首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clostridium perfringens is a gram-positive, spore-forming anaerobic bacterium that plays a substantial role in non-foodborne human, animal, and avian diseases as well as human foodborne disease. Previously discovered C. perfringens bacteriophage lytic enzyme amino acid sequences were utilized to identify putative prophage lysins or autolysins by BLAST analyses encoded by the genomes of C. perfringens isolates. A predicted N-acetylmuramoyl–l-alanine amidase or MurNAc–LAA (also known as peptidoglycan aminohydrolase, NAMLA amidase, NAMLAA, amidase 3, and peptidoglycan amidase; EC 3.5.1.28) was identified that would hydrolyze the amide bond between N-acetylmuramoyl and l-amino acids in certain cell wall glycopeptides. The gene encoding this protein was subsequently cloned from genomic DNA of a C. perfringens isolate by polymerase chain reaction, and the gene product (PlyCpAmi) was expressed to determine if it could be utilized as an antimicrobial to control the bacterium. By spot assay, lytic zones were observed for the purified amidase and the E. coli expression host cellular lysate containing the amidase gene. Turbidity reduction and plate counts of C. perfringens cultures were significantly reduced by the expressed protein and observed morphologies for cells treated with the amidase appeared vacuolated, non-intact, and injured compared to the untreated cells. Among a variety of C. perfringens strains, there was little gene sequence heterogeneity that varied from 1 to 21 nucleotide differences. The results further demonstrate that it is possible to discover lytic proteins encoded in the genomes of bacteria that could be utilized to control bacterial pathogens.  相似文献   

2.
The gene of an l-rhamnose isomerase (RhaA) from Bacillus subtilis was cloned to the pET28a(+) and then expressed in the E. coli ER2566. The expressed enzyme was purified with a specific activity of 3.58 U/mg by His-Trap affinity chromatography. The recombinant enzyme existed as a 194 kDa tetramer and the maximal activity was observed at pH 8.0 and 60°C. The RhaA displayed activity for l-rhamnose, l-lyxose, l-mannose, d-allose, d-gulose, d-ribose, and l-talose, among all aldopentoses and aldohexoses and it showed enzyme activity for l-form monosaccharides such as l-rhamnose, l-lyxose, l-mannose, and l-talose. The catalytic efficiency (k cat/K m) of the recombinant enzyme for l-rhamnose, l-lyxose, and l-mannose were 7,460, 1,013, and 258 M/sec. When l-xylulose 100 g/L and l-fructose 100 g/L were used as substrates, the optimum concentrations of RpiB were determined with 6 and 15 U/mL, respectively. The l-lyxose 40 g/L was produced from l-xylulose 100 g/L by the enzyme during 60 min, while l-mannose 25 g/L was produced from l-fructose 100 g/L for 80 min. The results suggest that RhaA from B. subtilis is a potential producer of l-form monosaccharides.  相似文献   

3.
We investigated d-amino acid oxidase (DAO) induction in the popular model yeast Schizosaccharomyces pombe. The product of the putative DAO gene of the yeast expressed in E.?coli displayed oxidase activity to neutral and basic d-amino acids, but not to an l-amino acid or acidic d-amino acids, showing that the putative DAO gene encodes catalytically active DAO. DAO activity was weakly detected in yeast cells grown on a culture medium without d-amino acid, and was approximately doubled by adding d-alanine. The elimination of ammonium chloride from culture medium induced activity by up to eight-fold. l-Alanine also induced the activity, but only by about half of that induced by d-alanine. The induction by d-alanine reached a maximum level at 2?h cultivation; it remained roughly constant until cell growth reached a stationary phase. The best inducer was d-alanine, followed by d-proline and then d-serine. Not effective were N-carbamoyl-d,l-alanine (a better inducer of DAO than d-alanine in the yeast Trigonopsis variabilis), and both basic and acidic d-amino acids. These results showed that S. pombe DAO could be a suitable model for analyzing the regulation of DAO expression in eukaryotic organisms.  相似文献   

