共查询到20条相似文献,搜索用时 15 毫秒
1.
Lin HH Chang GW Davies JQ Stacey M Harris J Gordon S 《The Journal of biological chemistry》2004,279(30):31823-31832
Post-translational cleavage at the G protein-coupled receptor proteolytic site (GPS) has been demonstrated in many class B2 G protein-coupled receptors as well as other cell surface proteins such as polycystin-1. However, the mechanism of the GPS proteolysis has never been elucidated. Here we have characterized the cleavage of the human EMR2 receptor and identified the molecular mechanism of the proteolytic process at the GPS. Proteolysis at the highly conserved His-Leu downward arrow Ser(518) cleavage site can occur inside the endoplasmic reticulum compartment, resulting in two protein subunits that associate noncovalently as a heterodimer. Site-directed mutagenesis of the P(+1) cleavage site (Ser(518)) shows an absolute requirement of a Ser, Thr, or Cys residue for efficient proteolysis. Substitution of the P(-2) His residue to other amino acids produces slow processing precursor proteins, which spontaneously hydrolyze in a defined cell-free system. Further biochemical characterization indicates that the GPS proteolysis is mediated by an autocatalytic intramolecular reaction similar to that employed by the N-terminal nucleophile hydrolases, which are known to activate themselves by self-catalyzed cis-proteolysis. We propose here that the autoproteolytic cleavage of EMR2 represents a paradigm for the other GPS motif-containing proteins and suggest that these GPS proteins belong to a cell surface receptor subfamily of N-terminal nucleophile hydrolases. 相似文献
2.
Drosophila topoisomerase II double-strand DNA cleavage: analysis of DNA sequence homology at the cleavage site. 总被引:28,自引:16,他引:28
下载免费PDF全文

In order to study the sequence specificity of double-strand DNA cleavage by Drosophila topoisomerase II, we have mapped and sequenced 16 strong and 47 weak cleavage sites in the recombinant plasmid p pi 25.1. Analysis of the nucleotide and dinucleotide frequencies in the region near the site of phosphodiester bond breakage revealed a nonrandom distribution. The nucleotide frequencies observed would occur by chance with a probability less than 0.05. The consensus sequence we derived is 5'GT.A/TAY decrease ATT.AT..G 3', where a dot means no preferred nucleotide, Y is for pyrimidine, and the arrow shows the point of bond cleavage. On average, strong sites match the consensus better than weak sites. 相似文献
3.
Previous studies using selectively modified pro-ocytocin/neurophysin substrate analogues and the purified metalloprotease, pro-ocytocin/neurophysin convertase (magnolysin; EC 3.4 24.62), have shown that dibasic cleavage site processing is associated with a prohormone sequence organized in a beta-turn structure. We have used various peptide analogues of the pro-ocytocin-neurophysin processing domain, and recombinant prohormone convertase 1/3, to test the validity of this property towards this member of the family of prohormone convertases (PCs). The enzymatic cleavage analysis and kinetics showed that: (a) with methyl amide (N-Met) modification, a secondary structure beta-turn breaker, the enzyme substrate interaction was abolished; (b) cleavage was favoured when the dibasic substrate side-chains were oriented in opposite directions; (c) the amino acid present at the P'1 position is important in the enzyme-substrate interaction; (d) the flexibility of the peptide substrate is necessary for the interaction; (e) Addition of dimethylsulfoxide to the cleavage assay favoured the cleavage of the pro-ocytocin/neurophysin large substrate over that of the smaller one pGlu-Arg-Thr-Lys-Arg-methyl coumarin amide. These data allowed us to conclude that proteolytic processing of pro-ocytocin-related peptide substrates by PC1/3 as well as by the metalloenzyme, magnolysin, involves selective recognition of precise cleavage site local secondary structure by the processing enzyme. It is hypothesized that this may represent a general property of peptide precursor proteolytic processing systems. 相似文献
4.
