首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Galagete is a genus of microlepidoptera including 12 nominate species endemic to the Galapagos Islands. In order to better understand the diversification of this endemic insular radiation, to unravel relationships among species and populations, and to get insight into the early stages of speciation, we developed a phylogenetic reconstruction based on the combined mitochondrial cytochrome oxidase I (555bp) and II (453bp), and the nuclear elongation factor-1alpha (711bp) and wingless (351bp) genes. Monophyly of the genus is strongly supported in the Bayesian and maximum likelihood analyses suggesting a single colonization event by a common ancestor. Two cases of paraphyly observed between species are hypothesized to represent imperfect species limits for G. espanolaensis nested within the G. turritella clade, and introgressive hybridization or lineage sorting in the case of the population of G. protozona from Santa Fe nested within the G. gnathodoxa clade. A geologically calibrated, relaxed molecular clock model was used for the first time to unravel the chronological sequence of an insular radiation. The first split occurring within the Galagete lineage on the archipelago is estimated at 3.3+/-0.4million years ago. The genus radiated relatively quickly in about 1.8million years, and gives an estimated speciation rate of 0.8 species per million years. Although the colonization scenario shows a stochastic dispersal pattern, the arrival of the ancestor and the diversification of the radiation coincide with the chronological emergence of the major islands.  相似文献   

2.
We estimated the phylogenetic relationships of all Ibero-African spined loaches of the genus Cobitis using the complete mitochondrial cytochrome b gene (1140bp). We analysed 93 individuals of seven cobitid species found in all the principal drainages of the Iberian Peninsula and North Africa. A molecular phylogeny was used to revise current systematics of the Ibero-African Cobitis species and to infer a biogeographical model for Cobitis in the Western Mediterranean area during the Cenozoic period. Phylogenetic analysis provided support for the monophyly of two mtDNA clades: Clade A or Italian Clade with the Italian species (C. bilineata, C. zanandreai), and Clade B or the Ibero-African Clade. The Ibero-African Clade included all species endemic for the Iberian Peninsula (C. vettonica, C. calderoni, and C. paludica) and North Africa (C. maroccana). The species C. paludica does not constitute a natural group, and could be divided into at least four monophyletic mtDNA lineages with moderate to high bootstrap values and posterior probability support. Phylogenetic relationships of the Ibero-African species were not resolved satisfactorily, but in all analyses C. calderoni from Northern Iberian Peninsula was basal. We have re-calibrated a molecular clock for the genus Cobitis (0.68% per million year by pairwise) using populations inhabiting both sides of the Gibraltar Strait. Application of this Cobitis mtDNA clock provides evidence that the Messinian salinity crisis played a primary role in the diversification of some Ibero-African cobitid species. The basal polytomies of the Ibero-African Clade might suggest that all mtDNA lineages diversified rapidly.  相似文献   

3.
We examined phylogenetic relationships among six species representing three subfamilies, Glirinae, Graphiurinae and Leithiinae with sequences from three nuclear protein-coding genes (apolipoprotein B, APOB; interphotoreceptor retinoid-binding protein, IRBP; recombination-activating gene 1, RAG1). Phylogenetic trees reconstructed from maximum-parsimony (MP), maximum-likelihood (ML) and Bayesian-inference (BI) analyses showed the monophyly of Glirinae ( Glis and Glirulus ) and Leithiinae ( Dryomys , Eliomys and Muscardinus ) with strong support, although the branch length maintaining this relationship was very short, implying rapid diversification among the three subfamilies. Divergence time estimates were calculated from ML (local clock model) and Bayesian-dating method using a calibration point of 25 Myr (million years) ago for the divergence between Glis and Glirulus , and 55 Myr ago for the split between lineages of Gliridae and Sciuridae on the basis of fossil records. The results showed that each lineage of Graphiurus , Glis , Glirulus and Muscardinus dates from the Late Oligocene to the Early Miocene period, which is mostly in agreement with fossil records. Taking into account that warm climate harbouring a glirid-favoured forest dominated from Europe to Asia during this period, it is considered that this warm environment triggered the prosperity of the glirid species through the rapid diversification. Glirulus japonicus is suggested to be a relict of this ancient diversification during the warm period.  相似文献   