4.
The l-alanine mediated germination of food isolated Bacillus cereus DSA 1 spores, which lacked an intact exosporium, increased in the presence of d-cycloserine (DCS), which is an alanine racemase (Alr) inhibitor, reflecting the activity of the Alr enzyme, capable of converting l-alanine to the germination inhibitor d-alanine. Proteomic analysis of the alkaline extracts of the spore proteins, which include exosporium and coat proteins, confirmed that Alr was present in the B. cereus DSA 1 spores and matched to that encoded by B. cereus ATCC 14579, whose spore germination was strongly affected by the block of conversion of l- to d-alanine. Unlike ATCC 14579 spores, l-alanine germination of B. cereus DSA 1 spores was not affected by the preincubation with DCS, suggesting a lack of restriction in the reactant accessibility.  相似文献   

5.
Clostridium perfringens is a cause for increasing concern due to its responsibility for severe infections both in humans and animals, especially poultry. To find new control strategies to treat C. perfringens infection, we investigated the activity and delivery of a bacteriophage endolysin. We identified a new endolysin, designated CP25L, which shows similarity to an N-acetylmuramoyl-l-alanine amidase domain and is distinct from other C. perfringens endolysins whose activity has been demonstrated in vitro. The cp25l gene was cloned and expressed in Escherichia coli, and the gene product demonstrated lytic activity against all 25 C. perfringens strains tested. The probiotic strain Lactobacillus johnsonii FI9785 was engineered to deliver the endolysin to the gastrointestinal tract. The integration of the nisRK two-component regulatory system from the Lactococcus lactis nisin A biosynthesis operon into the chromosome of L. johnsonii allowed constitutive expression of the endolysin under the control of the nisA promoter (P nisA ), while the use of a signal peptide (SLPmod) led to successful secretion of the active endolysin to the surrounding media. The high specificity and activity of the endolysin suggest that it may be developed as an effective tool to enhance the control of C. perfringens by L. johnsonii in the gastrointestinal tract.  相似文献   

6.
During l-glutamate production, phosphoenolpyruvate carboxylase and pyruvate carboxylase (PCx) play important roles in supplying oxaloacetate to the tricarboxylic acid cycle. To explore the significance of PCx for l-glutamate overproduction, the pyc gene encoding PCx was amplified in Corynebacterium glutamicum GDK-9 triggered by biotin limitation and CN1021 triggered by a temperature shock, respectively. In the fed-batch cultures, GDK-9pXMJ19pyc exhibited 7.4 % lower l-alanine excretion and no improved l-glutamate production. In contrast, CN1021pXMJ19pyc finally exhibited 13 % lower l-alanine excretion and identical l-glutamate production, however, 8.5 % higher l-glutamate production was detected during a short period of the fermentation. It was indicated that pyc overexpression in l-glutamate producer strains, especially CN1021, increased the supply of oxaloacetate for l-glutamate synthesis and decreased byproduct excretion at the pyruvate node.  相似文献   

7.
Corynebacterium glutamicum ATCC13032 and Brevibacterium flavum JV16 were engineered for l-valine production by over-expressing ilvEBN r C genes at 31?°C in 72?h fermentation. Different strategies were carried out to reduce the by-products’ accumulation in l-valine fermentation and also to increase the availability of precursor for l-valine biosynthesis. The native promoter of ilvA of C. glutamicum was replaced with a weak promoter MPilvA (P-ilvAM1CG) to reduce the biosynthetic rate of l-isoleucine. Effect of different relative dissolved oxygen on l-valine production and by-products’ formation was recorded, indicating that 15?% saturation may be the most appropriate relative dissolved oxygen for l-valine fermentation with almost no l-lactic acid and l-glutamate formed. To minimize l-alanine accumulation, alaT and/or avtA was inactivated in C. glutamicum and B. flavum, respectively. Compared to high concentration of l-alanine accumulated by alaT inactivated strains harboring ilvEBN r C genes, l-alanine concentration was reduced to 0.18?g/L by C. glutamicum ATCC13032MPilvAavtA pDXW-8-ilvEBN r C, and 0.22?g/L by B. flavum JV16avtA::Cm pDXW-8-ilvEBN r C. Meanwhile, l-valine production and conversion efficiency were enhanced to 31.15?g/L and 0.173?g/g by C. glutamicum ATCC13032MPilvAavtA pDXW-8-ilvEBN r C, 38.82?g/L and 0.252?g/g by B. flavum JV16avtA::Cm pDXW-8-ilvEBN r C. This study provides combined strategies to improve l-valine yield by minimization of by-products’ production.  相似文献   

8.

