首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endothelial metabolism is a key regulator of angiogenesis. Glutamine metabolism in endothelial cells (ECs) has been poorly studied. We used genetic modifications and 13C tracing approaches to define glutamine metabolism in these cells. Glutamine supplies the majority of carbons in the tricyclic acid (TCA) cycle of ECs and contributes to lipid biosynthesis via reductive carboxylation. EC‐specific deletion in mice of glutaminase, the initial enzyme in glutamine catabolism, markedly blunts angiogenesis. In cell culture, glutamine deprivation or inhibition of glutaminase prevents EC proliferation, but does not prevent cell migration, which relies instead on aerobic glycolysis. Without glutamine catabolism, there is near complete loss of TCA intermediates, with no compensation from glucose‐derived anaplerosis. Mechanistically, addition of exogenous alpha‐ketoglutarate replenishes TCA intermediates and rescues cellular growth, but simultaneously unveils a requirement for Rac1‐dependent macropinocytosis to provide non‐essential amino acids, including asparagine. Together, these data outline the dependence of ECs on glutamine for cataplerotic processes; the need for glutamine as a nitrogen source for generation of biomass; and the distinct roles of glucose and glutamine in EC biology.  相似文献   

2.
The metabolism of [1-13C]glucose in the vegetative mycelium of the ectomycorrhizal ascomycete Tuber borchii was studied in order to characterize the biochemical pathways for the assimilation of glucose and amino acid biosynthesis. The pathways were characterized using nuclear magnetic resonance spectroscopy in conjunction with [1-13C]glucose labeling. The enzymes of mannitol cycle and ammonium assimilation were also evaluated. The majority of the 13C label was incorporated into mannitol and this polyol was formed via a direct route from absorbed glucose. Amino acid biosynthesis was also an important sink of assimilated carbon and 13C was mainly incorporated into alanine and glutamate. From this intramolecular 13C enrichment, it is concluded that pyruvate, arising from [1-13C]glucose catabolism, was used by alanine aminotransferase, pyruvate dehydrogenase and pyruvate carboxylase before entering the Krebs cycle. The transfer of 13C-labeled mycelium on [12C]glucose showed that mannitol, alanine, and glutamate carbon were used to synthesize glutamine and arginine that likely play a storage role.  相似文献   

3.
The metabolic effects of beta-(+/-)-2-aminobicyclo-(2.2.1)-heptane-2-carboxylic acid (BCH), a nonmetabolizable analog of leucine and known activator of glutamate dehydrogenase, were studied in hepatocytes isolated from fed and fasted rats. With glutamine as substrate, BCH stimulated in a concentration-dependent manner urea synthesis in both physiological states and glucose formation in hepatocytes from fasted rats. Despite the much higher rates of ureagenesis in the fasted animals, the degree of stimulation by BCH, over 2-fold, was similar. The effect of the drug was specific for glutamine since the rates of urea synthesis from NH4Cl, alanine, and asparagine were essentially unaltered. The stimulation of glutamine catabolism by BCH led to a decrease in the content of intracellular glutamine. The redox states of the mitochondrial and cytosolic nicotinamide adenine dinucleotides remained unaltered. In hepatocytes isolated from fasted rats and incubated with 5 mM glutamine the BCH-induced increases in urea, ammonia, and the amino acids, glutamate, aspartate, and alanine, accounted fully for the 2.4-fold rise in glutamine utilization. The stimulatory effects of BCH and glucagon on the formation of glucose, urea, and 14CO2 from [U-14C]glutamine were additive. Aminooxyacetate, and inhibitor of transaminases, neither blocked glutamine catabolism (as measured by the sum of urea, ammonia, and glutamate) nor prevented its activation by BCH. It is suggested that, in isolated hepatocytes, BCH-induced stimulation of glucose and urea formation from glutamine results from activation of glutaminase by a mechanism which is distinct from that of glucagon.  相似文献   

