共查询到20条相似文献,搜索用时 62 毫秒
1.
采用双微电极电压箝(TEV)法研究Cs 对非洲爪蟾卵母细胞表达的内向整流钾通道(IRK1)的作用及其机制。细胞外Cs 造成的IRK1内向电流的失活是Cs 浓度、K 浓度、时间和电压依赖性的,因此Cs 一直被认为是IRK1的一种效率最大的快速通道阻断剂之一 ;当细胞外K 浓度为10mmol/L和90mmol/L时 ,电场分数δ分别为0.912±0.065和0.833±0.062 ,说明Cs 的作用位点随K 浓度的减少进入通道更深的地方。细胞外Cs 浓度增加或K 浓度减少可加快失活过程。因此只有在细胞外Cs 浓度减少至10μmol/L与K 浓度增加至90mmol/L时 ,Cs 造成的IRK1内向电流的失活程度最小 ,只有此时才可观察到细胞外Cs 时间依赖性和电压依赖性增加IRK1的瞬间内向电流(施加电压后1ms)的作用。使用三个指数拟合外推的分析结果表明 :细胞外Cs 对IRK1的瞬间内向电流(施加电压后0.5ms)增加作用更明显。细胞外Cs 对IRK1的外向电流几乎无作用 ;因为在细胞外加入Cs 后反转电位仅变化0.367±1.167mV ,所以IRK1对Cs 不通透。结论 :Cs 不只是IRK1的一快速的通道阻断剂 ,细胞外Cs 还可在增大IRK1内向电流的同时使作用的时程缩短。 相似文献
2.
3.
钙激活氯离子通道对大鼠肺动脉张力的调节作用 总被引:1,自引:0,他引:1
目的:研究钙激活氯离子通道及其通道阻断剂尼氟灭酸(niflumic acid,NFA)、indaryloxyacetic acid(IAA-94)在苯福林(phenylephrine,PE)引起的肺动脉收缩中的作用。方法:常规离体血管灌流法检测肺动脉环张力;采用钙荧光探针(Fura-2/AM)负载急性酶分离法(胶原酶Ⅰ型和木瓜蛋白酶)获得的大鼠肺动脉平滑肌细胞(PASMCs),观察NFA和IAA-94对PE诱导的PASMCs胞浆游离钙离子浓度([Ca^2+]i)的影响,用荧光分光光度计法检测[Ca^2+]i。结果:钙激活氯离子通道阻断剂NFA和IAA-94可以舒张PE引起的肺动脉环收缩;NFA和IAA-94对KCl引起的血管收缩无影响;PE可以引起[Ca^2+]i升高,NFA和IAA-94对PE诱导[Ca^2+]i升高无影响。结论:钙激活氯离子通道在生理状态下与血管活性药(PE)引起的肺动脉张力变化有关,这为研究其在低氧肺血管收缩中的作用提供了新的线索。 相似文献
4.
细胞外Ba~(2 )对内向整流钾通道的阻断作用 总被引:2,自引:1,他引:1
实验采用双微电极电压箝 (TEV)法研究Ba2 对非洲爪蟾卵母细胞表达的内向整流钾通道 (IRK1)的阻断作用。细胞外Ba2 浓度分别为 0 ,1,3 ,10和 10 0 μmol/L ,K 浓度分别为 10和 90mmol/L ,可见快速开通道阻断剂Ba2 对IRK1的瞬间电流 (施加电压后 1ms)的阻断作用依赖Ba2 、K 、时间和电压 ;但对IRK1的开关特性几乎无影响 ,IRK1对之不通透。三级指数拟合的结果表明 :细胞外Ba2 低浓度 ( 1和 3 μmol/L)时 ,Ba2 与K 相互竞争同一结合位点 ,随着Ba2 浓度的增加 ,时间常数不增加但拟合的权数却呈浓度依赖性增加 ,所以失活过程随Ba2 浓度的增加越来越快 ;细胞外Ba2 高浓度 ( 10和 10 0 μmol/L)时 ,时间常数随Ba2 浓度的增加而减少 ,拟合的权数却呈浓度依赖性减少 ,失活过程也越来越快 ,说明Ba2 作用位点由通道的表面进入了通道更深的部位。上述结果提示 ,Ba2 对IRK1的阻断存在两种不同的机制。细胞外K 浓度为 90mmol/L和Ba2 浓度为 3 0 μmol/L时 ,Mg2 或Mn2 可与Ba2 争夺结合位点 ,随着Mg2 或Mn2 浓度增加 ,失活过程逐渐减缓 ,Ba2 在通道中的结合点也逐渐离开通道 ,Mg2 能而Mn2 不能进入通道较深处阻断通道 ,说明IRK1中有多离子阻断形式 相似文献
5.