The Gram-negative bacterium Lysobacter sp. XL1 secretes into the extracellular space five bacteriolytic enzymes that lyse the cell walls of competing microorganisms. Of special interest are homologous lytic proteases L1 and L5. This work found protein L5 to possess Gly-Gly endopeptidase and N-acetylmuramoyl-l-Ala amidase activities with respect to staphylococcal peptidoglycan. Protein L5 was found to be capable of aggregating into amyloid-like fibril structures. The crystal structure of protein L5 was determined at a 1.60-Å resolution. Protein L5 was shown to have a rather high structural identity with bacteriolytic protease L1 of Lysobacter sp. XL1 and α-lytic protease of Lysobacter enzymogenes at a rather low identity of their amino acid sequences. Still, the structure of protein L5 was revealed to have regions that differed from their equivalents in the homologs. The revealed structural distinctions in L5 are suggested to be of importance in exhibiting its unique properties.

  相似文献   

9.
l-Serine is a nonessential amino acid, but plays a crucial role as a building block for cell growth. Currently, l-serine production is mainly dependent on enzymatic or cellular conversion. In this study, we constructed a recombinant Escherichia coli that can fermentatively produce l-serine from glucose. To accumulate l-serine, sdaA encoding the l-serine dehydratase, iclR encoding the isocitrate lyase regulator, and arcA encoding the aerobic respiration control protein were deleted in turn. In batch fermentation, the engineered E. coli strain YF-5 exhibited obvious l-serine accumulation but poor cell growth. To restore cell growth, aceB encoding the malate synthase was knocked out, and the engineered strain was then transformed with plasmid that overexpressed serA FR , serB, and serC genes. The resulting strain YF-7 produced 4.5 g/L l-serine in batch cultivation and 8.34 g/L l-serine in fed-batch cultivation.  相似文献   

10.
There continues to be a need for developing efficient and environmentally friendly treatments for Bacillus anthracis, the causative agent of anthrax. One emerging approach for inactivation of vegetative B. anthracis is the use of bacteriophage endolysins or lytic enzymes encoded by bacterial genomes (autolysins) with highly evolved specificity toward bacterium-specific peptidoglycan cell walls. In this work, we performed in silico analysis of the genome of Bacillus anthracis strain Ames, using a consensus binding domain amino acid sequence as a probe, and identified a novel lytic enzyme that we termed AmiBA2446. This enzyme exists as a homodimer, as determined by size exclusion studies. It possesses N-acetylmuramoyl-l-alanine amidase activity, as determined from liquid chromatography-mass spectrometry (LC-MS) analysis of muropeptides released due to the enzymatic digestion of peptidoglycan. Phylogenetic analysis suggested that AmiBA2446 was an autolysin of bacterial origin. We characterized the effects of enzyme concentration and phase of bacterial growth on bactericidal activity and observed close to a 5-log reduction in the viability of cells of Bacillus cereus 4342, a surrogate for B. anthracis. We further tested the bactericidal activity of AmiBA2446 against various Bacillus species and demonstrated significant activity against B. anthracis and B. cereus strains. We also demonstrated activity against B. anthracis spores after pretreatment with germinants. AmiBA2446 enzyme was also stable in solution, retaining its activity after 4 months of storage at room temperature.  相似文献   