4.
The dynamic behavior of a continuous culture of Saccharomyces cerevisiae subjected to a sudden increase in the dilution rate has been successfully modelled for anaerobic growth on glucose, and for aerobic growth on acetate, on ethanol, and on glucose. The catabolism responded by an immediate jump whereas biosynthesis did not. Thus catabolism was in excess to anabolism. The model considers the decoupling between biosynthesis and catabolism, both types of reactions being modelled by first-order kinetic expressions evolving towards maximal values. Yield parameters and maximal reaction rates were identified in steady state continuous cultures or during batch experiments. Only the time constant of biosynthesis regeneration, tauX, and the time constant of catabolic capacity regeneration, taucat, had to be identified during transient experiments. In most experiments tauX was around 3 h, and taucat varied between 2 and 2.5 h for the different metabolisms investigated.  相似文献   

5.
A detailed reaction network of mammalian cell metabolism contains hundreds of enzymatic reactions. By grouping serial reactions into single overall reactions and separating overlapped pathways into independent reactions, the total number of reactions of the network is significantly reduced. This strategy of manipulating the reaction network avoids the manipulations of a large number of reactions otherwise needed to determine the reaction extents. A stoichiometric material balance model is developed based on the stoichiometry of the simplified reaction network. Closures of material balances on glucose and each of the 20 amino acids are achieved using experimental data from three controlled fed-batch and one-batch hybridoma cultures. Results show that the critical role of essential amino acids, except glutamine, is to provide precursors for protein synthesis. The catabolism of some of the essential amino acids, particularly isoleucine and leucine, is observed when an excess amount of these amino acids is available in the culture medium. It was found that the reduction of glutamine utilization (for reducing ammonia production) is accompanied by an increase in the uptake of nonessential amino acids (NAAs) from the culture medium. This suggests that NAAs are necessary even though they are not essential for cell growth. A glutamine balance shows that less than 20% of the glutamine nitrogen is utilized for essential roles, such as protein and nucleotide syntheses. A relatively constant percentage (about 45%) of the glutamine nitrogen is utilized for NAA biosynthesis, despite the fact that the absolute amount varies among the four experiments. As to the carbon skeleton of glutamine, a significant portion enters the tricarboxylic acid (TCA) cycle. A material balance on glucose shows that most of the glucose (81%) is converted into lactate when glucose is in excess. On the other hand, when glucose is limited, lactate production is considerably reduced, while a major portion of glucose (48%) enters the TCA cycle. The fraction of glucose used for the synthesis of cellular components ranges from 9 to 28%. (c) 1996 John Wiley & Sons, Inc.  相似文献   

6.
We review briefly 13C NMR studies of cerebral glucose metabolism with an emphasis on the roles of glial energetics and the glutamine cycle. Mathematical modeling analysis of in vivo 13C turnover experiments from the C4 carbons of glutamate and glutamine are consistent with: (i) the glutamine cycle being the major cerebral metabolic route supporting glutamatergic neurotransmission, (ii) glial glutamine synthesis being stoichiometrically coupled to glycolytic ATP production, (iii) glutamine serving as the main precursor of neurotransmitter glutamate and (iv) glutamatergic neurotransmission being supported by lactate oxidation in the neurons in a process accounting for 60-80% of the energy derived from glucose catabolism. However, more recent experimental approaches using inhibitors of the glial tricarboxylic acid (TCA) cycle (trifluoroacetic acid, TFA) or of glutamine synthase (methionine sulfoximine, MSO) reveal that a considerable portion of the energy required to support glutamine synthesis is derived from the oxidative metabolism of glucose in the astroglia and that a significant amount of the neurotransmitter glutamate is produced from neuronal glucose or lactate rather than from glial glutamine. Moreover, a redox switch has been proposed that allows the neurons to use either glucose or lactate as substrates for oxidation, depending on the relative availability of these fuels under resting or activation conditions, respectively. Together, these results suggest that the coupling mechanisms between neuronal and glial metabolism are more complex than initially envisioned.  相似文献   

