共查询到20条相似文献,搜索用时 0 毫秒
1.
Herbivores, competitors, and predators can inhibit biological invasions (“biotic resistance” sensu Elton 1959), while disturbance typically promotes biological invasions. Although biotic resistance and disturbance are often considered separately in the invasion literature, these two forces may be linked. One mechanism by which disturbance may facilitate biological invasions is by decreasing the effectiveness of biotic resistance. The effects of both disturbance and biotic resistance may vary across invading genotypes, and genetic variation in the invasive propagule pool may increase the likelihood that some genotypes can overcome biotic resistance or take greater advantage of disturbance. We conducted an experimental field trial in which we manipulated soil disturbance (thatch removal and loosening soil) and the presence of insect herbivores and examined their effects on the invasion success of 44 Medicago polymorpha genotypes. As expected, insecticide reduced leaf damage and increased Medicago fecundity, suggesting that insect herbivores in this system provide some biotic resistance. Soil disturbance increased Medicago fecundity, but did not alter the effectiveness of biotic resistance by insect herbivores. We found significant genetic variation in Medicago in response to disturbance, but not in response to insect herbivores. These results suggest that the ability of Medicago to invade particular habitats depends on the amount of insect herbivory, the history of disturbance in the habitat, and how the specific genotypes in the invader pool respond to these factors. 相似文献
2.
Plant and Soil - Recently, much attention has been paid to the plant-mediated effects of aboveground herbivory on soil ecosystems. However, studies about the herbivore-induced effects of invasive... 相似文献
3.
Although animal scientists have long been aware that methods used to measure an experimental system can affect the subject of measurement, similar confounding effects of commonly used field methods have only recently been acknowledged by plant ecologists. Here we demonstrate significant effects of weekly visitation (walking up to a focal plant) and handling (taking morphological measures) on plant growth and herbivory in an old-field community. Of the three species examined, Apocynum cannabinum was the most severely affected by our treatments. For Apocynum, weekly visitations resulted in a positive relationship between initial and final size, which did not occur in the unvisited plants. Visitation also increased leaf herbivory, resulting in a reduced leaf:stem biomass ratio. Handling the plants nearly doubled the proportion of individuals with a stem borer emergence hole. Growth of the other species in this study, Potentilla recta and Erigeron philadelphicus, was altered by either visitation or visitation plus handling. Visiting plants in order to observe them and touching them as one would when making morphological measurements can have important biological consequences. We suggest that plant ecologists treat repeated entry into a natural system as a research method, subject to the same scrutiny and justification as all other experimental methods. 相似文献
4.
5.
While several studies have shown that invasive plant effects on soil biota influence subsequent plant performance, corresponding studies on how invasive animals affect plants through influencing soil biota are lacking. This is despite the fact that invasive animals often indirectly alter the below-ground subsystem. We studied 18 offshore islands in northern New Zealand, half of which have been invaded by rats that are predators of seabirds and severely reduce their densities, and half of which remain non-invaded; invasion of rats thwarts seabird transfer of resources from ocean to land. We used soil from each island in a glasshouse experiment involving soil sterilization treatments to determine whether rat invasion indirectly influences plant growth through the abiotic pathway (by impairing seabird-driven inputs to soil) or the biotic pathway (by altering the soil community). Rat invasion greatly impaired plant growth but entirely through the abiotic pathway. Plant growth was unaffected by the soil community or its response to invasion, meaning that the responses of plants and soil biota to invasion are decoupled. Our results provide experimental evidence for the powerful indirect effects that predator-instigated cascades can exert on plant and ecosystem productivity, with implications for the restoration of island ecosystems by predator removal. 相似文献
6.
