首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Knowledge of the effects of thermal conditions on animal movement and dispersal is necessary for a mechanistic understanding of the consequences of climate change and habitat fragmentation. In particular, the flight of ectothermic insects such as small butterflies is greatly influenced by ambient temperature. Here, variation in body temperature during flight is investigated in an ecological model species, the Glanville fritillary butterfly (Melitaea cinxia). Attention is paid on the effects of flight metabolism, genotypes at candidate loci, and environmental conditions. Measurements were made under a natural range of conditions using infrared thermal imaging. Heating of flight muscles by flight metabolism has been presumed to be negligible in small butterflies. However, the results demonstrate that Glanville fritillary males with high flight metabolic rate maintain elevated body temperature better during flight than males with a low rate of flight metabolism. This effect is likely to have a significant influence on the dispersal performance and fitness of butterflies and demonstrates the possible importance of intraspecific physiological variation on dispersal in other similar ectothermic insects. The results also suggest that individuals having an advantage in low ambient temperatures can be susceptible to overheating at high temperatures. Further, tolerance of high temperatures may be important for flight performance, as indicated by an association of heat‐shock protein (Hsp70) genotype with flight metabolic rate and body temperature at takeoff. The dynamics of body temperature at flight and factors affecting it also differed significantly between female and male butterflies, indicating that thermal dynamics are governed by different mechanisms in the two sexes. This study contributes to knowledge about factors affecting intraspecific variation in dispersal‐related thermal performance in butterflies and other insects. Such information is needed for predictive models of the evolution of dispersal in the face of habitat fragmentation and climate change.  相似文献   

2.
As a result of increased habitat fragmentation in anthropogenic landscapes, flying insects may be required to travel over larger distances in search of resources such as suitable host plants for oviposition. The oögenesis–flight syndrome hypothesis predicts that physiological constraints caused by an overlap in the resources used by thoracic muscles during flight and during oögenesis (e.g. carbohydrates, lipids and water) result in a resource trade‐off, with any resources used during flight no longer available for reproduction. Increased flight costs could therefore potentially result in a decrease in maternal provisioning of eggs. In the present study, the speckled wood butterfly Pararge aegeria (L.) is used to investigate whether increased flight during oviposition results in changes in maternal investment in eggs and whether this contributes to variation in the development of offspring in subsequent life stages. Forcing females to fly during oviposition directly influences egg size and embryonic development time, and indirectly influences (through changes in egg size) egg hatching success and larval development time. These effects are mediated through ‘selfish maternal effects’, with mothers forced to fly maximizing their fecundity at the expense of investment to individual egg size. The present study demonstrates that a change in maternal provisioning as a result of increased flight during oviposition has the potential to exert nongenetic cross‐generational fitness effects in P. aegeria. This could have important consequences for population dynamics, particularly in fragmented anthropogenic landscapes.  相似文献   

3.
Abstract.
  • 1 The effects of climate and body size on male behaviour were examined in the solitary bee Anthophora plumipes (Hymenoptera: Anthophoridae), which shows resource-based polygyny at floral food sources in Britain in spring.
  • 2 Larger males are able to fly at lower temperatures than smaller males, and can therefore court females under conditions in which smaller males cannot fly. This is predicted from patterns of endothermic ability at low temperatures already demonstrated within this species.
  • 3 Video analysis of male competition for opportunities to initiate courtship with tethered females showed that larger males are also competitively superior, and can displace smaller males from favoured flight positions immediately behind females.
  • 4 The mating system shown by male A plumipes is strongly dependent on male density. At low densities, males show exclusive territoriality at floral sources. As male density increases, this strategy is abandoned in favour of patrolling with considerable spatial overlap between males, and opportunistic Polygyny.
  • 5 Despite high endothermic abilities, male behaviour is highly dependent on weather, and particularly ambient temperature. Males bask in the early morning and maintain high thoracic temperatures. Temperature data from freshly killed bees show that thoracic warming from solar sources effectively doubles the thermogenic power generated by the bee alone at low ambient temperatures.
  • 6 Male strategies in A.plumipes are compared to female responses to climate. Having controlled for differences in body size there is no difference in endothermic abilities between the sexes. Males do not, however, fly under conditions in which females of the same size would remain active. These results are discussed in the light of differential dependence of reproductive success on flight activity for the two sexes.
  相似文献   