7.
Neurospora crassa mutant impaired in glutamine regulation.   总被引:3,自引:1,他引:2       下载免费PDF全文
The final products of the catabolism of arginine that can be utilized as nitrogen sources by Neurospora crassa are ammonium, glutamic acid, and glutamine. Of these compounds, only glutamine represses arginase and glutamine synthetase. We report here the isolation and characterization of a mutant of N. crassa whose arginase, glutamine synthetase, and amino acid accumulations are resistant to glutamine repression (glnI). This mutant has a greater capacity than the wild type (glns) to accumulate most of the arginine and some of the glutamine in osmotically sensitive compartments while growing exponentially. Nonetheless, the major part of the glutamine remains soluble and metabolically available for repression. We propose that the lower repression of glutamine synthetase by glutamine in this mutant could be a necessary condition for sustaining the higher flow of nitrogen for the accumulation of amino acids observed in ammonium excess and that, if glutamine is the nitrogen signal that regulates the arginine accumulation of the vesicle, the glnr mutant has also escaped this control. Finally, in the glnr mutant, some glutamine resynthesis is necessary for arginine biosynthesis and accumulation.  相似文献   

8.
GABA is the major inhibitory neurotransmitter in the nervous system. It is also released by the insulin-producing beta-cells, providing them with a potential paracrine regulator. Because glucose was found to inhibit GABA release, we investigated whether extracellular GABA can serve as a marker for glucose-induced mitochondrial activity and thus for the functional state of beta-cells. GABA release by rat and human beta-cells was shown to reflect net GABA production, varying with the functional state of the cells. Net GABA production is the result of GABA formation through glutamate decarboxylase (GAD) and GABA catabolism involving a GABA-transferase (GABA-T)-mediated shunt to the TCA cycle. GABA-T exhibits K(m) values for GABA (1.25 mM) and for alpha-ketoglutarate (alpha-KG; 0.49 mM) that are, respectively, similar to and lower than those in brain. The GABA-T inhibitor gamma-vinyl GABA was used to assess the relative contribution of GABA formation and catabolism to net production and release. The nutrient status of the beta-cells was found to regulate both processes. Glutamine dose-dependently increased GAD-mediated formation of GABA, whereas glucose metabolism shunts part of this GABA to mitochondrial catabolism, involving alpha-KG-induced activation of GABA-T. In absence of extracellular glutamine, glucose also contributed to GABA formation through aminotransferase generation of glutamate from alpha-KG; this stimulatory effect increased GABA release only when GABA-T activity was suppressed. We conclude that GABA release from beta-cells is regulated by glutamine and glucose. Glucose inhibits glutamine-driven GABA formation and release through increasing GABA-T shunt activity by its cellular metabolism. Our data indicate that GABA release by beta-cells can be used to monitor their metabolic responsiveness to glucose irrespective of their insulin-secretory activity.  相似文献   

9.
A number of factors have been shown to affect the metabolism of glucose and glutamine in mammalian cells and their mechanisms have been partially elucidated. Despite these efforts, a quantitative knowledge of the significance of these factors, the regulation of glucose and glutamine utilization, and particularly the interactions of these two nutrients is still lacking. Controversies exist in the literature. To clarify some of these controversies, mathematical models are proposed in this work which enable to separate and identify the effects of individual factors. Experimental data from five cell lines obtained in batch, fed-batch, and continuous cultures, both under steady-state and transient conditions, were used to verify the model formulations. The resulting kinetic models successfully describe all these cultures. According to the models, the specific consumption rate of glucose (Q(Glc)) of continuous animal cells under normal culture conditions can be expressed as a sum of three parts: a part owing to cell growth; a part owing to glucose excess; and a part owing to glutamine regulation. The specific consumption rate of glutamine (q(Glc)7) can be expressed as a sum of only two parts: a part owing to cell growth; and a part owing to glutamine excess. Using the kinetic models the interaction and regulation of glucose and glutamine utilizations are quantitatively analyzed. The results indicate that, whereas q(Glc) is affected by glutamine, q(Gln) appears to be not or less significantly affected by glucose. It is also shown that the relative utilizations of glucose and glutamine by anabolism and catabolism are mainly affected by the residual concentrations of the respective compounds and are less sensitive to growth rate and the nature of growth limitation.(c) 1995 John Wiley & Sons, Inc.  相似文献   