4.
Patterns seen in other Australian flora have led to hypotheses that early Miocene shifts in climate drove rapid radiation of major taxonomic groups such as Eucalyptus. Little is known about absolute dates and rates for Australian monocots, particularly grasses. I tested this early Miocene radiation hypothesis for Australian grasses using a calibrated phylogeny of the endemic stipoid genus Austrostipa and an analysis of diversification rates. The phylogeny was developed from a Bayesian likelihood analysis of the nuclear internal transcribed spacers region, and three calibration points were set based on fossil evidence. The results indicate that the genus arose in the early Miocene and underwent a species radiation, but the rate of diversification was not rapid compared to the current rate or to those of other taxa. Following an 8 million year period of fast molecular evolution but no taxonomic radiation, diversification rates have been constant for the past 15 million years. Comparable measures such as the gamma statistic can be used across taxa to make general conclusions about evolutionary rate constancy.  相似文献   

5.
Shrews of the genus Sorex are characterized by a Holarctic distribution, and relationships among extant taxa have never been fully resolved. Phylogenies have been proposed based on morphological, karyological, and biochemical comparisons, but these analyses often produced controversial and contradictory results. Phylogenetic analyses of partial mitochondrial cytochrome b gene sequences (1011 bp) were used to examine the relationships among 27 Sorex species. The molecular data suggest that Sorex comprises two major monophyletic lineages, one restricted mostly to the New World and one with a primarily Palearctic distribution. Furthermore, several sister-species relationships are revealed by the analysis. Based on the split between the Soricinae and Crocidurinae subfamilies, we used a 95% confidence interval for both the calibration of a molecular clock and the subsequent calculation of major diversification events within the genus Sorex. Our analysis does not support an unambiguous acceleration of the molecular clock in shrews, the estimated rate being similar to other estimates of mammalian mitochondrial clocks. In addition, the data presented here indicate that estimates from the fossil record greatly underestimate divergence dates among Sorex taxa.  相似文献   

6.
Aim To estimate the rate of adaptive radiation of endemic Hawaiian Bidens and to compare their diversification rates with those of other plants in Hawaii and elsewhere with rapid rates of radiation. Location Hawaii. Methods Fifty‐nine samples representing all 19 Hawaiian species, six Hawaiian subspecies, two Hawaiian hybrids and an additional two Central American and two African Bidens species had their DNA extracted, amplified by polymerase chain reaction and sequenced for four chloroplast and two nuclear loci, resulting in a total of approximately 5400 base pairs per individual. Internal transcribed spacer sequences for additional outgroup taxa, including 13 non‐Hawaiian Bidens, were obtained from GenBank. Phylogenetic relationships were assessed by maximum likelihood and Bayesian inference. The age of the most recent common ancestor and diversification rates of Hawaiian Bidens were estimated using the methods of previously published studies to allow for direct comparison with other studies. Calculations were made on a per‐unit‐area basis. Results We estimate the age of the Hawaiian clade to be 1.3–3.1 million years old, with an estimated diversification rate of 0.3–2.3 species/million years and 4.8 × 10?5 to 1.3 × 10?4 species Myr?1 km?2. Bidens species are found in Europe, Africa, Asia and North and South America, but the Hawaiian species have greater diversity of growth form, floral morphology, dispersal mode and habitat type than observed in the rest of the genus world‐wide. Despite this diversity, we found little genetic differentiation among the Hawaiian species. This is similar to the results from other molecular studies on Hawaiian plant taxa, including others with great morphological variability (e.g. silverswords, lobeliads and mints). Main conclusions On a per‐unit‐area basis, Hawaiian Bidens have among the highest rates of speciation for plant radiations documented to date. The rapid diversification within such a small area was probably facilitated by the habitat diversity of the Hawaiian Islands and the adaptive loss of dispersal potential. Our findings point to the need to consider the spatial context of diversification – specifically, the relative scale of habitable area, environmental heterogeneity and dispersal ability – to understand the rate and extent of adaptive radiation.  相似文献   