目的:探讨钙激活性氯离子通道(CLCA2)在大鼠低氧性肺动脉平滑肌细胞(PASMCs)中mRNA和蛋白表达的变化及其与ERK1/2信号通路的关系。方法:PASMCs随机分为:常氧组(N组),低氧组(H组),DMSO对照组(D组),U0126干预组(U组),Staurosporine aglycone干预组(SA组),采用免疫印迹法检测CLCA2蛋白的表达;选用半定量逆转录-聚合酶链反应(RT-PCR)技术测定CLCA2 mRNA水平的表达。结果:PASMCs中CLCA2 mRNA和蛋白的表达量,H组较N组明显上调(P<0.01);U组较D组明显上调(P<0.01);SA组较D组mRNA的表达显著下调(P<0.01),蛋白的表达轻微下调。结论:低氧可上调CLCA2中mRNA和蛋白在PASMCs的表达;ERK1/2通路激活剂-Staurosporine aglycone能下调CLCA2在PASMCs中mRNA和蛋白的表达量;ERK1/2通路抑制剂-U0126可上调CLCA2在PASMCs中mRNA和蛋白的表达量。 相似文献
6.
内皮细胞在心血管系统具有重要功能,除通过分泌内皮舒张因子--一氧化氮(NO)及收缩性物质内皮素等控制血管平滑肌张力外,并能调节血管通透性。近年来发现内皮细胞上的C1^-通道能调节细胞体积和细胞膜电位的稳定性。通过离子通道调控膜电位一机理,能较好理解血管内皮的功能,并可望由此开拓新型血管药物。本文综述了内皮细胞的C1^-通道的电生理特性、类别,并探讨该通道调控细胞体积,NO的分泌及调控细胞膜电位的可 相似文献
7.
韩桂春 《中国应用生理学杂志》2000,16(1):33-36
目的:研究多巴胺对血管平滑肌细胞大电流、钙激活钾(BKca)通道的影响及其信息传递机制。方法用膜片钳细胞贴附式技术,记录细胞能液内灌流多巴胺受体激动剂、阻断剂以及第二信使及相关蛋白激酶拮机剂对猪冠状动脉血管平滑肌细胞BKca 爱道活动的影响。结果:多巴胺增加BKca通道活性(P〈0.01),并可被CA-1受体阻断剂SCH23390完全阻断,但不受β2受体阻断剂普藉洛尔的影响。腺苷酸环化酶抑制剂SO 相似文献
8.
重组人白细胞介素—1β对小鼬有骨髓基质细胞K^+通道的影响 总被引:2,自引:0,他引:2
In the present study, both cell-attached and inside-out mode of patch clamp technique were applied to detect the effect of recombinant human interleukin-1 beta (IL-1 beta) on K+ channels of mice bone marrow stromal cells. A 16.7 pS voltage-dependent K+ channel resembling the delayed rectifier K+ channel in excitable cells was identified and characterized. Under stimulation of IL-1 beta (1000 U/ml), the single channel conductance increased to 26.1 +/- 3.6 pS (P < 0.01). IL-1 beta also markedly increased the open time constant and the open probability, but decreased the closed time constant as compared to the same patches without IL-1 beta. In addition, IL-1 beta induced multi-channel activities in about 80 percent patches by inducing more K+ channels of the same type open. These results suggest that activation of K+ channels plays a role in signal transduction of interleukin-1. 相似文献
9.