10.
Glutamine synthetase activity is modulated by nitrogen repression and by two distinct inactivation processes. Addition of glutamine to exponentially grown yeast leads to enzyme inactivation. 50% of glutamine synthetase activity is lost after 30 min (a quarter of the generation time). Removing glutamine from the growth medium results in a rapid recovery of enzyme activity. A regulatory mutation (gdhCR mutation) suppresses this inactivation by glutamine in addition to its derepressing effect on enzymes involved in nitrogen catabolism. The gdhCR mutation also increases the level of proteinase B in exponentially grown yeast. Inactivation of glutamine synthetase is also observed during nitrogen starvation. This inactivation is irreversible and consists very probably of a proteolytic degradation. Indeed, strains bearing proteinase A, B and C mutations are no longer inactivated under nitrogen starvation.  相似文献   

11.
Glutamine plays a vital role in fetal carbon and nitrogen metabolism and exhibits the highest fetal:maternal plasma ratio among all amino acids in pigs. Such disparate glutamine levels between mother and fetus suggest that glutamine may be actively synthesized and released into the fetal circulation by the porcine placenta. We hypothesized that branched-chain amino acid (BCAA) metabolism in the placenta plays an important role in placental glutamine synthesis. This hypothesis was tested by studying conceptuses from gilts on Days 20, 30, 35, 40, 45, 50, 60, 90, or 110 of gestation (n = 6 per day). Placental tissue was analyzed for amino acid concentrations, BCAA transport, BCAA degradation, and glutamine synthesis as well as the activities of related enzymes (including BCAA transaminase, branched-chain alpha-ketoacid dehydrogenase, glutamine synthetase, glutamate-pyruvate transaminase, and glutaminase). On all days of gestation, rates of BCAA transamination were much greater than rates of branched-chain alpha-ketoacid decarboxylation. The glutamate generated from BCAA transamination was primarily directed to glutamine synthesis and, to a much lesser extent, alanine production. Placental BCAA transport, BCAA transamination, glutamine synthesis, and activities of related enzymes increased markedly between Days 20 and 40 of gestation, as did glutamine in fetal allantoic fluid. Accordingly, placental BCAA levels decreased after Day 20 of gestation in association with a marked increase in BCAA catabolism and concentrations of glutamine. There was no detectable catabolism of glutamine in pig placenta throughout pregnancy, which would ensure maximum output of glutamine by this tissue. These novel results demonstrate glutamine synthesis from BCAAs in pig placentae, aid in explaining the abundance of glutamine in the fetus, and provide valuable insight into the dynamic role of the placenta in fetal metabolism and nutrition.  相似文献   

12.
Glutamine synthetase (EC 6.3.1.2) was localized within the matrix compartment of avian liver mitochondria. The submitochondrial localization of this enzyme was determined by the digitonin-Lubrol method of Schnaitman and Greenawalt (35). The matrix fraction contained over 74% of the glutamine synthetase activity and the major proportion of the matirx marker enzymes, malate dehydrogenase (71%), NADP-dependent isocitrate dehydrogenase (83%), and glutamate dehydrogenase (57%). The highest specific activities of these enzymes were also found in the matrix compartment. Oxidation of glutamine by avian liver mitochondria was substantially less than that of glutamate. Bromofuroate, an inhibitor of glutamate dehydrogenase, blocked oxidation of glutamate and of glutamine whereas aminoxyacetate, a transaminase inhibitor, had little or no effect with either substrate. These results indicate that glutamine metabolism is probably initiated by the conversion of glutamine to glutamate rather than to an alpha-keto acid. The localization of a glutaminase activity within avian liver mitochondria plus the absence of an active mitochondrial glutamine transaminase is consistent with the differential effects of the transaminase and glutamate dehydrogenase inhibitors. The high glutamine synthetase activity (40:1) suggests that mitochondrial catabolism of glutamine is minimal, freeing most of the glutamine synthesized for purine (uric acid) biosynthesis.  相似文献   

13.
Mitsuhashi W  Feller U 《Plant physiology》1992,100(4):2100-2105
The catabolism of nuclear-encoded stromal proteins was investigated in intact chloroplasts isolated mechanically from pea (Pisum sativum) leaves. Glutamine synthetase, phosphoribulokinase, and nitrite reductase (quantified by immunoblotting) were more rapidly degraded in the light than in the dark. Furthermore, the degradation rates depended on exogenously supplied metabolites. For example, 2-oxoglutarate accelerated the catabolism of all three enzymes in chloroplasts incubated in the light, whereas oxaloacetate stabilized glutamine synthetase and at the same time destabilized the other two enzymes.  相似文献   