11.
12.
Histidine biosynthesis in Corynebacterium glutamicum is regulated not only by feedback inhibition by the first enzyme in the pathway, but also by repression control of the synthesis of the histidine enzymes. C. glutamicum histidine genes are located and transcribed in two unlinked loci, hisEG and hisDCB-orf1-orf2-hisHA-impA-hisFI. We constructed plasmid pK18hisDPtac to replace the native hisD promoter with the tac promoter, and overexpressed phosphoribosyl-ATP-pyrophosphohydrolase, encoded by hisE, and ATP-phosphoribosyltransferase, encoded by hisG. The l-histidine titer at 0.85 g l?1 was 80 % greater in the transformed bacterium and production of byproducts, l-alanine and l-tryptophan, was significantly decreased. However, accumulation of glutamic acid increased by 58 % (2.8 g l?1). This study represents the first attempt to substitute the histidine biosynthesis pathway promoter in the chromosome with a stronger promoter to increase histidine production.  相似文献   

13.
Fermentative preparation ofl-alanine byStreptomyces coelicolor 3–19 was developed under laboratory conditions. In a medium containing glucose, corn-steep and mineral salts, the strain accumulated 9 gl-alanine per litre after four days of cultivation.  相似文献   

14.
Cell extracts prepared from several oral treponemes isolated from the subgingival plaque of periodontitis patients showed high enzyme activity toward phenylazobenzyl-oxycarbonyl-l-prolyl-l-leucylglycyl-l-prolyl-d-arginine (a compound used as a substrate for microbial collagenases). One major enzyme hydrolyzing this substrate at the Leu-Gly bond only was partially purified from an unspeciated treponeme (strain US),Treponema denticola ATCC 35405, and 29 different clinical isolates ofT. denticola. TheTreponema US enzyme also hydrolyzed furylacryloyl-l-leucylglycyl-l-prolyl-l-alanine (another substrate of bacterial collagenases) at the Leu-Gly bond. This enzyme also hydrolyzed various collagens and collagen-derived peptides. These treponemal proteases were sensitive to metal chelators andp-chloromercury compounds. The results indicate that human oral treponemes contain enzymes that readily hydrolyze in chromogenic protease substrates the Leu-Gly bond only that is the cleavage site of these substrates also by “true” microbial collagenases.  相似文献   

15.
β-Alanine is mainly produced by chemical methods in current industrial processes. Here, panD from Corynebacterium glutamicum encoding l-aspartate-α-decarboxylase (ADC) was cloned and expressed in Escherichia coli BL21(DE3). ADC C.g catalyzes the α-decarboxylation of l-aspartate to β-alanine. The purified ADC C.g was optimal at 55 °C and pH 6 with excellent stability at 16–37 °C and pH 4–7. A pH–stat directed, fed-batch feeding strategy was developed for enzymatic synthesis of β-alanine to keep the pH value within 6–7.2 and thus attenuate substrate inhibition. A maximum conversion of 97.2 % was obtained with an initial 5 g l-aspartate/l and another three feedings of 0.5 % (w/v) l-aspartate at 8 h intervals. The final β-alanine concentration was 12.85 g/l after 36 h. This is the first study concerning the enzymatic production of β-alanine by using ADC.  相似文献   

16.
Basically the peptidoglycan of Myxobater AL-1 consists of alternating β-1,4-linked N-acetylglucosamic-N-acetylmuramic acid chains. After splitting the aminosugar backbone with a specific algal enzyme three subunits arise: a monomer, a dimer and a trimer. Investigation of the monomer with specific enzymes and comparison of the degradation products to standards derived from other bacterial peptidoglycans suggest the following structure of the monomer peptide: l-alanyl-d-glutamic-l-meso-diaminopimelic-d-alanine. A d-alanyl-d-meso-diaminopimelic acid bond is the bridgebond between the peptides of the subunits.  相似文献   

