218+SOX4组,以上方法检测HTR-8细胞的迁移侵袭情况。结果:相比于正常孕妇组,HDCP组患者血清中miR-218表达减少(P <0.01)。相比于空质粒组,转染miR-218mimic后,HTR-8细胞中MMP-2、MMP-9、SOX4的表达减少(P < 0.01),细胞迁移和侵袭能力下降(P < 0.01);荧光素酶试验结果显示,miR-218能够显著降低SOX4-3'-UTR质粒的荧光素活性(P< 0.01);相比于miR-218+空质粒组,转染过表达SOX4质粒后,HTR-8细胞迁移和侵袭能力增加(P < 0.01)。结论:HDCP患者血清中miR-218表达减少,miR-218可以通过下调SOX4从而抑制HTR-8细胞的迁移和侵袭。 相似文献
12.
Nanwei Xu Yuji Wang Dawei Li Rongbin Sun Sai Sun Guang Yang 《Biochemical and biophysical research communications》2010,401(3):417-421
Rheumatoid arthritis (RA) is a chronic autoimmune disease with features of inflammatory cell infiltration, synovial cell invasive proliferation, and ultimately, irreversible joint destruction. It has been reported that the p53 pathway is involved in RA pathogenesis. MDM4/MDMX is a major negative regulator of p53. To determine whether MDM4 contributes to RA pathogenesis, MDM4 mRNA and protein expression were assessed in fibroblast-like synoviocytes (FLS) by real-time PCR, western blotting, and in synovial tissues by immunohistochemistry. Furthermore, MDM4 was knocked down and overexpressed by lentivirus-mediated expression, and the proliferative capacity of FLS was determined by MTS assay. We found that cultured FLS from RA and osteoarthritis (OA) patients exhibited higher levels of MDM4 mRNA and protein expression than those from trauma controls. MDM4 protein was highly expressed in the synovial lining and sublining cells from both types of arthritis. Finally, MDM4 knockdown inhibited the proliferation of RA FLS by enhancing functional p53 levels while MDM4 overexpression promoted the growth of RA FLS by inhibiting p53 effects. Taken together, our results suggest that the abundant expression of MDM4 in FLS may contribute to the hyperplasia phenotype of RA synovial tissues. 相似文献
13.
Yingxue Wang Zhe Yin Ni Zhang Huishu Song Qiuting Zhang Xuexi Hao Zhilun Wang 《Journal of musculoskeletal & neuronal interactions》2021,21(4):560
Objectives:To explore the role and mechanism of miR-125a-3p in rheumatoid arthritis (RA) progression.Methods:The RA-tissues and fibroblast-like synovial cells in rheumatoid arthritis (RA-FLS) were used in this study. qRT-PCR, western blot and ELISA assay were performed to detect the expression levels of IL-6, IL-β and ΤΝF-α. Dual-luciferase reporter gene assay was used to observe the binding effect of miR-125a-3p and MAST3, and CCK-8 was used to observe the effect of miR-125a-3p on the proliferation of RA-FLS.Results:miR-125a-3p was significantly downregulated in the RA-tissues and RA-FLS, and miR-125a-3p could inhibit the proliferation and reduce the inflammation response of RA-FLS. Besides, MAST3 was found as a target of miR-125a-3p, and increased MAST3 could reverse the effects of miR-125a-3p on RA-FLS including decreased proliferation, reduced inflammation level and the inactivation of Wnt/β-catenin and NF-κB pathways.Conclusions:This study suggests that miR-125a-3p could inactivate the Wnt/β-catenin and NF-κB pathways to reduce the proliferation and inflammation response of RA-FLS via targeting MAST3. 相似文献
14.