7.
Abstract Climatic and geological change may play a key role in stimulating biological radiations. Here, we use phylogenetic data to test whether the comparatively high diversity of ehrharteoid grasses in the Cape region of South Africa is the result of rapid radiation associated with the onset of a seasonally arid climate during the late Miocene. A phylogenetic hypothesis based on morphological and nucleotide sequence (nuclear ITS1 and plastid trn L-F) data confirms the monophyly of the African Ehrharta species and shows that the diversification of this lineage was centered in the Cape region. Sequence divergence data (ITS1 + trn L-F) indicate a pulse of rapid speciation, which may explain poor phylogenetic resolution within the African Ehrharta clade. Alternative calibrations yield a broad range of time estimates for the start and end of this radiation, most of which indicate a radiation inside the last 11 million years. A calibration based on the age of Ehrhartoideae suggests that radiation started 9.82 ± 0.20 million years ago and ended 8.74 ± 0.21 million years ago. Under alternative calibrations, estimated speciation rates during the period of radiation range between 0.87 and 4.18 species per million years. Parsimony optimization of habitat parameters reveals that radiation was correlated with the occupation of seasonally arid succulent karoo environments, wet heathy (fynbos) environments being ancestral. These data support earlier suggestions that late Miocene climatic change stimulated floristic radiation at the Cape, and highlight the potential importance of environmental change in powering diversification in continental floras.  相似文献   

8.
We studied the speciose butterfly genus Erebia by reconstructing its phylogenetic relationships using parsimony and Bayesian approaches. We estimated times and rates of diversification for its lineages and employed a biogeographical analysis in order to reconstruct its evolutionary history. DNA sequence data from one mitochondrial gene and three nuclear genes were analyzed for a total of 74 species in Erebia. The estimated dates of origin and diversification for clades, in combination with a biogeographical analysis, suggest that the genus originated in Asian Russia and started its diversification process around 23 Myr. An important event was the dispersal of a lineage from Asia to Western Europe between 23 and 17 Myr, which allowed the radiation of most of species in the genus. The diversification pattern is consistent with a model of diversity limited by clade richness, which implies an early rapid diversification followed by deceleration due to a decrease in speciation. We argue that these characteristics of the evolutionary history of Erebia are consistent with a density‐dependent scenario, with species radiation limited by filling of niche space and reduced resources. We found that the Boeberia parmenio appears strongly supported in the genus Erebia and therefore we place Boeberia Prout, 1901 as a junior synonym of Erebia Dalman, 1816 ( syn. nov. ).  相似文献   

9.
Both geographic isolation and polyploidization are assumed to play an important role in driving species diversification. However, this is rarely illustrated through phylogenomic analyses. The genus Eutrema (Brassicaceae), which also includes the salt-resistant species, are distributed mainly in Asia with extensive species diversification in the Qinghai–Tibet Plateau (QTP) and adjacent regions. In this study, we revealed almost fully resolved backbone relationships of the genus with genome re-sequencing data for genomes of 168 individuals from 28 species. Phylogenetic analyses of both plastomes and single-copy nuclear genes from the whole genome recovered six well-supported clades with almost consistent relationships. The first two clades are mainly distributed in central China and central Asia, while the other four in the QTP and adjacent regions. All of them diversified within 12 million years. Within each clade, we recovered numerous conflicts in the interspecific relationships between nuclear and plastome phylogenies, likely suggesting hybridization and incomplete lineage sorting during species diversification. Our estimation of genome size and comparison of the number of the single-copy nuclear genes demonstrated frequent occurrences of polyploids in the genus. Except for an establishment of the backbone phylogeny, our phylogenomic analyses suggest that in addition to strong geographic isolation, polyploidization may have played an important role in species diversification of this genus.  相似文献   