Polycystin (PC)1 and PC2 are membrane proteins implicated in autosomal dominant polycystic kidney disease. A physiologically relevant cleavage at PC1's G protein-coupled receptor proteolytic site (GPS) occurs early in the secretory pathway. Our results suggest that PC2 increases both PC1 GPS cleavage and PC1's appearance at the plasma membrane. Mutations that prevent PC1's GPS cleavage prevent its plasma membrane localization. PC2 is a member of the trp family of cation channels and is an important PC1 binding partner. The effect of PC2 on PC1 localization is independent of PC2 channel activity, as tested using channel-inhibiting PC2 mutations. PC1 and PC2 can interact through their C-terminal tails, but removing the C-terminal tail of either protein has no effect on PC1 surface localization in human embryonic kidney 293 cells. Experiments in polarized LLC-PK cells show that apical and ciliary PC1 localization requires PC2 and that this delivery is sensitive to PC2 truncation. In sum, our work shows that PC2 expression is required for the movement of PC1 to the plasma and ciliary membranes. In fibroblast cells this localization effect is independent of PC2's channel activity or PC1 binding ability but involves a stimulation of PC1's GPS cleavage before the PC1 protein's surface delivery. 相似文献
5.
Cleavage of Ig-Hepta at a "SEA" module and at a conserved G protein-coupled receptor proteolytic site 总被引:4,自引:0,他引:4
Ig-Hepta is a member of a new subfamily of the heptahelical receptors and has an unusually long N terminus extending toward the extracellular side of the plasma membrane. Pulse-chase experiments in 293T cells using antisera specifically recognizing its N- and C-terminal regions demonstrated that Ig-Hepta is core-glycosylated cotranslationally and proteolytically processed into a two-chain form in the endoplasmic reticulum, followed by maturation of oligosaccharide chains and dimerization. The cleavage occurs at two highly conserved sites: one in a "SEA" module (a module first identified in sperm protein, enterokinase, and agrin) near the N terminus and the other in the stalk region preceding the first transmembrane span, generating approximately 20-, 130-, and 32-kDa fragments. The latter two remain tightly associated non-covalently even after cleavage as revealed by immunoprecipitation of native and myc-tagged Ig-Hepta constructs that were transiently expressed in 293T cells. The dimer consisting of four chains, (130 kDa + 32 kDa)(2), is linked by disulfide bonds. A fusion protein of the extracellular domain of Ig-Hepta and the Fc domain of immunoglobulin was found to be a good substrate of the processing enzymes and used for determining the exact cleavage sites in the SEA module and juxtamembrane stalk region. 相似文献
6.
Drosophila acetylcholinesterase: demonstration of a glycoinositol phospholipid anchor and an endogenous proteolytic cleavage 总被引:1,自引:0,他引:1
The presence of a glycoinositol phospholipid anchor in Drosophila acetylcholinesterase (AChE) was shown by several criteria. Chemical analysis of highly purified Drosophila AChE demonstrated approximately one residue of inositol per enzyme subunit. Selective cleavage by Staphylococcus aureus phosphatidylinositol-specific phospholipase C (PI-PLC) was tested with Drosophila AChE radiolabeled by the photoactivatable affinity probe 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine [( 125I]TID), a reagent that specifically labels the lipid moiety of glycoinositol phospholipid-anchored proteins. Digestion with PI-PLC released 75% of this radiolabel from the protein. Gel electrophoresis of Drosophila AChE in sodium dodecyl sulfate indicated prominent 55- and 16-kDa bands and a faint 70-kDa band. The [125I]TID label was localized on the 55-kDa fragment, suggesting that this fragment is the C-terminal portion of the protein. In support of this conclusion, a sensitive microsequencing procedure that involved manual Edman degradation combined with radiomethylation was used to determine residues 2-5 of the 16-kDa fragment. Comparison with the Drosophila AChE cDNA sequence [Hall, L.M.C., & Spierer, P. (1986) EMBO J. 5, 2949-2954] confirmed that the 16-kDa fragment includes the N-terminus of AChE. Furthermore, the position of the N-terminal amino acid of the mature Drosophila AChE is closely homologous to that of Torpedo AChE. The presence of radiomethylatable ethanolamine in both 16- and 55-kDa fragments was also confirmed. Thus, Drosophila AChE may include a second posttranslational modification involving ethanolamine. 相似文献
7.