Jinming Wang Yuehua Liu Xiaofang Wang Jing Li Jing Wei Yingjun Wang Wanyu Song Zhan Zhang 《生物化学与生物物理学报:疾病的分子基础》2018,1864(12):3623-3630
Cervical cancer (CC) is one of the most prevalent cancers in women in the world. However, the pathogenesis is still very unclear, and the current screening methods are too expensive. Emerging evidence shows that miR-1266 has great influence on tumor cell migration and invasion. In order to clarify the role of miR-1266 in CC, we collected serum from CC, high-grade squamous intraepithelial lesion (HSIL), low-grade squamous intraepithelial lesion (LSIL) and normal control (NC), collected tissues from CC and control group (CG), and followed up 50 CC patients. We used HeLa and SiHa cells to clarify the roles of miR-1266 on cell proliferation, migration and invasion. The CC mouse model was conducted to prove the role of miR-1266 on tumorigenesis. qRT-PCR was used to measure the expressions of miR-1266 and DAB2IP mRNA. Western blot was used to determine the expression of DAB2IP protein. Cell counting kit-8 proliferation assay (CCK-8), Colony formation assay, Wound-healing assay and Transwell invasion assay were used to determine the cell survival, proliferative, migrative and invasive abilities. Our study found that miR-1266 had a rising trend in serum from NC to LSIL to HSIL to CC, and increased in CC tissues. High expression serum miR-1266 had lower overall survival rates than patients with miR-1266 low expression. MiR-1266 promoted cell viability, proliferation, migration and invasion by targeting DAB2IP. And miR-1266 could promote tumorigenesis in vivo. In conclusion, miR-1266 could be used as a new biomarker for diagnosis, prediction and treatment of CC in the future. 相似文献
15.
Hongxia Yuan Pingting Yang Dun Zhou Wei Gao Zhenyu Qiu Fang Fang Shuang Ding Weiguo Xiao 《Molecular biology reports》2014,41(8):5157-5165
To investigate the potential regulation of sphingosine kinase 1 (SPHK1) on the migration, invasion, and matrix metalloproteinase (MMP) expression in human rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS). RA-FLS were transfected control siRNA or SPHK1 siRNA. The migration and invasion of unmanipulated control, control siRNA or SPHK1 siRNA- transfected RA-FLS in vitro were measured by the transwell system. The relative levels of SPHK1, PI3K, and AKT as well as AKT phosphorylation in RA-FLS were determined by Western blot. The levels of MMP-2/9 secreted by RA-FLS were detected by ELISA. Knockdown of SPHK1 significantly inhibited the spontaneous migration and invasion of RA-FLS, accompanied by significantly reduced levels of PI3K expression and AKT phosphorylation. Similarly, treatment with LY294002, an inhibitor of the PI3K/AKT pathway, inhibited the migration and invasion of RA-FLS. Knockdown of SPHK1 and treatment with the inhibitor synergistically inhibited the migration and invasion of RA-FLS, by further reducing the levels of PI3K expression and AKT phosphorylation. In addition, knockdown of SPHK1 or treatment with LY294002 inhibited the secretion of MMP-2 and MMP-9, and both synergistically reduced the production of MMP-2 and MMP-9 in RA-FLS in vitro. Knockdown of SPHK1 expression inhibits the PI3K/AKT activation, MMP-2 and MMP-9 expression, and human RA-FLS migration and invasion in vitro. Potentially, SPHK1 may be a novel therapeutic target for RA. 相似文献
16.
Reyes LI León F González P Rozas MF Labarca C Segovia A Neira O Naves R 《Cytokine》2008,42(2):170-178
Fibroblast-like synoviocytes (FLS) play a major role in the pathogenesis of rheumatoid arthritis (RA). FLS isolated from patients with RA (FLS-RA) express B cell-activating factor belonging to the TNF family (BAFF), a cytokine that has been associated with the onset and progression of RA. Glucocorticoids are powerful anti-inflammatory drugs used in the treatment of RA. In the present study, we examined the effect of dexamethasone (Dex) on constitutive and TNF-alpha- and IFN-gamma-induced BAFF expression in FLS-RA. BAFF mRNA expression and soluble BAFF were determined by RT-PCR and ELISA, respectively. The results showed that constitutive BAFF mRNA expression was inhibited by Dex in a dose- and time-dependent manner. Also, Dex inhibited the secretion of BAFF in a time-dependent manner reaching 76% of inhibition 72 h after treatment. Moreover, Dex suppressed both mRNA and protein BAFF expression induced by TNF-alpha but had no effect on IFN-gamma-induced BAFF expression. In comparison with B cells cultured alone, B cells co-cultured with FLS-RA exhibited a higher survival, which was inhibited when FLS-RA were pretreated with Dex. However, the enhanced B cell survival was reestablished by the addition of rhBAFF. Therefore, Dex is a potent inhibitor of constitutive and TNF-alpha-induced BAFF expression in FLS-RA. 相似文献
17.