10.
We conducted a phylogenetic study of pygopodid lizards, a group of 38 species endemic to Australia and New Guinea, with two major goals: to reconstruct a taxonomically complete and robustly supported phylogeny for the group and to use this information to gain insights into the tempo, mode, and timing of the pygopodid radiation. Phylogenetic analyses of mitochondrial DNA (mtDNA), nuclear DNA (nDNA), and previously published morphological data using parsimony, maximum likelihood, and Bayesian methods on the independent and combined three data sets yielded trees with similar and largely stable ingroup topologies. However, relationships among the six most inclusive and unambiguously supported clades (Aprasia, Delma, Lialis, Ophidiocephalus, Pletholax, and Pygopus) varied depending on data set analyzed. We used parametric bootstrapping to help us understand which of the three-branch schemes linking these six taxa was most plausible given our data. We conclude based on our results that the arrangement ((((Delma, Lialis)Pygopus)Pletholax)(Aprasia, Ophidiocephalus)) represents the best hypothesis of intergeneric relationships. A second major problem to arise in our study concerned the inability of our two outgroup taxa (Diplodactylus) to root trees properly; three different rooting locations were suggested depending upon analysis. This long-branch attraction problem was so severe that the outgroup branch also interfered with estimation of ingroup relationships. We therefore used the molecular clock method to root the pygopodid tree. Results of two independent molecular clock analyses (mtDNA and nDNA) converged upon the same root location (branch leading to Delma). We are confident that we have found the correct root because the possibility of our clock estimates agreeing by chance alone is remote given that there are 65 possible root locations (branches) on the pygopodid tree (approximately 1 in 65 odds). Our analysis also indicated that Delma fraseri is not monophyletic, a result supported by a parametric bootstrapping test. We elevated the Western Australian race, Delma f. petersoni, to species status (i.e., Delma petersoni) because hybridization and incomplete lineage sorting could be ruled out as potential causes of this paraphyletic gene tree and because D. grayii is broadly sympatric with its sister species D. fraseri. Climate changes over the past 23 million years, which transformed Australia from a wet, green continent to one that is largely dry and brown, have been suspected as playing a major role in the diversification of Australia's temperate biotas. Our phylogenetic analyses of pygopodid speciation and biogeography revealed four important findings consistent with this climate change diversification model: (1) our fossil-calibrated phylogeny shows that although some extant pygopodid lineages predate the onset of aridification, 28 of 33 pygopodid species included in our study seem to have originated in the last 23 million years; (2) relative cladogenesis tests suggest that several major clades underwent higher than expected rates of speciation; (3) our findings support earlier studies showing that speciation of mesic-adapted biotas in the southeastern and southwestern corners of Australia largely occurred within each of these regions between 12 and 23 million years ago as opposed to repeated dispersal between these regions; and (4) we have identified for the first time the existence of several pairs of sympatric sister species of lizards living in arid and semiarid ecosystems. These sympatric sister species seem to be younger than allopatric or parapatric sister-species pairs, which is not consistent with previous beliefs.  相似文献   

11.
Deserts and other arid zones remain among the least studied biomes on Earth. Emerging genetic patterns of arid-distributed biota suggest a strong link between diversification history and both the onset of aridification and more recent cycles of severe aridification. A previous study based on 1 kb of mtDNA of the monotypic gecko genus Rhynchoedura identified five allopatric clades across the vast Australian arid zone. We supplemented this data with 2.2kb from three nuclear loci and additional mtDNA sequences. Phylogenetic relationships estimated from the mtDNA data with ML and Bayesian methods were largely concordant with relationships estimated with the nDNA data only, and mtDNA and nDNA data combined. These analyses, and coalescent-based species-tree inference methods implemented with (?)BEAST, largely resolve the relationships among them. We also carried out an examination of 19 morphological characters for 268 museum specimens from across Australia, including all 197 animals for which we sequenced mtDNA. The mtDNA clades differ subtly in a number of morphological features, and we describe three of them as new species, raise a fourth from synonymy, and redescribe it and the type species, Rhynchoedura ornata. We also describe a morphologically distinctive new species from Queensland based on very few specimens. The distribution of arid zone clades across what is now relatively homogeneous sand deserts seems to be related to a topographic divide between the western uplands and eastern lowlands, with species' distributions correlated with dryland rivers and major drainage divides. The existence of five cryptic species within the formerly monotypic Rhynchoedura points to ancient divergences within the arid zone that likely were driven by wet phases as well as dry ones.  相似文献   

12.
Phylogenetic relationships of 26 Phortica species were investigated based on DNA sequence data of two mitochondrial (ND2, COI) and one nuclear (28S rRNA) genes. Five monophyletic groups were recovered in the genus Phortica, of which three were established as new subgenera, Alloparadisa, Ashima, and Shangrila. The subgenus Allophortica was suggested as the most basal lineage in Phortica, followed by the lineage of P. helva + P. sobodo + P. varipes. The remaining Phortica species, most of Oriental distribution, formed a monophyletic group, and were subdivided into three lineages (i.e., the subgenera Ashima, Phortica, and Shangrila). The subgenera Shangrila and Phortica were suggested as sister taxa, and four clades were recovered in the subgenus Ashima. The result of reconstruction of ancestral distribution and estimation of divergence times indicates that, the ancestor of the genus Phortica restricted to Africa, its initial diversification was dated back to ca. 23 Mya (coinciding with the Oligocene/Miocene boundary); sympatric speciation and an Africa-to-Asia dispersal was proposed to account for the current distribution of Allophortica and the rest Phortica; most of the rest diversification of Phortica occurred in southern China, and the divergence between the African clade and its Oriental counterpart was suggested as a result of vicariance following a dispersal of their ancestral species from southern China to Africa.  相似文献   