A short interdomain sequence between the N- and C-terminal domains of beta-conglycinin, the major 7S seed storage protein of soybean, was selected as a target for insertion of amino acid residues specifically cleaved by an asparaginyl endopeptidase that processes globulins into acidic and basic chains. Modified beta-conglycinin subunits containing the proteolytic cleavage site self-assembled into trimers in vitro at an efficiency similar to that of the unmodified subunit. In contrast to the absence of cleavage of the unmodified subunits, however, the modified beta-conglycinin trimers were processed by purified soybean asparaginyl endopeptidase into two polypeptides, each the size expected for the beta-conglycinin N- and C-terminal domains, respectively. The cleavage did not alter the assembly of mutant beta-conglycinins and the cleaved mutant trimers remained stable to further proteolytic attack. To examine the possibility of coassembly between the cleaved 11S and 7S subunits, in vitro processed mutant beta-conglycinin subunits were mixed with native dissociated 11S globulin preparations. Reassembly at a high ionic condition did not induce the 7S subunits to interact with 11S subunits to form hexameric complexes. Thus, cleavage of 7S globulin subunits into acidic and basic domains may not be sufficient for hexamer assembly to occur. Biotechnological implications of the engineered proteins are discussed. 相似文献
8.
Detailed analysis of base preferences at the cleavage site of a trans-acting HDV ribozyme: a mutation that changes cleavage site specificity.
下载免费PDF全文

In our previous attempt at in vitro selection of a trans - acting human hepatitis delta virus (HDV) ribozyme, we found that one of the variants, G10-68-725G, cleaved a 13 nt substrate, HDVS1, at two sites [Nishikawa,F., Kawakami,J., Chiba,A., Shirai,M., Kumar,P.K.R. and Nishikawa,S. (1996) Eur. J. Biochem., 237, 712-718]. One site was the normal cleavage site and the other site was shifted 1 nt toward the 3'-end. To clarify the interactions between nucleotides around the cleavage site of the trans -acting HDV ribozyme, we analyzed the efficiency of the reaction for every possible base pair between the substrate and the ribozyme at positions -1 (-1N:726N) and +1 (+1N:725N) relative to the cleavage site using the genomic HDV ribozyme, TdS4(Xho), and derivatives of the most active variant, G10-68. These mutagenesis analyses revealed that the +1 base of the substrate affects the structure of the catalytic core in the complex with G10-68-725G, substrate and divalent metal ions, and it shifts the cleavage site. In a comparison with other variants of the trans -acting HDV ribozyme, we found that this cleavage site shift occurred only with G10-68-725G. 相似文献
9.
The Alzheimer's disease-associated presenilin (PS) 1 is intimately involved in gamma-secretase cleavage of beta-amyloid precursor protein and other proteins. In addition, PS1 plays a role in beta-catenin signaling and in the regulation of apoptosis. Here we demonstrate that phosphorylation of PS1 is regulated by two independent signaling pathways involving protein kinase (PK) A and PKC and that both kinases can directly phosphorylate the large hydrophilic domain of PS1 in vitro and in cultured cells. A phosphorylation site at serine residue 346 was identified that is selectively phosphorylated by PKC but not by PKA. This site is localized within a recognition motif for caspases, and phosphorylation strongly inhibits proteolytic processing of PS1 by caspase activity during apoptosis. Moreover, PS1 phosphorylation reduces the progression of apoptosis. Our data indicate that phosphorylation/dephosphorylation at the caspase recognition site provides a mechanism to reversibly regulate properties of PS1 in apoptosis. 相似文献
10.
Disruption of the MAP1B-related protein FUTSCH leads to changes in the neuronal cytoskeleton, axonal transport defects, and progressive neurodegeneration in Drosophila
下载免费PDF全文

Bettencourt da Cruz A Schwärzel M Schulze S Niyyati M Heisenberg M Kretzschmar D 《Molecular biology of the cell》2005,16(5):2433-2442
The elaboration of neuronal axons and dendrites is dependent on a functional cytoskeleton. Cytoskeletal components have been shown to play a major role in the maintenance of the nervous system through adulthood, and changes in neurofilaments and microtubule-associated proteins (MAPs) have been linked to a variety of neurodegenerative diseases. Here we show that Futsch, the fly homolog of MAP1B, is involved in progressive neurodegeneration. Although Futsch is widely expressed throughout the CNS, degeneration in futsch(olk) primarily occurs in the olfactory system and mushroom bodies. Consistent with the predicted function of Futsch, we find abnormalities in the microtubule network and defects in axonal transport. Degeneration in the adult brain is preceded by learning deficits, revealing a neuronal dysfunction before detectable levels of cell death. Futsch is negatively regulated by the Drosophila Fragile X mental retardation gene, and a mutation in this gene delays the onset of neurodegeneration in futsch(olk). A similar effect is obtained by expression of either fly or bovine tau, suggesting a certain degree of functional redundancy of MAPs. The futsch(olk) mutants exhibit several characteristics of human neurodegenerative diseases, providing an opportunity to study the role of MAPs in progressive neurodegeneration within an experimentally accessible, in vivo model system. 相似文献
11.