4.
1. The thermoregulatory capabilities of 18 species of Alaskan bees spanning nearly two orders of magnitude of body mass were measured. Thoracic temperature, measured across the temperature range at which each species forages, was regressed against operative (environmental) temperature to determine bees' abilities to maintain relatively constant thoracic temperatures across a range of operative temperatures (thermoregulatory performance).
2. Previous studies on insect thermoregulation have compared thoracic temperature with ambient air temperature. Operative temperature, which integrates air temperature, solar radiation and effects of wind, was estimated by measuring the temperature of a fresh, dead bee in the field environment. It is suggested that this is a more accurate measure of the thermal environment experienced by the insect and also allows direct comparisons of insects under different microclimate conditions, such as in sun and shade.
3. Simple regression analysis of species and family means, and analysis of phylogenetically based independent contrasts showed thermoregulatory capability, ability to elevate thoracic temperature, and minimum thoracic temperature necessary for initiating flight all increased with body size.
4. Bumble-bees were better thermoregulators than solitary bees primarily as a consequence of their larger body size. However, their thermoregulatory abilities were slightly, but significantly, better than predicted from body size alone, suggesting an added role of pelage and/or physiology. Large solitary bees were better thermoregulators than small solitary bees apparently as a result of body-size differences, with small bees acting as thermal conformers.  相似文献   

5.
6.
Body temperatures during free flight in the field, warm-up rates during pre-flight warm-up, and temperatures during tethered flight are measured for four tropical solitary bee species at three sites of differing altitude in Papua New Guinea. All four species are capable of endothermic preflight warm-up; three species give slopes of thoracic temperature on ambient temperature of significantly less than 1, indicating regulation of thoracic temperature. In the kleptoparasitic Coelioxys spp. (Megachilidae) and Thyreus quadrimaculatus (Anthophoridae), warm-up rates and thoracic temperatures in flight are low by comparison with the two provisioning species Creightonella frontalis (Megachilidae) and Amegilla sapiens (Anthophoridae). In both C. frontalis and A. sapiens thoracic temperatures correlate positively and significantly with both ambient temperature and body mass. In A. sapiens, body mass increases with altitude; this can be interpreted as a response to lower ambient temperatures at higher altitude, an example of Bergmann's rule. In both A. sapiens and C. frontalis populations at higher altitude have higher thoracic temperatures independent of differences of body mass, suggestive of additional morphological or physiological adaptation to lower ambient temperatures. In A. sapiens there is no qualitative difference in body temperatures between males and females after controlling for body mass, while male C. frontalis have significantly lower thoracic temperatures than females of the species. This difference between A. sapiens and C. frontalis is discussed with reference to variation in mating systems found in the Apoidea.Abbreviations C.R.I. Christensen Research Institute - P.N.G. Papua New Guinea - SFT stable flight temperature - T a ambient air temperature - T ab abdominal temperature - T dif the temperature difference between thorax and abdomen - T ex thoracic temperature excess - VFT voluntary flight temperature  相似文献   

7.
Anders Forsman 《Oecologia》2001,129(3):357-366
Theory posits that reproduction carries a cost in terms either of future fecundity, growth or survival. Different life history strategies may evolve in response to different external sources of mortality. In ectothermic organisms, such as insects and reptiles, reproductive characteristics may also vary due to effects of differences in body temperature on activity and physiological performance. In this study, female pygmy grasshoppers [Tetrix subulata (L.) Orthoptera: Tetrigidae] belonging to four different colour morphs were maintained under two different temperatures, and data on reproductive life history traits were used to test for costs of reproduction, plasticity of reproductive characteristics in response to temperature and variation among colour morphs in reproductive strategies. The results revealed that average clutch size decreased progressively from the first to third clutch, and that females producing relatively large clutches displayed a greater reduction (in both absolute and relative terms) in the number of eggs to the following clutch, as expected from the hypothesis that present reproduction negatively affects future fecundity. Great expenditure on present reproduction also negatively influenced the time to next clutch:the decrease in mean clutch size with clutch number was associated with a reduction in inter-clutch interval, and clutch interval increased with clutch size across individuals within colour morphs. Females maintained in a warm environment were more likely to oviposit, laid their first clutch earlier, produced more clutches and had shorter intervals between sequential clutchesthan females in a cold environment, suggesting that differences in body temperature may contribute to variation in reproductive performance within and among natural populations. A comparison among colour morphs maintained under identical conditions suggested that females belonging to certain morphs produce relatively large clutches at the expense of fewer clutches per unit time. However, experimental data revealed no difference in relative fat content between dark and pale individuals maintained either in sun-exposed outdoor enclosures (where they were unable to increase their body temperature by basking) or in shaded enclosures. This suggest that the divergence in life history strategies among colour morphs may reflect a response to morph-specific differences in adult survival imposed by visually searching predators, rather than being due to the effects of differences in body temperature.  相似文献   