17.
The action of Clostridium phage HM 7-induced lytic enzyme on the cell wall peptidoglycan of Clostridium saccharoperbutylacetonicum was investigated. The cell wall peptidoglycan of this strain contained glutamic acid, alanine, diaminopimelic acid, glucosamine and muramic acid in the molar ratios of 1.00: 2.08: 0.97; 0.92: 0.68. It was strongly digested when incubated with the lytic enzyme. This digestion was accompanied by the release of NH2-terminal l-alanine without a concomitant release of COOH-terminal amino acids and reducing groups. Chromatography of the lytic enzyme digest resulted in only two fractions, each of which was chromatographically homogeneous. One was a polysaccharide consisting of glucosamine and muramic acid in molar ratios 1.00: 0.78, and other was a peptide composed of glutamic acid, alanine and diaminopimelic acid in molar ratios of 1.00: 2.09: 1.05. These results indicate that phage HM 7-induced lytic enzyme is N-acetylmuramyl-l-alanine amidase, which cleaves the linkage between N-acetylmuramic acid and l-alanine.

A possible structure for the cell wall peptidoglycan was also proposed.  相似文献   

18.
Four potential dehydrogenases identified through literature and bioinformatic searches were tested for l-arabonate production from l-arabinose in the yeast Saccharomyces cerevisiae. The most efficient enzyme, annotated as a d-galactose 1-dehydrogenase from the pea root nodule bacterium Rhizobium leguminosarum bv. trifolii, was purified from S. cerevisiae as a homodimeric protein and characterised. We named the enzyme as a l-arabinose/d-galactose 1-dehydrogenase (EC 1.1.1.-), Rl AraDH. It belongs to the Gfo/Idh/MocA protein family, prefers NADP+ but uses also NAD+ as a cofactor, and showed highest catalytic efficiency (k cat/K m) towards l-arabinose, d-galactose and d-fucose. Based on nuclear magnetic resonance (NMR) and modelling studies, the enzyme prefers the α-pyranose form of l-arabinose, and the stable oxidation product detected is l-arabino-1,4-lactone which can, however, open slowly at neutral pH to a linear l-arabonate form. The pH optimum for the enzyme was pH 9, but use of a yeast-in-vivo-like buffer at pH 6.8 indicated that good catalytic efficiency could still be expected in vivo. Expression of the Rl AraDH dehydrogenase in S. cerevisiae, together with the galactose permease Gal2 for l-arabinose uptake, resulted in production of 18 g of l-arabonate per litre, at a rate of 248 mg of l-arabonate per litre per hour, with 86 % of the provided l-arabinose converted to l-arabonate. Expression of a lactonase-encoding gene from Caulobacter crescentus was not necessary for l-arabonate production in yeast.  相似文献   

19.
In response to iron-depleted aerobic conditions, bacteria often secrete low molecular weight, high-affinity iron(III)-complexing ligands, siderophores, to solubilize and sequester iron(III). Many marine siderophores are amphiphilic and are produced in suites, wherein each member within a particular suite has the same iron(III)-binding polar head group which is appended by one or two fatty acids of differing length, degree of unsaturation, and degree of hydroxylation, establishing the suite composition. We report the isolation and structural characterization of a suite of siderophores from marine bacterial isolate Vibrio sp. Nt1. On the basis of structural analysis, this suite of siderophores, the moanachelins, is amphiphilic and composed of two N-acetyl-N-hydroxy-d-ornithines, one N-acetyl-N-hydroxy-l-ornithine, and either a glycine or an l-alanine, appended with various saturated and unsaturated fatty acid tails. The variation in the small side-chain amino acid is the first occurrence of variation in the peptidic head group structure of a set of siderophores produced by a single bacterium.  相似文献   

20.
A recombinant arginase was generated for a whole-cell biotransformation system to convert l-arginine to l-ornithine in Escherichia coli. The gene ARG1 coding arginase from Bos taurus liver was synthesized and expressed in E. coli BL21 (DE3) via pETDuet-1. The recombinant arginase was used to catalyze l-arginine to l-ornithine and urea. The reaction was optimal at pH 9.5 and 37 °C. Manganese (10?5 M) and Emulsifier OP-10 [0.033 % (v/v)] could promote arginase activity. In a scale up study, l-arginine conversion rate reached 98 % with a final concentration of 111.52 g l-ornithine/l.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号