Determinants of Escherichia coli RNase P cleavage site selection: a detailed in vitro and in vivo analysis. 总被引:5,自引:1,他引:5
下载免费PDF全文

The location of the Escherichia coli RNase P cleavage site was studied both in vitro and in vivo. We show that selection of the cleavage site is dependent on the nucleotide at the cleavage site and the length of the acceptor-stem. Within the acceptor-stem the number of nucleotides on the 5'-half of the acceptor-stem appears to be the important determinant, rather than the number of base pairs in the acceptor-stem. We also demonstrate that the length of the T-stem and a G to C substitution at position 57 in the tRNA(Tyr)Su3 precursor influence the location of the cleavage site under certain conditions. With respect to the function of the subunits of RNase P our data suggest that the nucleotide at position 333 in M1 RNA, and the C5 protein, are important for the identification of the cleavage site. 相似文献
12.
Enik? Takács Gergely Nagy Ibolya Leveles Anna Lopata Beáta G. Vértessy 《FEBS letters》2010,584(14):3047-3054
dUTP pyrophosphatases (dUTPases) are essential for genome integrity. Recent results allowed characterization of the role of conserved residues. Here we analyzed the Asp/Asn mutation within conserved Motif I of human and mycobacterial dUTPases, wherein the Asp residue was previously implicated in Mg2+-coordination. Our results on transient/steady-state kinetics, ligand binding and a 1.80 Å resolution structure of the mutant mycobacterial enzyme, in comparison with wild type and C-terminally truncated structures, argue that this residue has a major role in providing intra- and intersubunit contacts, but is not essential for Mg2+ accommodation. We conclude that in addition to the role of conserved motifs in substrate accommodation, direct subunit interaction between protein atoms of active site residues from different conserved motifs are crucial for enzyme function. 相似文献
13.
Novel selenoproteins identified in silico and in vivo by using a conserved RNA structural motif 总被引:14,自引:0,他引:14
Selenocysteine is incorporated into selenoproteins by an in-frame UGA codon whose readthrough requires the selenocysteine insertion sequence (SECIS), a conserved hairpin in the 3'-untranslated region of eukaryotic selenoprotein mRNAs. To identify new selenoproteins, we developed a strategy that obviates the need for prior amino acid sequence information. A computational screen was used to scan nucleotide sequence data bases for sequences presenting a potential SECIS secondary structure. The computer-selected hairpins were then assayed in vivo for their functional capacities, and the cDNAs corresponding to the SECIS winners were identified. Four of them encoded novel selenoproteins as confirmed by in vivo experiments. Among these, SelZf1 and SelZf2 share a common domain with mitochondrial thioredoxin reductase-2. The three proteins, however, possess distinct N-terminal domains. We found that another protein, SelX, displays sequence similarity to a protein involved in bacterial pilus formation. For the first time, four novel selenoproteins were discovered based on a computational screen for the RNA hairpin directing selenocysteine incorporation. 相似文献
14.
Site-specific mutations at a picornavirus VP3/VP1 cleavage site disrupt in vitro processing and assembly of capsid precursors. 总被引:1,自引:7,他引:1
下载免费PDF全文

Most proteolytic cleavages within the picornavirus polyproteins are carried out by viral protease 3C. For encephalomyocarditis virus, the protease 3C-catalyzed processing occurs between Gln-Gly or Gln-Ser amino acid pairs which are flanked by proline residues, but the sequence-specific constraints on recognition and cleavage by the enzyme are not completely understood. To examine alternative cleavage site sequences, we constructed a cDNA plasmid which expresses the viral L-P1-2A capsid precursor in vitro and introduced site-specific mutations into the Gln-Gly pair at the VP3/VP1 junction. The altered protein substrates were tested for cleavage activity in assays with protease 3C. The encephalomyocarditis virus 3C processed Gln-Ala as efficiently as its natural sites but did not cleave Gln-Val, Gln-Glu, Lys-Gly, Lys-Ala, Lys-Val, Lys-Glu, or Pro-Gly combinations. Displacement of the flanking proline residue by an engineered insertion slowed but did not prevent cleavage at this site. Also, a mutant defective in processing at the VP3/VP1 junction was unable to form 14S pentameric assembly intermediates in vitro. 相似文献
15.