Herbivory can reduce plant fitness, and its effects can be increased by competition. Though numerous studies have examined the joint effects of herbivores and competitors on plant performance, these interactive effects are seldom considered in the context of plant invasions. Here, we examined variation in plant performance within a competitive environment in response to both specialist and generalist herbivores using Chinese tallow as a model species. We combined tallow plants from native and invasive populations to form all possible pairwise combinations, and designated invasive populations as stronger neighbours and native populations as weaker neighbours. We found that when no herbivory was imposed, invasive populations always had higher total biomass than natives, regardless of their neighbours, which is consistent with our assumption of increased competitive ability. Defoliation by either generalist or specialist herbivores suppressed plant growth but the effects of specialists were generally stronger for invasive populations. Invasive populations had their lowest biomass when fed upon by specialists while simultaneously competing with stronger neighbours. The root/shoot ratios of invasive populations were lower than those of native populations under almost all conditions, and invasive plants were taller than native plants overall, especially when herbivores were present, suggesting that invasive populations may adopt an aboveground first strategy to cope with herbivory and competition. These results suggest that release from herbivores, especially specialists, improves an invader's performance and helps to increase its competitive ability. Therefore, increasing interspecific competition intensity by planting a stronger neighbour while simultaneously releasing a specialist herbivore may be an especially effective method of managing invasive plants. 相似文献
7.
Marianne Erneberg 《Oecologia》1999,118(2):203-209
Anthemiscotula was introduced to Denmark 500 years ago, and its distribution is presently limited and in decline. A manipulative field experiment was performed to investigate the effects of native plant competitors and native invertebrate herbivores on its performance. Generally, both herbivory and competition treatments had great impact, and when both factors were operating, the effects were additive for all variables except plant height. Although A. cotula showed plasticity in growth, resource allocation and flowering timing, it was unable to adjust to competition and compensate for losses due to herbivory sufficiently to ensure and restore its achene production. This vulnerability, combined with improved cereal cleaning techniques and thus fewer reintroductions of A. cotula seeds, may be the cause of its current decline. A. cotula responded to herbivory by prolonging its flowering period, a “bet-hedging” strategy. In Denmark this strategy is unreliable since risks of sub-optimal conditions are much greater in August–October. Received: 12 December 1997 / Accepted: 14 October 1998 相似文献
8.
This study evaluated how natural selection act upon two proposed alternatives of defence (growth and resistance) against natural enemies in a common garden experiment using genetic material (full-sibs) from three populations of the annual plant Datura stramonium. Genetic and phenotypic correlations were used to search for a negative association between both alternatives of defence. Finally, the presence/absence of natural enemies was manipulated to evaluate the selective value of growth as a response against herbivory. Results indicated the presence of genetic variation for growth and resistance (1--relative damage), whereas only population differentiation for resistance was detected. No correlation between growth and resistance was detected either at the phenotypic or the genetic level. Selection analysis revealed the presence of equal fitness benefits of growth and resistance among populations. The presence/absence of natural herbivores revealed that herbivory did not alter the pattern of selection on growth. The results indicate that both strategies of defence can evolve simultaneously within populations of D. stramonium. 相似文献
9.
Christoph Scherber Juliane Heimann Günter Köhler Nadine Mitschunas Wolfgang W. Weisser 《Oecologia》2010,163(3):707-717
The resistance of a plant community against herbivore attack may depend on plant species richness, with monocultures often much more severely affected than mixtures of plant species. Here, we used a plant–herbivore system to study the effects of selective herbivory on consumption resistance and recovery after herbivory in 81 experimental grassland plots. Communities were established from seed in 2002 and contained 1, 2, 4, 8, 16 or 60 plant species of 1, 2, 3 or 4 functional groups. In 2004, pairs of enclosure cages (1 m tall, 0.5 m diameter) were set up on all 81 plots. One randomly selected cage of each pair was stocked with 10 male and 10 female nymphs of the meadow grasshopper, Chorthippus parallelus. The grasshoppers fed for 2 months, and the vegetation was monitored over 1 year. Consumption resistance and recovery of vegetation were calculated as proportional changes in vegetation biomass. Overall, grasshopper herbivory averaged 6.8%. Herbivory resistance and recovery were influenced by plant functional group identity, but independent of plant species richness and number of functional groups. However, herbivory induced shifts in vegetation composition that depended on plant species richness. Grasshopper herbivory led to increases in herb cover at the expense of grasses. Herb cover increased more strongly in species-rich mixtures. We conclude that selective herbivory changes the functional composition of plant communities and that compositional changes due to selective herbivory depend on plant species richness. 相似文献
10.