8.
The thermal environment can induce substantial variation in important life-history traits. Experimental manipulation of the thermal environment can help researchers determine the contribution of this factor to phenotypic variation in life-history traits. During the reproductive season, we kept female northern grass lizards, Takydromus septentrionalis (Lacertidae), in three temperature-controlled rooms (25, 28 and 32 °C) to measure the effect of the maternal thermal environment on reproductive traits. Maternal thermal environment remarkably affected reproductive frequency and thereby seasonal reproductive output, but had little effect on reproductive traits per clutch or hatchling traits. Females kept at 32 °C produced more clutches and thus had shorter clutch intervals than females from 28 to 25 °C. Clutch size, clutch mass, relative clutch mass, egg size and hatchling traits did not vary among the three treatments. The eggs produced by the females were incubated at 27 °C and the traits of hatchlings were measured. The result that egg (offspring) size was independent of maternal thermal environments is consistent with the prediction of the optimal egg size (offspring) theory. The eggs produced by low temperature females (28 and 25 °C) took longer time to complete their post-oviposition development than did eggs produced by high temperature females (32 °C). This suggests that the eggs from low temperatures might have been laid when the embryos were at relatively early stages. Therefore, maternal thermal environment prior to oviposition could affect post-oviposition development in T. septentrionalis.  相似文献   

9.
The climate‐sensitive butterfly Euphydryas editha exhibited interpopulation variation in both phenology and egg placement, exposing individuals to diverse thermal environments. We measured ‘eggspace’ temperatures adjacent to natural egg clutches in populations distributed across a range of latitudes (36°8′–44°6′) and altitudes (213–3171 m). Eggs laid > 50 cm above the ground averaged 3.1°C cooler than ambient air at 1 m height, while eggs at < 1 cm height averaged 15.5°C hotter than ambient, ranging up to 47°C. Because of differences in egg height, eggs at 3171 m elevation and 20.6°C ambient air experienced mean eggspace temperatures 7°C hotter than those at 213 m elevation and ambient 33.3°C. Experimental eggs survived for one hour at 45°C but were killed by 48°C. Eggs laid low, by positively geotactic butterflies, risked thermal stress. However, at populations where eggs were laid lowest, higher oviposition would have incurred incidental predation from grazers. Interpopulation variation in phenology influenced thermal environment and buffered exposure to thermal stress. At sites with hotter July temperatures, the single annual flight/oviposition period was advanced such that eggs were laid on earlier dates, with cooler ambient temperatures. The insects possessed two mechanisms for advancing egg phenology; they could advance timing of larval diapause‐breaking and/or shorten the life cycle by becoming smaller adults. Mean weight of newly‐eclosed females varied among populations from 92 to 285 mg, suggesting that variable adult size did influence phenology. Possible options for in situ mitigation of thermal stress include further advancing phenology and raising egg height. We argue that these options exist, as evidenced by current variation in these traits and by failure of E. editha to conform to restrictive biogeographic constraints, such as the expectation that populations at equatorial and poleward range limits be confined to higher and lower elevations, respectively. This optimistic example shows how complex local adaptation can generate resilience to climate warming.  相似文献   

10.
Berwaerts K  Van Dyck H 《Oecologia》2004,141(3):536-545
Realized fitness in a fluctuating environment depends on the capacity of an ectothermic organism to function at different temperatures. Flying heliotherms like butterflies use flight for almost all activities like mate location, foraging and host plant searching and oviposition. Several studies tested the importance of ambient temperature, thermoregulation and butterfly activity. Here, we test the influence of variation in flight morphology in interaction with differences in body temperature on locomotor performance, which has not been thoroughly examined so far. Take-off free flight performance was tested at two different body temperatures in males and females of the speckled wood butterfly Pararge aegeria. We found that both males and females accelerated faster at the optimal body temperature compared to the suboptimal one. The multivariate analyses showed significant sex-specific contributions of flight morphology, body temperature treatment and feeding load to explain variation in acceleration performance. Female and male butterflies with a large relative thorax (i.e. flight muscle investment) mass and large, slender wings (i.e. aspect ratio) accelerated fast at optimal temperature. However, high aspect ratio individuals accelerated slowly at suboptimal temperature. Females of low body mass accelerated fast at optimal, but slowly at suboptimal body temperature. In males, there was an interaction effect between body and relative thorax mass: light males with high relative thorax mass had higher performance than males with a low relative thorax mass. In addition, relative distance to the centre of forewing area was positively related to acceleration at both temperatures in males. Males and females with higher feeding loads had lower levels of acceleration. Finally, males that were able to accelerate fast under both temperatures, had a highly significantly heavier relative thorax, lower body and abdomen mass. More generally, this study shows that the significance of butterfly flight morphology in terms of flight performance is at least partially dependent on body temperature.  相似文献   