In vivo topoisomerase II cleavage of the Drosophila histone and satellite III repeats: DNA sequence and structural characteristics. 总被引:12,自引:0,他引:12
下载免费PDF全文

We have identified two classes of in vivo topoisomerase II cleavage sites in the Drosophila histone gene repeat. One class co-localizes with DNase I-hypersensitive regions and another novel class maps to a subset of consecutive nucleosome linker sites in the scaffold-associated region (SAR) of the histone gene loop. Prominent topoisomerase II cleavage is also observed in one of the linker regions of the two nucleosomes spanning satellite III, a centromeric SAR-like DNA sequence with a repeat length of 359 bp. At the sequence level, in vivo topoisomerase II cleavage is highly site specific. Comparison of 10 nucleosome linker sites defines an in vivo cleavage sequence whose major characteristic is a prominent GC-rich core. These GC-rich cleavage sites are flanked by extensive arrays of oligo(dA).oligo(dT) tracts characteristic of SAR sequences. Treatment of cells with distamycin selectively enhances cleavage at nucleosome linker sites of the SAR and satellite regions, suggesting that AT-rich sequences flanking cleavage sites may be involved in determining topoisomerase II activity in the cell. These observations provide evidence for the association of topoisomerase II with SARS in vivo. 相似文献
16.
Wallner S Winkler A Riedl S Dully C Horvath S Gruber K Macheroux P 《Biochemistry》2012,51(31):6139-6147
Berberine bridge enzyme (BBE) is a paradigm for the class of bicovalently flavinylated oxidases, which catalyzes the oxidative cyclization of (S)-reticuline to (S)-scoulerine. His174 was identified as an important active site residue because of its role in the stabilization of the reduced state of the flavin cofactor. It is also strictly conserved in the family of BBE-like oxidases. Here, we present a detailed biochemical and structural characterization of a His174Ala variant supporting its importance during catalysis and for the structural organization of the active site. Substantial changes in all kinetic parameters and a decrease in midpoint potential were observed for the BBE His174Ala variant protein. Moreover, the crystal structure of the BBE His174Ala variant showed significant structural rearrangements compared to wild-type enzyme. On the basis of our findings, we propose that His174 is part of a hydrogen bonding network that stabilizes the negative charge at the N1-C2═O locus via interaction with the hydroxyl group at C2' of the ribityl side chain of the flavin cofactor. Hence, replacement of this residue with alanine reduces the stabilizing effect for the transiently formed negative charge and results in drastically decreased kinetic parameters as well as a lower midpoint redox potential. 相似文献
17.
Recognition and cleavage of the bacteriophage P1 packaging site (pac). I. Differential processing of the cleaved ends in vivo 总被引:8,自引:0,他引:8
The packaging of bacteriophage P1 DNA into viral capsids is initiated at a specific DNA site called pac. During packaging, that site is cleaved and at least one of the resulting ends is encapsidated into a P1 virion. We show here that pac is located on a 620 base-pair fragment of P1 DNA (EcoRI-20). When that fragment is inserted into the chromosome of cells that are then infected with P1, packaging of host DNA into phage particles is initiated at pac and proceeds down the chromosome, unidirectionally, for about five to ten P1 "headfuls" (about 5 X 10(5) to 10 X 10(5) bases of DNA). Using an assay for pac cleavage that does not depend on DNA packaging, we have identified a set of five amber mutations that are mapped adjacent to pac, and that define a gene (gene 9) essential for pac cleavage. Amber mutations that are located in genes necessary for viral capsid formation (genes 4, 8 and 23), or in a gene necessary for "late" protein synthesis (gene 10), do not affect pac cleavage. The latter result suggests that the synthesis of the pac cleavage protein is not regulated co-ordinately with other phage morphogenesis proteins. The products of pac cleavage were analyzed using two different DNA substrates. In one case, a single copy of pac was placed in the chromosome of P1-sensitive cells. When those cells were infected with P1, we could detect the cleavage of as much as 70% of the pac-containing DNA. The pac end destined to be packaged in the virion was detected five to 20 times more efficiently than was the other end. Since this result is obtained whether or not the infecting P1 phage can encapsidate the cut pac site, the differential detection of pac ends is not simply a consequence of one end being packaged and the other not. In a second case, pac was located in cells on a small (5 X 10(3) bases) multicopy plasmid. When those cells were infected with P1, neither pac end was detected efficiently after P1 infection, unless the cells carried a recBCD- mutation. In recBCD- cells, the results with plasmid-pac substrates were similar to those obtained with chromosomally integrated pac substrates. We interpret these results to mean that, following pac cleavage, the end destined to be packaged is protected from cellular nucleases while the other end is degraded by the action of at least two nucleases, one of which is the product of the host recBCD gene.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
18.