成年大鼠海马CA1区锥体细胞KATP通道的特性 总被引:3,自引:0,他引:3
为了解成年大鼠海马CA1区锥体细胞KATP通道的特性,实验采用膜片钳技术的内面向外式记录法,在急性分离的CA1区锥体神经元上,研究了可被胞浆侧ATP所抑制的钾离子单通道的特性,当细胞膜内外两侧的K^ 浓度均为140mmol/L时,通道的电导为63pS,翻转电位为1.71mV,通道呈弱向内向整流性,在负钳制电位时,通道开放时常被短时的关闭所打断,而在正钳制电位时,这种短时程的关闭状态明显少于负钳制电位时,但通道开放概率未见明显的电压依赖性,ATP对通道活动的抑制作用呈浓度依赖性,抑制通道活动50%的ATP浓度为0.1mmol/L.KATP通道的特异性阻断剂tolbutamide(甲糖宁,1mmol/L)可完全阻断通道的活动,而KATP通道开放剂diazoxide(二氮嗪,1mmol/L)则不增强通道的活动。 相似文献
10.
利用细胞内的钙离子成像技术,研究了多巴胺对鲫鱼视网膜H1型水平细胞上L型电压门控钙离子通道的调控特性。研究发现,在不同胞外pH(6.8、7.4、8.0)条件下,不同浓度多巴胺(50和500μmol/L、1 mmol/L)对L型电压门控钙离子通道均具有上调作用。50μmol/L多巴胺在不同pH下的上调程度没有显著性差异;高浓度多巴胺(500μmol/L和1 mmol/L)在pH8.0条件下比pH6.8和7.4条件下具有更显著的上调作用。这些结果表明,在鲫鱼视网膜H1型水平细胞上,多巴胺对电压门控钙离子通道的调控与胞外pH环境密切相关。在光照情况下,L型电压门控钙离子通道活性被相对高浓度多巴胺上调,并被胞外碱性环境协同增强。这种协同增强效应有助于阐明视网膜对光反应的信息传递机制。 相似文献
11.
Zhiqin Deng Wencui Li Jianying Xu Meishen Yu Duan Li Qiuchan Tan Daping Wang Lixin Chen Liwei Wang 《Journal of cellular biochemistry》2019,120(5):8366-8375
Evidence has been reported by us and others supporting the important roles of chloride channels in a number of osteoblast cell functions. The ClC-3 chloride channel is activated by estradiol binding to estrogen receptor alpha on the cell membranes of osteoblasts. However, the functions of these chloride channels in estrogen regulation of osteoblast metabolism remain unclear. In the present study, the roles of chloride channels in estrogen regulation of osteoblasts were investigated in the osteoblastic cell line MC3T3-E1. Estrogen 17β-estradiol enhanced collagen I protein expression, alkaline phosphatase activity, and mineralization were inhibited, by chloride channel blockers. Estradiol promoted ClC-3 chloride channel protein expression. Silencing of ClC-3 chloride channel expression prevented the elevation of osteodifferentiation in osteoblasts, which were regulated by estrogen. These data suggest that estrogen can regulate bone formation by activating ClC-3 chloride channels and the activation of ClC-3 chloride channels can enhance the osteodifferentiation in osteoblasts. 相似文献
12.