14.
15.
Hindquarters from starved rats were perfused with plasma concentrations of amino acids, but without other added substrates. Release of amino acids was similar to that previously reported, but, if total amino acid changes were recorded, alanine and glutamine were not formed in excess of their occurrence in muscle proteins. In protein balance (excess insulin) there was no net formation of either alanine or glutamine, even though the branched-chain amino acids and methionine were consumed. If [U-14C]valine was present, radiolabelled 3-hydroxyisobutyrate and, to a lesser extent, 2-oxo-3-methylbutyrate accumulated and radiolabel was incorporated into citrate-cycle intermediates and metabolites closely associated with the citrate cycle (glutamine and glutamate, and, to a smaller extent, lactate and alanine). If a 2-chloro-4-methylvalerate was present to stimulate the branched-chain oxo acid dehydrogenase, flux through this step was accelerated, resulting in increased accumulation of 3-hydroxyisobutyrate, decreased accumulation of 2-oxo-3-methylbutyrate, and markedly increased incorporation of radiolabel (specific and total) into all measured metabolites formed after 3-hydroxyisobutyrate. It is concluded that: amino acid catabolism by skeletal muscle is confined to degradation of the branched-chain amino acids, methionine and those that are interconvertible with the citrate cycle; amino acid catabolism is relatively minor in supplying carbon for net synthesis of alanine and glutamine; and partial degradation products of the branched-chain amino acids are quantitatively significant substrates released from muscle for hepatic gluconeogenesis. For valine, 3-hydroxyisobutyrate appears to be quantitatively the most important intermediate released from muscle. A side path for inter-organ disposition of the branched-chain amino acids is proposed.  相似文献   

16.
Cellular GABA levels are determined by the dynamic balance between synthesis and catabolism and are regulated at the level of glutamate decarboxylase, precursor availability (e.g., glutamate and glutamine), and possibly GABA degradation. GABA levels rise and stabilize within hours in human cortex following orally administered vigabatrin, an irreversible inhibitor of GABA-T, suggesting potential product inhibition of GABA synthesis or enhanced GABA degradation through the non-inhibited GABA-T fraction. In this study time courses of the rise in cortical GABA were measured in anesthetized rats in vivo after vigabatrin treatment using localized (1)H magnetic resonance spectroscopy and the times to reach steady-state for a given dose were determined. Rates of GABA synthesis were estimated for the period of constant GABA level from the accumulation of [2-(13)C]GABA following a short intravenous infusion (20 min) of either [1,6-(13)C(2)]glucose or [2-(13)C]acetate. No evidence of product inhibition of glutamate decarboxylase by the increased GABA concentration or reduced synthesis from [1,6-(13)C(2)]glucose (control, 0.031+/-0.010; vigabatrin-treated, 0.037+/-0.004 micromol/g/min, P=0.30) or [2-(13)C]acetate (control, 0.078+/-0.010; vigabatrin-treated, 0.084+/-0.006 micromol/g/min, P=0.42) was found. Fractional changes in steady-state GABA levels and GABA-T activities 5-6 h after vigabatrin treatment were approximately equal. The lack of change in GABA synthesis (and GABA catabolic flux for constant GABA levels) suggests that GABA-T has a near-zero flux control coefficient in vivo-capable of greatly altering the steady-state GABA concentration but exerting little or no control on GABA synthesis or GABA/glutamine cycling flux. The findings are consistent with a Michaelis-Menten kinetic model whereby cellular GABA levels increase until flux through the remaining (uninhibited) transaminase equals the rate of GABA synthesis. The findings suggest that astroglia may be the site of continuing GABA catabolism after acute vigabatrin treatment.  相似文献   