Plant populations often exist in spatially heterogeneous environments with varying light levels, which can affect plant growth
directly through resource availability or indirectly by altering behavior or success of herbivores. The plant vigor hypothesis
predicts that herbivores are more likely to attack vigorously growing plants than those that are suppressed, for example in
more shaded conditions. Plant tolerance of herbivory can also vary under contrasting resource availability. Observations suggest
that damage by Rhinoncomimus latipes Korotyaev (Coleoptera: Curculionidae), introduced into the United States in 2004 as a biological control agent for mile-a-minute
weed (Persicaria perfoliata [L.] H. Gross), is greater in the sun than in shade. We compared weevil densities and plant growth in paired plots in full
sun or under shade cloth; a second experiment included insecticide-treated plots in sun and shade, to assess the ability of
the plant to compensate for herbivore damage. Greater density of weevils and more node damage (indicating internal larval
feeding) were found on P. perfoliata plants growing in sun than on those in shade. Nodes were 14% thicker in the sun, which may have provided better larval habitat.
Biomass produced by plants without weevils in the sun was about twice that produced in any other treatment. Herbivory had
a greater effect on plant growth in the high-light environment than in the shade, apparently because of movement into the
sun and increased feeding there by the monophagous herbivore, R. latipes. Results support the plant vigor hypothesis and suggest that high weevil densities in the sunny habitats favored by P. perfoliata can suppress plant growth, negating the resource advantage to plants growing in the sun. 相似文献
11.
When invasive species establish in new environments, they may disrupt existing or create new interactions with resident species.
Understanding of the functioning of invaded ecosystems will benefit from careful investigation of resulting species-level
interactions. We manipulated ant visitation to compare how invasive ant mutualisms affect two common plants, one native and
one invasive, on a sub-tropical Indian Ocean island. Technomyrmex albipes, an introduced species, was the most common and abundant ant visitor to the plants. T. albipes were attracted to extrafloral nectaries on the invasive tree (Leucaena
leucocephala) and deterred the plant’s primary herbivore, the Leucaena psyllid (Heteropsylla cubana). Ant exclusion from L. leucocephala resulted in decreased plant growth and seed production by 22% and 35%, respectively. In contrast, on the native shrub (Scaevola taccada), T. albipes frequently tended sap-sucking hemipterans, and ant exclusion resulted in 30% and 23% increases in growth and fruit production,
respectively. Stable isotope analysis confirmed the more predacious and herbivorous diets of T. albipes on the invasive and native plants, respectively. Thus the ants’ interactions protect the invasive plant from its main herbivore
while also exacerbating the effects of herbivores on the native plant. Ultimately, the negative effects on the native plant
and positive effects on the invasive plant may work in concert to facilitate invasion by the invasive plant. Our findings
underscore the importance of investigating facilitative interactions in a community context and the multiple and diverse interactions
shaping novel ecosystems. 相似文献
12.
Background
There is conclusive evidence that there are fitness costs of plant defense and that herbivores can drive selection for defense. However, most work has focused on above-ground interactions, even though belowground herbivory may have greater impacts on individual plants than above-ground herbivory. Given the role of belowground plant structures in resource acquisition and storage, research on belowground herbivores has much to contribute to theories on the evolution of plant defense. Pocket gophers (Geomyidae) provide an excellent opportunity to study root herbivory. These subterranean rodents spend their entire lives belowground and specialize on consuming belowground plant parts.Methodology and Principal Findings
We compared the root defenses of native forbs from mainland populations (with a history of gopher herbivory) to island populations (free from gophers for up to 500,000 years). Defense includes both resistance against herbivores and tolerance of herbivore damage. We used three approaches to compare these traits in island and mainland populations of two native California forbs: 1) Eschscholzia californica populations were assayed to compare alkaloid deterrents, 2) captive gophers were used to test the palatability of E. californica roots and 3) simulated root herbivory assessed tolerance to root damage in Deinandra fasciculata and E. californica. Mainland forms of E. californica contained 2.5 times greater concentration of alkaloids and were less palatable to gophers than island forms. Mainland forms of D. fasciculata and, to a lesser extent, E. californica were also more tolerant of root damage than island conspecifics. Interestingly, undamaged island individuals of D. fasciculata produced significantly more fruit than either damaged or undamaged mainland individuals.Conclusions and Significance
These results suggest that mainland plants are effective at deterring and tolerating pocket gopher herbivory. Results also suggest that both forms of defense are costly to fitness and thus reduced in the absence of the putative target herbivore. 相似文献13.