Zhang HN Zhou JG Qiu QY Ren JL Guan YY 《Apoptosis : an international journal on programmed cell death》2006,11(3):327-336
Cell volume can be altered by two different ways, swelling and shrinkage. Cell swelling is regulated by volume-regulated Cl− channel (VRC). It is not well understood whether shrinkage is regulated by VRC. We previously found that antisense oligonucleotide
specific to ClC-3 (ClC-3 antisense) prevented cell proliferation, which was related to cell swell volume regulation. In the
present study, we further studied the role of ClC-3 Cl− channel in cell apoptosis which was related to cell shrinkage volume regulation by using antisense oligonucleotide specific
to ClC-3 (ClC-3 antisense) and ClC-3 cDNA transfection techniques. We found that thapsigargin (TG), a specific inhibitor of
the endoplasmic reticulum calcium ATPase, evoked apoptotic morphological changes (including cytoplasmic blebbing, condensation
of nuclear chromatin, and the formation of apoptotic bodies), DNA laddering, and caspase-3 activation in PC12 cells (Pheochromocytoma-derived
cell line). TG increased the cell apoptotic population with a decrease in cell viability. These effects were consistent with
the decrease in endogenous ClC-3 protein expression, which was also induced by TG. Overexpression of ClC-3 significantly inhibited
TG effect on PC12 cell apoptosis, whereas the ClC-3 antisense produced opposite effects and facilitated apoptosis induced
by TG. Our data strongly suggest that ClC-3 channel in PC12 cells mediates TG-induced apoptotic process through inhibitory
mechanism. Thus, it appears that ClC-3 Cl− channel mediates both cell proliferation and apoptosis through accelerative and inhibitory fashions, respectively.
These authors contributed equally to this work. 相似文献
13.
目的:观察甲状旁腺激素(PTH)对成骨细胞中Cl C-3氯通道表达及成骨分化影响,初步探索Cl C-3介导PTH在细胞成骨分化中的作用。方法:采用10-8M、10-9M、10-10M PTH持续刺激和间断刺激MC3T3-E1细胞72 h后,通过CCK-8试剂盒法检测MC3T3-E1细胞的增殖情况,Real-Time PCR法检测MC3T3-E1细胞中Clcn3及成骨相关基因Alp、Runx2的表达情况,免疫荧光法检测10-9M PTH不同给药方式下对Cl C-3蛋白表达的影响。结果 :经不同浓度PTH连续和间断处理72 h后,结果显示10-9 M PTH间断刺激的MC3T3-E1细胞的增殖能力最强,且其Alp、Runx2 m RNA表达均高于10-8 M组和10-10 M组(P<0.05),而相同浓度间断刺激的MC3T3-E1细胞成骨相关基因的表达均高于持续刺激组,以10-9M间断刺激组差异最显著(P<0.05),而10-8 M和10-10M均无统计学差异(P>0.05),10-9 M PTH刺激的MC3T3-E1细胞中Cl C-3蛋白表达也显著增加(P<0.05)。结论 :成骨细胞的Cl C-3氯通道能够响应PTH的刺激发生变化,并伴随着成骨相关基因Alp、Runx2表达的增强。 相似文献
14.
The muscle chloride channel ClC-1 has a double-barreled appearance that is differentially affected in dominant and recessive myotonia 总被引:7,自引:0,他引:7
Single-channel recordings of the currents mediated by the muscle Cl- channel, ClC-1, expressed in Xenopus oocytes, provide the first direct evidence that this channel has two equidistant open conductance levels like the Torpedo ClC-0 prototype. As for the case of ClC-0, the probabilities and dwell times of the closed and conducting states are consistent with the presence of two independently gated pathways with approximately 1.2 pS conductance enabled in parallel via a common gate. However, the voltage dependence of the common gate is different and the kinetics are much faster than for ClC-0. Estimates of single-channel parameters from the analysis of macroscopic current fluctuations agree with those from single-channel recordings. Fluctuation analysis was used to characterize changes in the apparent double-gate behavior of the ClC-1 mutations I290M and I556N causing, respectively, a dominant and a recessive form of myotonia. We find that both mutations reduce about equally the open probability of single protopores and that mutation I290M yields a stronger reduction of the common gate open probability than mutation I556N. Our results suggest that the mammalian ClC-homologues have the same structure and mechanism proposed for the Torpedo channel ClC-0. Differential effects on the two gates that appear to modulate the activation of ClC-1 channels may be important determinants for the different patterns of inheritance of dominant and recessive ClC-1 mutations. 相似文献
15.