11.
Organisms living in temporary and shallow wetlands are adapted to survive in very fluctuating and unpredictable conditions and might help us to understand life cycle strategies and plasticity in the context of global warming. Despite the importance of Arctodiaptomus salinus in these systems, little is known about the effect of temperature on its population dynamics. Through an individual-based experimental protocol, we studied the effect of this factor and food on its reproduction. This approach has revealed a large range of variability in reproductive parameters in all the experimental conditions. Temperature positively affected egg production and negatively longevity, but did not affect clutch size. Under unsuitable food conditions, the clutch size decreased and the inter-clutch period increased, and when the food conditions improved, the number of eggs increased gradually in every clutch. Eggs from the same clutch hatched synchronously. In contrast, there were significant differences between the hatching times of clutches from different females and between those of the same female. The observed individual variability increased when temperature moved away from the medium values. The thermal tolerance threshold for A. salinus development might be around 25–29°C. Since water pond is close to this thermal limit for long periods of time, an increment of temperature because of global warming might have dramatic consequences on this population. The individual-based experimental approach of this study provides useful information to construct realistic individual-based models, which will help us to better understand the population-level consequences of individual variability in A. salinus reproduction.  相似文献   

12.
Summary Monarch butterflies, Danaus plexippus (L.), display a warm-up behavior characterized by wingstrokes of small amplitude. Thoracic temperature during this shivering and during fixed flight was measured by means of a smallbead thermistor inserted into the thorax. At ambient temperatures of 15–16°C, once shivering is initiated the thoracic temperature rises at a maximum rate of 1.3°C/min, and a thoracic temperature 4.0°C greater then ambient is produced (Table 1). Fixed flight at these low ambient temperatures results in a similar rate of increase in thoracic temperature, and a similar temperature excess is produced (Fig. 3). At ambient temperatures between 22 and 35°C the thoracic temperature of an animal starting to fly rises at a faster rate, 3.6°C/min, and reaches a greater excess, 7.9°C (Fig. 4). The wingbeat frequency of animals in fixed flight increases with increasing thoracic temperature (Fig. 2). In the absence of direct solar radiation, shivering typically occurs prior to flight at low ambient temperatures (13–17°C), and the resulting increase in thoracic temperature allows monarch butterflies to fly at these cool temperatures.I thank Miss Janice Ruppert and Mr. C. J. Doughty for their valuable technical assistance. The co-operation of the administrators of New Brighton Beach State Park in permitting me to collect in the park is appreciated. Financial support for this study was provided in part by a faculty research grant from the University of California.  相似文献   

13.
T. Mathies  R. M. Andrews 《Oecologia》1995,104(1):101-111
Viviparity in squamate reptiles is presumed to evolve in cold climates by selection for increasingly longer periods of egg retention. Longer periods of egg retention may require modifications to other reproductive features associated with the evolution of viviparity, including a reduction in eggshell thickness and clutch size. Field studies on the thermal and reproductive biology of high (HE) and low (LE) elevation populations of the oviparous lizard, Sceloporus scalaris, support these expectations. Both day and night-time temperatures at the HE site were considerably cooler than at the LE site, and the activity period was 2 h shorter at the HE than at the LE site. The median body temperature of active HE females was 2°C lower than that of LE females. HE females initiated reproduction earlier in the spring than LE females, apparently in order to compensate for relatively low temperatures during gestation. HE females retained eggs for about 20 days longer than LE females, which was reflected by differences in the degree of embryonic development at the time of oviposition (stages 35.5–37.0 versus stages 31.0–33.5, respectively). These results support the hypotheses that evolution of viviparity is a gradual process, and is favored in cold climates. Females in the HE population exhibited other traits consistent with presumed intermediate stages in the evolution of viviparity; mean eggshell thickness of HE eggs (19.3 m) was significantly thinner than that of LE eggs (26.6 m) and the size-adjusted clutch sizes of HE females (9.4) were smaller than those of LE females (11.2).  相似文献   