Rheumatoid arthritis (RA) is characterized by synovial proliferation and migration which is induced by proinflammatory cytokines or oxidative stress, followed by joint destruction. Edaravone, clinically available free radical scavenger in Japan, is confirmed to be beneficial in the acute stage of cerebral infarction. We aimed to investigate whether edaravone suppressed in vitro proliferation and migration of synovial cells (SC) induced by IL-1β. SC proliferation and migration induced by IL-1β were dose-dependently suppressed by edaravone at the clinically available concentration. These data suggest that edaravone has potential effects to suppress SC proliferation and migration, followed by suppression of synovial proliferation in RA. Therefore, edaravone, an antioxidant agent, might be a novel therapeutic agent which develops the new strategy for treatment of RA, and more detailed studies are required to establish the therapeutic effect of edaravone on RA in vivo. 相似文献
18.
19.
Ovarian cancer is one of the leading malignancies in women and the 5-year survival rate of ovarian cancer still remains poor. In the present study, we aimed to investigate the interaction between the miR-126-3p and PLXNB2 in the progression of ovarian cancer. The qRT-PCR data revealed a reduction of miR-126-3p level in ovarian cancer tissues comparing to the adjacent normal tissues. Over-expression of miR-126-3p in ovarian cancer cells suppressed cell proliferation and invasion and the phosphorylation of AKT and ERK1/2. The cell cycle assay results showed that the over-expression of miR-126-3p induced cells in G1-phase and reduced cells in S-phase. We further performed bioinformatics analysis and luciferase assay to investigate the relationship between miR-126-3p and PLXNB2 in ovarian cancer cells. The results of TargetScan suggested that PLXNB2 is a direct target of miR-126-3p in ovarian cancer cells, and luciferase assay confirmed bioinformatics prediction. Knocking down of PLXNB2 with PLXNB2 siRNA results in repressed ovarian cancer cell proliferation and invasion, and decreased phosphorylation of AKT and ERK1/2, which is similar to the effect of over-expression of miR-126-3p in OC cells. The synergistic effect of combination of miR-126-3p over-expression and PLXNB2 down-regulation on the cell growth viability, cell colony, and cell invasion was also identified. All these findings indicated that miR-126-3p is involved in the progression of ovarian cancer via direct regulating PLXNB2. 相似文献
20.
Yichen Song Ping Wang Wei Zhao Yilong Yao Xiaobai Liu Jun Ma Yixue Xue Yunhui Liu 《Experimental cell research》2014
MiR-17-92 cluster has recently been reported as an oncogene in some tumors. However, the association of miR-18a, an important member of this cluster, with glioblastoma remains unknown. Therefore, this study aims to investigate the expression of miR-18a in glioblastoma and its role in biological behavior of U87 and U251 human glioblastoma cell lines. Quantitative RT-PCR results showed that miR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines compared with that in human brain tissues and primary normal human astrocytes, and the expression levels were increased along with the rising pathological grades of glioblastoma. Neogenin was identified as the target gene of miR-18a by dual-luciferase reporter assays. RT-PCR and western blot results showed that its expression levels were decreased along with the rising pathological grades of glioblastoma. Inhibition of miR-18a expression was established by transfecting exogenous miR-18a inhibitor into U87 and U251 cells, and its effects on the biological behavior of glioblastoma cells were studied using CCK-8 assay, transwell assay and flow cytometry. Inhibition of miR-18a expression in U87 and U251 cells significantly up-regulated neogenin, and dramatically suppressed the abilities of cell proliferation, migration and invasion, induced cell cycle arrest and promoted cellular apoptosis. Collectively, these results suggest that miR-18a may regulate biological behavior of human glioblastoma cells by targeting neogenin, and miR-18a can serve as a potential target in the treatment of glioblastoma. 相似文献