鼻咽癌细胞ClC-3在细胞周期中的表达 总被引:1,自引:0,他引:1
用免疫荧光、激光共聚焦显微镜图像分析及膜片钳等技术研究了鼻咽癌上皮CNE-2Z细胞容积激活性氯通道候选基因C1C-3的表达及其在细胞周期中与容积激活性氯电流及细胞容积调节性回缩(regulatoryvolumedecrease,RVD)的关系.结果显示,CNE-2Z细胞表达ClC-3.ClC-3蛋白主要位于细胞内而不是在细胞膜上,其表达水平及其在细胞中的分布呈细胞周期依赖性.G1期细胞的ClC-3表达水平较低而S期则较高,M期细胞的表达水平中等.在细胞周期中,ClC-3表达水平与细胞RVD能力及容积激活性氯电流水平呈反比.上述观察结果提示,ClC-3可能参与细胞周期的调节,但CNE-2Z细胞中的ClC-3可能不是与RVD有关的氯通道. 相似文献
16.
Ishii TM Nakashima N Takatsuka K Ohmori H 《Biochemical and biophysical research communications》2007,359(3):592-598
Among four subtypes of mammalian HCN channels, HCN1 has the fastest activation and deactivation kinetics while HCN4 shows the slowest. We previously showed that the activation kinetics are determined mainly by S1, S1-S2, and the S6-cyclic nucleotide binding domain. However, the effects of those regions on the deactivation kinetics were relatively small. Therefore, we investigated the structural basis for deactivation kinetics. Substitution of the core region (from S3 to S6) between HCN1 and HCN4 did not affect deactivation kinetics. This suggests that the peripheral regions (outside of S3 to S6) determine subtype-specific deactivation kinetics. Furthermore, we examined whether peripheral regions determined the deactivation kinetics across species by introducing the core region of DMIH (Drosophila homologue) into both HCN1 and HCN4. The DMIH core with HCN1 activated and deactivated more than threefold faster than that with HCN4. Taken together, the peripheral domains are diversified to create distinct kinetics. 相似文献
17.
The ClC channel family consists of chloride channels important for various physiological functions. Two members in this family, ClC-0 and ClC-1, share approximately 50-60% amino acid identity and show similar gating behaviors. Although they both contain two subunits, the number of pores present in the homodimeric channel is controversial. The double-barrel model proposed for ClC-0 was recently challenged by a one-pore model partly based on experiments with ClC-1 exploiting cysteine mutagenesis followed by modification with methanethiosulfonate (MTS) reagents. To investigate the pore stoichiometry of ClC-0 more rigorously, we applied a similar strategy of MTS modification in an inactivation-suppressed mutant (C212S) of ClC-0. Mutation of lysine 165 to cysteine (K165C) rendered the channel nonfunctional, but modification of the introduced cysteine by 2-aminoethyl MTS (MTSEA) recovered functional channels with altered properties of gating-permeation coupling. The fast gate of the MTSEA-modified K165C homodimer responded to external Cl(-) less effectively, so the P(o)-V curve was shifted to a more depolarized potential by approximately 45 mV. The K165C-K165 heterodimer showed double-barrel-like channel activity after MTSEA modification, with the fast-gating behaviors mimicking a combination of those of the mutant and the wild-type pore, as expected for the two-pore model. Without MTSEA modification, the heterodimer showed only one pore, and was easier to inactivate than the two-pore channel. These results showed that K165 is important for both the fast and slow gating of ClC-0. Therefore, the effects of MTS reagents on channel gating need to be carefully considered when interpreting the apparent modification rate. 相似文献
18.