14.
Eight females and eight males participated each in 4 comfort experiments on 4 different days. Two experiments took place in the morning and two in the evening. In each experiment (21/2 hours) the preferred ambient temperature was determined for each subject by adjusting the ambient temperature according to his wishes. The subjects were sedentary. Skin temperatures, rectal temperature and evaporative weight loss were measured. Although the rectal temperature and the mean skin temperature were slightly higher in the evening than in the morning the subjects did not prefer an ambient temperature which was different from that in the morning. This indicates that the same thermal comfort conditions can be used from morning to evening.  相似文献   

15.
The preference–performance hypothesis predicts that when female herbivorous insects determine where to position offspring of low mobility, they will select sites that maximize development and survival of those offspring. How this critical relationship responds to variation in climatic and habitat conditions remains untested, however, despite its important consequences for population and evolutionary dynamics. Here we report on 13 years of data totaling 1348 egg clusters of the montane Gillette's checkerspot butterfly Euphydryas gillettii (Lepidoptera: Nymphalidae). We used these data to test the hypothesis that, in environments with climatic and habitat heterogeneity, the oviposition behavior–offspring performance relationship should vary in both space and time. Orientation of egg clusters for maximum morning sun exposure is known to affect developmental rate. We therefore predicted female preference for morning sun orientation to be variable and a function of climatic and habitat conditions. We found that preference for egg cluster orientation on the leaf tracked the phenology of the start of the female flight season but that seasonal temperatures drove most of the variation in egg cluster development time. The relationship between behavior and performance was also dependent upon the climatic effects on survival; sun‐oriented egg clusters had higher survivorship in the coldest year of the four years for which measurements were made. We also examined how conifer cover affected larval survival and female oviposition behavior in one year. Females selected oviposition sites in more open habitat. However, when egg clusters were oriented to intercept morning sun, conifer cover increased survivorship to diapause. Finally, we found that predator activity was lower for morning sun‐oriented egg clusters suggesting that predation patterns may further influence habitat selection for oviposition. This study exemplifies how the relationship between oviposition behavior and offspring performance is context‐dependent: habitat and climate interact to determine preference–performance outcomes.  相似文献   

16.
Flight is essential for foraging, mate searching and dispersal in many insects, but flight metabolism in ectotherms is strongly constrained by temperature. Thermal conditions vary greatly in natural populations and may hence restrict fitness-related activities. Working on the Glanville fritillary butterfly (Melitaea cinxia), we studied the effects of temperature experienced during the first 2 days of adult life on flight metabolism, genetic associations between flight metabolic rate and variation in candidate metabolic genes, and genotype–temperature interactions. The maximal flight performance was reduced by 17% by 2 days of low ambient temperature (15 °C) prior to the flight trial, mimicking conditions that butterflies commonly encounter in nature. A SNP in phosphoglucose isomerase (Pgi) had a significant association on flight metabolic rate in males and a SNP in triosephosphate isomerase (Tpi) was significantly associated with flight metabolic rate in females. In the Pgi SNP, AC heterozygotes had higher flight metabolic rate than AA homozygotes following low preceding temperature, but the trend was reversed following high preceding temperature, consistent with previous results on genotype–temperature interaction for this SNP. We suggest that these results on 2-day old butterflies reflect thermal effect on the maturation of flight muscles. These results highlight the consequences of variation in thermal conditions on the time scale of days, and they contribute to a better understanding of the complex dynamics of flight metabolism and flight-related activities under conditions that are relevant for natural populations living under variable thermal conditions.  相似文献   

17.
Organisms and parts of an organism like eggs or individual cells developing in colder environments tend to grow bigger. A unifying explanation for this Bergmann's rule extended to ectotherms has not been found, and whether this is an adaptive response or a physiological constraint is debated. The dependence of egg and clutch size on the mother's temperature environment were investigated in the yellow dung fly Scathophaga stercoraria. Smaller eggs were laid at warmer temperatures in the field and the laboratory, where possible confounding variables were controlled for. As clutch size at the same time was unaffected by temperature, this effect was not due to a trade-off between egg size and number. Temperature-dependent egg sizes even persisted within individuals: when females were transferred to a cooler (warmer) environment, they laid third-clutch eggs that were larger (smaller) than their first-clutch eggs. The fitness consequences of these temperature-mediated egg sizes were further investigated in two laboratory experiments. Neither egg and pre-adult survivorship nor larval growth rate were maximized, nor was development time minimized, at the ambient temperature corresponding to the mother's temperature environment. This does not support the beneficial acclimation hypothesis. Instead, this study yielded some, but by no means conclusive indications of best performance by offspring from eggs laid at intermediate temperatures, weakly supporting the optimal temperature hypothesis. In one experiment the smaller eggs laid at 24 °C had reduced survivorship at all ambient temperatures tested. Smaller eggs thus generally performed poorly. The most parsimonious interpretation of these results is that temperature-mediated variation in egg size is a maternal physiological response (perhaps even a constraint) of unclear adaptive value. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