Bhamidi S Scherman MS Jones V Crick DC Belisle JT Brennan PJ McNeil MR 《The Journal of biological chemistry》2011,286(26):23168-23177
The cell wall of mycobacteria consists of an outer membrane, analogous to that of gram-negative bacteria, attached to the peptidoglycan (PG) via a connecting polysaccharide arabinogalactan (AG). Although the primary structure of these components is fairly well deciphered, issues such as the coverage of the PG layer by covalently attached mycolates in the outer membrane and the spatial details of the mycolic acid attachment to the arabinan have remained unknown. It is also not understood how these components work together to lead to the classical acid-fast staining of mycobacteria. Because the majority of Mycobacterium tuberculosis bacteria in established experimental animal infections are acid-fast negative, clearly cell wall changes are occurring. To address both the spatial properties of mycobacterial cell walls and to begin to study the differences between bacteria grown in animals and cultures, the cell walls of Mycobacterium leprae grown in armadillos was characterized and compared with that of M. tuberculosis grown in culture. Most fundamentally, it was determined that the cell wall of M. leprae contained significantly more mycolic acids attached to PG than that of in vitro grown M. tuberculosis (mycolate:PG ratios of 21:10 versus 16:10, respectively). In keeping with this difference, more arabinogalactan (AG) molecules, linking the mycolic acids to PG, were found. Differences in the structures of the AG were also found; the AG of M. leprae is smaller than that of M. tuberculosis, although the same basic structural motifs are retained. 相似文献
19.
We sought to determine the structural features involved in the processing of the mitochondrial F1-ATPase beta-subunit (F1beta) presequence (54 residues) from Nicotiana plumbaginifolia. The cleavage efficiency of F1beta presequence mutants linked to the green fluorescent protein (GFP) was evaluated in vivo in tobacco by in situ microscopy and Western blotting. The residue at position -1 (Tyr) was required to be an aromatic residue and the residue at position +2 (Thr) was found to be important for F1beta processing, while, unexpectedly, changing the distal (Arg-15) and proximal (Arg-5) arginine residues did not strongly reduce processing. In addition, results also supported the requirement of a helical structure around the cleavage position. Sequencing of the mature form of a precursor containing the first 30 residues of the F1beta presequence linked to GFP revealed the presence of a cryptic cleavage site between residues 26 and 27, which showed the features of a classical mitochondrial processing site, suggesting dual processing of the F1beta presequence. In vitro processing confirmed these data and showed that processing was sensitive to o-phenanthroline, thus catalyzed by mitochondrial processing peptidase. 相似文献
20.
Two functionally distinct domains generated by in vivo cleavage of Nup145p: a novel biogenesis pathway for nucleoporins. 总被引:11,自引:3,他引:11
下载免费PDF全文

M T Teixeira S Siniossoglou S Podtelejnikov J C Bénichou M Mann B Dujon E Hurt E Fabre 《The EMBO journal》1997,16(16):5086-5097
Nup145p is an essential yeast nucleoporin involved in nuclear export of polyadenylated RNAs. We demonstrate here that Nup145p is cleaved in vivo to yield two functionally distinct domains: a carboxy-terminal domain (C-Nup145p) which is located at the nuclear pore complex (NPC) and assembles into the Nup84p complex, and a GLFG-containing amino-terminal domain (N-Nup145p) which is not part of this complex. Whereas the essential C-Nup145p accomplishes the functions required for efficient mRNA export and normal NPC distribution, N-Nup145p, which is homologous to the GLFG-containing nucleoporins Nup100p and Nup116p, is not necessary for cell growth. However, the N-Nup145p becomes essential in a nup188 mutant background. Strikingly, generation of a free N-domain is a prerequisite for complementation of this peculiar synthetic lethal mutant. These data suggest that N- and C-domains of Nup145p perform independent functions, and that the in vivo cleavage observed is of functional importance. 相似文献