Takumi Nakamura Natsumi Ohsawa-Yoshida Yimeng Zhao Michinori Koebis Kosuke Oana Hiroaki Mitsuhashi Shoichi Ishiura 《Biochemistry and Biophysics Reports》2016
Expression of chloride channel 1 (CLCN1/ClC-1) in skeletal muscle is driven by alternative splicing, a process regulated in part by RNA-binding protein families MBNL and CELF. Aberrant splicing of CLCN1 produces many mRNAs, which were translated into inactive proteins, resulting in myotonia in myotonic dystrophy (DM), a genetic disorder caused by the expansion of a CTG or CCTG repeat. This increase in abnormal splicing variants containing exons 6B, 7A or the insertion of a TAG stop codon just before exon 7 leads to a decrease in expression of the normal splice pattern. The majority of studies examining splicing in CLCN1 have been performed using mouse Clcn1, as have investigations into the activation and suppression of normal splicing variant expression by MBNL1-3 and CELF3–6, respectively. In contrast, examinations of human CLCN1 have been less common due to the greater complexity of splicing patterns. Here, we constructed a minigene containing CLCN1 exons 5–7 and established a novel assay system to quantify the expression of the normal splicing variant of CLCN1 using real-time RT-PCR. Antisense oligonucleotides could promote normal CLCN1 alternative splicing but the effective sequence was different from that of Clcn1. This result differs from previous reports using Clcn1, highlighting the effect of differences in splicing patterns between mice and humans. 相似文献
19.
Arthur L. Finn Marcia L. Gaido Margaret Dillard 《Molecular and cellular biochemistry》1992,114(1-2):21-26
We have used a monoclonal antibody (MAb E12), one of several such antibodies raised against theophylline-treated Necturus gallbladder epithelial cells, to isolate a chloride channel protein by the use of an immunoaffinity column and FPLC. This protein (Mr 219,000) has been reconstituted into a planar lipid bilayer, where it behaves as a chloride-selective channel (PCl/PNa = 20.2; PNa/PK = 1) whose unit conductance is 62.4 ± 4.6 pS. Antibody added to the trans side (there is no effect from the cis side) causes channel open probability to drop to virtually zero, but has no effect on the conductance or the selectivity of single channels. To test the role of phosphorylation in the activity of the native channel, we studied the effects of the protein phosphatase inhibitor okadaic acid (OA) on intact gallbladders, and showed that channels opened by theophylline treatment and closed by antibody are reopened reversibly by OA (0.01–1.0 M). Addition of the catalytic subunit of protein phosphatase 2A (PP-2A) to the cis side of a bilayer containing reconstituted chloride channels caused closure of the channels after a delay, and subsequent addition of ATP and the catalytic subunit of cAMP-dependent protein kinase (PKA) caused immediate reopening. These data indicate that (a) this chloride channel protein inserts in a directed way into the bilayer such that the cis side is intracellular, (b) the purified channel protein is phosphorylated, and (c) gating from the cellular side is controlled by the direct phosphorylation and dephosphorylation of the channel protein. 相似文献
20.
Aquaporin (AQP) and chloride channels are ubiquitous in virtually all living cells, playing pivotal roles in cell proliferation, migration and apoptosis. We previously reported that AQP-3 aquaglyceroporin and ClC-3 chloride channels could form complexes to regulate cell volume in nasopharyngeal carcinoma cells. In this study, the roles of AQP-3 in their hetero-complexes were further investigated. Glycerol entered the cells via AQP-3 and induced two different Cl− currents through cell swelling-dependent or -independent pathways. The swelling-dependent Cl− current was significantly inhibited by pretreatment with CuCl2 and AQP-3-siRNA. After siRNA-induced AQP-3 knock-down, the 140 mM glycerol isoosmotic solution swelled cells by 22% (45% in AQP-3-intact cells) and induced a smaller Cl− current; this current was smaller than that activated by 8% cell volume swelling, which induced by the 140 mM glycerol hyperosmotic solution in AQP-3-intact cells. This suggests that the interaction between AQP-3 and ClC-3 plays an important role in cell volume regulation and that AQP-3 may be a modulator that opens volume-regulated chloride channels. The swelling-independent Cl− current, which was activated by extracellular glycerol, was reduced by CuCl2 and AQP-3-siRNA pretreatment. Dialyzing glycerol into cells via the pipette directly induced the swelling-independent Cl− current; however this current was blocked by AQP-3 down-regulation, suggesting AQP-3 is essential for the opening of chloride channels. In conclusion, AQP-3 is the pathway for water, glycerol and other small solutes to enter cells, and it may be an essential modulator for the gating of chloride channels. 相似文献