18.
Although the temperature‐size rule, that is, an increase in egg (and body) size at lower temperatures, applies almost universally to ectotherms, the developmental mechanisms underlying this consistent pattern of phenotypic plasticity are hitherto unknown. By investigating ovarian dynamics and reproductive output in the tropical butterfly Bicyclus anynana (Butler) (Lepidoptera: Nymphalidae: Satyrinae) in relation to oviposition temperature and mating status, we tested the relevance of several competing hypotheses for temperature‐mediated variation in egg size and number. As expected, females ovipositing at a lower temperature laid fewer but larger eggs than those ovipositing at a higher temperature. Despite pronounced differences in egg‐laying rates, oocyte numbers were equal across temperatures at any given time, while oocyte size increased at the lower temperature. In contrast, there were greatly reduced oocyte numbers in mated compared to virgin females. Our results indicated that temperature‐mediated plasticity in egg size cannot be explained by reduced costs of somatic maintenance at lower temperatures, enabling the allocation of more resources to reproduction (reproductive investment was higher at the higher temperature). Furthermore, there was no indication for delayed oviposition (no accumulation of oocytes at the lower temperature, in contrast to virgin females). Rather, low temperatures greatly reduced the oocyte production (i.e., differentiation) rate and prolonged egg‐maturation time, causing low egg‐laying rates. Our data thus suggested that oocyte growth is less sensitive to temperature than oocyte production, resulting in a lower number of larger eggs at lower temperatures.  相似文献   

19.
The effect of constant and alternating temperatures on the life-history of Diglyphus isaea, as an ectoparasitoid of Liriomyza leafminers on tomato plants, was examined in the laboratory.
Parasitoid development and size were significantly affected by temperature and sex. Males showed a shorter development time and pupal size than female parasitoids. Both development time and pupil size in D. isaea differed according to the host species. Pupal size showed no consistent relationship with temperature. The lower thermal threshold for development and oviposition was determined. Fecundity with L. byroniae as host did not differ significantly between temperature regimes. Furthermore, larger females did not produce larger numbers of offspring. Development and reproduction under the alternating temperature regime did not differ from those at the comparable constant temperature, suggesting a rapid response to changes in temperature.
The intrinsic rate of increase (rm) and net reproduction (Ro) of D. isaea nearly doubled from 15°C to 25°C and 20°C, respectively, and generation time at 25°C was less than half that at 15°C. Because the parasitoid's population growth is higher than that of these pest insects at all temperatures, D. isaea is a promising candidate for seasonal inoculative biological control of Liriomyza on tomato crops in Scandinavian and western European glasshouses. Possible constraints to its effectiveness are discussed.  相似文献   

20.
Hosts represent a limited resource for the developing offspring of parasitic insects laying eggs in or on spatially discrete resources like fruits, seeds, or other insects. The quality of hosts differs with respect to the value and amount of resources they provide for the feeding larvae. Accordingly, the size of a clutch of eggs laid on a given host should be a function of host quality, because severe competition between developing larvae can lead to increased mortality and/or decreased size of the offspring, both causing a fitness loss for the offspring and the mother. Therefore, females should be selected for the ability to estimate host quality and to adjust their clutch size accordingly. Using the parasitic wasp Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae) this study investigated the respective contribution of developmental mortality of offspring vs. the clutch size decision of the mother as a determinant of final offspring emergence per host. In addition, taking offspring size into account, the study examined the fitness consequences of female oviposition decisions. Developmental mortality was very low in all quality classes of hosts except previously frozen and thus dead host pupae. Females laid reduced clutch sizes on dead, previously parasitized, and smaller hosts. In contrast to offspring number, offspring size did not differ between host qualities. We conclude that females are able to sense the quality of a host and adjust the number of eggs they lay to mitigate larval competition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号