14.
The stoloniferous herb Trifolium repens was used to study the expression of induced systemic resistance (ISR) to the generalist caterpillar Spodoptera exigua in interconnected ramets of clonal fragments. The ISR was assessed as caterpillar preference in dual choice tests between control and systemically induced plants. The ISR was detected in young ramets, after inducing older sibling ramets on the same stolon by a controlled herbivore attack. However, older ramets did not receive a defense induction signal from younger ramets unless the predominant phloem flow was reversed by means of basal shading. This provides evidence for the notion that in T. repens the clone-internal expression of ISR is coupled to phloem transport and follows source–sink gradients. The inducibility of the genotypes was not linked to their constitutive ability to produce cyanide, implying the absence of a trade-off between these two defense traits. To our knowledge, this is the first study that explores ISR to herbivory in the context of physiological integration in potentially extensive clonal plant networks. 相似文献
15.
1. Herbivory on freshwater macrophytes has been assumed to be insignificant and rare. More recent evidence suggests herbivory is common and the impact of invasive invertebrate herbivores can be substantial. However, little is known about consumption of macrophytes by fish. 2. We performed a series of feeding assays, based on the consumption by common carp (Cyprinus carpio), to determine if any mechanisms of resistance, structural or chemical, were present in five species of macrophytes (Stuckenia pectinata, Typha latifolia, Scirpus validus, Chara aspera and Ceratophyllum demersum). 3. Carp consumed more fresh whole plant tissue of C. aspera than any other macrophyte, suggesting a lack of structural or chemical deterrents. Typha latifolia, S. validus and C. demersum were consumed least as whole plants, but consumption increased when they were offered in pellet form suggesting structural defence. Crude chemical extracts from S. pectinata significantly reduced consumption of pellets by carp. Thus, plant chemistry and structure both deterred feeding by carp. 4. Experiments that focus on theory are common but their application to managing landscapes is substantially lacking. Our results provide a basis for recommending plants to be used in restoring larval habitat refugia with the aim of increasing the probability for long‐term recovery of an endangered species. Thus, this paper is an example of how experiments that tie theory to application are important for practical applications and for continued testing of theory. 5. We suggest that macrophyte–herbivore interactions play an integral part in aquatic food webs and may be as important in freshwater communities as in marine and terrestrial systems. 相似文献
16.
Plants have considerable ability to respond to herbivory, both with (above-ground) regrowth and with increased defense. We simulated both leaf and shoot herbivory in controlled, replicated experiments on individuals of Acacia drepanolobium in Laikipia, Kenya. These experiments were carried out on individuals that had experienced different, experimentally controlled histories of large mammalian herbivory. Both forms of simulated herbivory were associated with compensatory regrowth. Branches whose shoots had been removed grew significantly more over the next year than paired control branches, fully compensating for the lost shoot length. Branches whose leaves were removed both grew faster and had more leaves one year later than did control branches. Shoot removal, but not leaf removal, increased the production of side shoots. However, because past herbivore pressure was negatively associated with net shoot growth, there may be a long-term cost of herbivory even when plants appear to fully compensate for herbivory in the short term. In contrast to the effects on growth, simulated herbivory did not significantly increase physical (spines) or chemical (tannins) defenses, and there were no significant negative correlations between compensatory growth and plant defense. 相似文献
17.
Studies of herbivory and its consequences on the growth of native and exotic plants could help elucidate some processes involved in plant invasions. Introduced species are likely to experience reduced herbivory in their new range due to the absence of specialist enemies and, thus, may have higher benefits if they reduce the investment in resistance and increase their compensatory capacity. In order to evaluate the role of herbivory in disturbed areas within the Patagonian steppe, we quantified and compared the leaf levels of herbivory of four native and five exotic species and recorded the associated insect fauna. We also performed greenhouse experiments in which we simulated herbivory in order to evaluate the compensatory capacity of native and exotic species under different herbivory levels that resembled naturally occurring damage. Natural herbivory levels in the field were similar between the studied exotic and native plants. Field observations confirmed that they both shared some herbivore insects, most of which are generalists. In the greenhouse experiments, both exotic and native plants fully compensated for herbivory. Our results suggest that the studied exotic plants are not released from herbivory in the Patagonian steppe but are able to fully compensate for it. The capacity to recover from herbivory coupled with other potential adaptations, such as a better performance under disturbance and greater competitive ability than that of the native species, may represent some of the mechanisms responsible for the success of plant invasion in the Patagonian steppe. 相似文献
18.