17.
Batch and continuous cultures were carried out to study the stoichiometry, kinetics, and regulation of glucose and amino acid metabolism of a recombinant BHK cell line, with particular attention to the metabolism at low levels of glucose and glutamine. The apparent yields of cells on glucose and glutamine, lactate on glucose, and ammonium on glutamine were all found to change significantly at low residual concentrations of glucose (<5 mmol/L) and glutamine (<1 mmol/L) . The uptake rates of glucose and glutamine were markedly reduced at low concentrations, leading to a more effective utilization of these nutrients for energy metabolism and biosynthesis and reduced formation rates of lactate and ammonium. However, the consumption of other amino acids, especially the essential amino acids leucine, isoleucine, and valine and the nonessential amino acids serine and glutamate, was strongly enhanced at low glutamine concentration. Quantitatively, it was shown that the cellular yields and rates associated with glucose metabolism were primarily determined by the residual glucose concentration, while those associated with glutamine metabolism depended mainly on the residual glutamine. Both experimental results and analysis of the kinetic data with models showed that the glucose metabolism of BHK cells is not affected by glutamine except for a slight influence under glucose limitation and glutaminolysis not by glucose, at least not significantly under the experimental conditions. Compared to hybridoma and other cultured animal cells, the recombinant BHK cell line showed remarkable differences in terms of nutrient sensitivity, stoichiometry, and amino acid metabolism at low levels of nutrients. These cell-line-specific stoichiometry and nutrient needs should be considered when designing an optimal medium and/or feeding strategy for achieving high cell density and high productivity of BHK cells. In this work, a cell density of 1.1 × 107 cells/mL was achieved in a conventional continuous culture by using a proper feed medium.  相似文献   

18.
Increased glutaminolysis is now recognized as a key feature of the metabolic profile of cancer cells, along with increased aerobic glycolysis (the Warburg effect). In this review, we discuss the roles of glutamine in contributing to the core metabolism of proliferating cells by supporting energy production and biosynthesis. We address how oncogenes and tumor suppressors regulate glutamine metabolism and how cells coordinate glucose and glutamine as nutrient sources. Finally, we highlight the novel therapeutic and imaging applications that are emerging as a result of our improved understanding of the role of glutamine metabolism in cancer.  相似文献   

19.
L-Glutamine (the most abundant free amino acid in plasma and the body) is a potent inhibitor of endothelial NO synthesis. However, little is known about glutamine metabolism in endothelial cells (EC). As an initial step toward understanding the role of glutamine in endothelial physiology, the present study was conducted to quantify glutamine catabolism in microvascular, aortic and venous EC. For metabolic studies, EC were incubated for 1 h in Krebs bicarbonate buffer containing 5 mM glucose and 0.5-4 mM L-[U-(14)C]-glutamine. For enzymological studies, cell extracts and mitochondrial fractions were prepared to determine the activities of glutamine-degrading enzymes. Our results reveal extensive hydrolysis of glutamine to glutamate and ammonia in a concentration-dependent manner via phosphate-dependent glutaminase in all EC studied. In addition, both metabolic and enzymological evidence indicate a novel pathway for endothelial synthesis of ornithine from glutamine via pyrroline-5-carboxylate synthase. This new knowledge of glutamine metabolism may pave a new path for understanding the physiological role of glutamine in vascular function.  相似文献   

20.
Effects of biochemical factors, i.e., medium components and metabolic byproducts, on growth of Chinese hamster ovary (CHO) cells were investigated. Glucose and ammonia were found to inhibit the growth. Kinetic analysis gave the inhibition constants, 0.14 g l-1 for ammonia and 5.0 g l-1 for glucose. Since glutamine was unstable and was a main source of ammonia, precise studies on glutamine degradation and ammonia formation process were done. By evaluating the spontaneous reactions, net glutamine utilization and net ammonia production by the cells could be estimated. It became evident that asparagine could support the growth of CHO cells as a stable substitute for glutamine. Then, a glucose fed-batch culture was grown on a glutamine free and asparagine supplemented medium. Because of (1) low glucose concentration, but (2) no glucose limitation and (3) low ammonia accumulation, the maximum total cell concentration reached 3.4 x 10(6) ml-1, which was 1.8 times greater than that in the control experiment (initial 1.15 g l-1 glucose and 0.29 g l-1 glutamine, and no glucose feed).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号