In biological control programs, the insect natural enemy’s ability to suppress the plant invader may be affected by abiotic factors, such as resource availability, that can influence plant growth and reproduction. Understanding plant tolerance to herbivory under different environmental conditions will help to improve biocontrol efficacy. The invasive alligator weed (Alternanthera philoxeroides) has been successfully controlled by natural enemies in many aquatic habitats but not in terrestrial environments worldwide. This study examined the effects of different levels of simulated leaf herbivory on the growth of alligator weed at two levels of fertilization and three levels of soil moisture (aquatic, semi-aquatic, and terrestrial habitats). Increasing levels of simulated (manual) defoliation generally caused decreases in total biomass in all habitats. However, the plant appeared to respond differently to high levels of herbivory in the three habitats. Terrestrial plants showed the highest below–above ground mass ratio (R/S), indicating the plant is more tolerant to herbivory in terrestrial habitats than in aquatic habitats. The unfertilized treatment exhibited greater tolerance than the fertilized treatment in the terrestrial habitat at the first stage of this experiment (day 15), but fertilizer appears not to have influenced tolerance at the middle and last stages of the experiment. No such difference was found in semi-aquatic and aquatic habitats. These findings suggest that plant tolerance is affected by habitats and soil nutrients and this relationship could influence the biological control outcome. Plant compensatory response to herbivory under different environmental conditions should, therefore, be carefully considered when planning to use biological control in management programs against invasive plants. 相似文献
19.
We investigated geographic patterns of herbivory and resource allocation to defense, growth, and reproduction in an invasive biennial, Alliaria petiolata, to test the hypothesis that escape from herbivory in invasive species permits enhanced growth and lower production of defensive chemicals. We quantified herbivore damage, concentrations of sinigrin, and growth and reproduction inside and outside herbivore exclusion treatments, in field populations in the native and invasive ranges. As predicted, unmanipulated plants in the native range (Hungary, Europe) experienced greater herbivore damage than plants in the introduced range (Massachusetts and Connecticut, USA), providing evidence for enemy release, particularly in the first year of growth. Nevertheless, European populations had consistently larger individuals than US populations (rosettes were, for example, eightfold larger) and also had greater reproductive output, but US plants produced larger seeds at a given plant height. Moreover, flowering plants showed significant differences in concentrations of sinigrin in the invasive versus native range, although the direction of the difference was variable, suggesting the influence of environmental effects. Overall, we observed less herbivory, but not increased growth or decreased defense in the invasive range. Geographical differences in performance and leaf chemistry appear to be due to variation in the environment, which could have masked evolved differences in allocation. 相似文献
20.
Nitrogen deposition and herbivory affect biomass production and allocation in an annual plant 总被引:11,自引:0,他引:11
Heather L. Throop 《Oikos》2005,111(1):91-100
If environmental conditions vary, plasticity in life-history traits is predicted. A recent model indicates that males and females should differ in life-history traits, because sexes differ in optimal attributes depending on species ecology. In this study we test the impact of two biotic factors in combination (presence/absence of predators and low/high food level) on gender specific life-history traits in the damselfly Coenagrion puella (Odonata). Results show that predator presence and low food density decreased activity in both sexes. Additionally, individuals with less food grew more slowly, emerged later, remained smaller and had a higher mortality. At low food densities, however, and in contrast to former investigations, individuals from treatments with predator presence were the same size or larger than individuals without predators. Gender had a strong impact on larval activity and life-history traits and sexes differed in development. Females were less active and took longer to complete development, but emerged at a larger size, weight and fat content. This study highlights the importance of gender specific approaches in life-history research. 相似文献