13.
14.
Molecular phylogenies and estimates of divergence times within the sister genera Macaranga and Mallotus were estimated using Bayesian relaxed clock analyses of two generic data sets, one per genus. Both data sets were based on different molecular markers and largely different samples. Per genus three calibration points were utilised. The basal calibration point (crown node of all taxa used) was taken from literature and used for both taxa. The other three calibrations were based on fossils of which two were used per genus. We compared patterns of dispersal and diversification in Macaranga and Mallotus using ancestral area reconstruction in RASP (S-DIVA option) and contrasted our results with biogeographical and geological records to assess accuracy of inferred age estimates. A check of the fossil calibration point showed that the Japanese fossil, used for dating the divergence of Mallotus, probably had to be attached to a lower node, the stem node of all pioneer species, but even then the divergence time was still younger than the estimated age of the fossil. The African (only used in the Macaranga data set) and New Zealand fossils (used for both genera) seemed reliably placed. Our results are in line with existing geological data and the presence of stepping stones that provided dispersal pathways from Borneo to New Guinea-Australia, from Borneo to mainland Asia and additionally at least once to Africa and Madagascar via land and back to India via Indian Ocean island chains. The two genera show congruence in dispersal patterns, which corroborate divergence time estimates, although the overall mode and tempo of dispersal and diversification differ significantly as shown by distribution patterns of extant species.  相似文献   

15.
Phylogenetic relationships of 19 species of didelphid marsupials were studied using two nuclear markers, the non-coding transthyretin intron 1 (TTR) and the coding interphotoreceptor retinoid binding protein exon 1 (IRBP), and two mitochondrial genes, the protein-coding cytochrome b (cyt-b) and the structural 12S ribosomal DNA (12S rDNA). Evolutionary dynamics of these four markers were compared to each other, revealing the appropriate properties presented by TTR intron 1 together with its well supported and resolved phylogenetic signal. Nuclear markers supported the monophyly of medium and large-sized opossums Metachirus+(Chironectes, Lutreolina, Didelphis, Philander), and the paraphyly of mouse-sized opossums, with the genera Gracilinanus, Thylamys, and Marmosops as a sister group to medium and large-sized didelphids. Conflicting branching patterns between mitochondrial and nuclear data involved the phylogenetic position of Marmosa-Micoureus-Monodelphis relative to other mouse-sized opossums. Nuclear phylogenetic inferences among genera were confirmed by the presence of synapomorphic indels observed in TTR intron 1. A Bayesian relaxed molecular clock dating of didelphid evolution using nuclear markers estimated their origin in the Middle Eocene (39.8 million years ago), with subsequent diversification during the Oligocene (Deseadan) and Miocene.  相似文献   

16.
The lower Congo River is a freshwater biodiversity hot spot in Africa characterized by some of the world's largest rapids. However, little is known about the evolutionary forces shaping this diversity, which include numerous endemic fishes. We investigated phylogeographic relationships in Teleogramma, a small clade of rheophilic cichlids, in the context of regional geography and hydrology. Previous studies have been unable to resolve phylogenetic relationships within Teleogramma due to lack of variation in nuclear genes and discrete morphological characters among putative species. To sample more broadly across the genome, we analysed double‐digest restriction‐associated sequencing (ddRAD) data from 53 individuals across all described species in the genus. We also assessed body shape and mitochondrial variation within and between taxa. Phylogenetic analyses reveal previously unrecognized lineages and instances of microallopatric divergence across as little as ~1.5 km. Species ranges appear to correspond to geographic regions broadly separated by major hydrological and topographic barriers, indicating these features are likely important drivers of diversification. Mitonuclear discordance indicates one or more introgressive hybridization events, but no clear evidence of admixture is present in nuclear genomes, suggesting these events were likely ancient. A survey of female fin patterns hints that previously undetected lineage‐specific patterning may be acting to reinforce species cohesion. These analyses highlight the importance of hydrological complexity in generating diversity in certain freshwater systems, as well as the utility of ddRAD‐Seq data in understanding diversification processes operating both below and above the species level.  相似文献   

17.
The Mediterranean land snail genus Mastus (Beck, 1837) is highly divergent. Thirty-two Mastus species have been recorded throughout the genus range, and 23 of them are endemic to the islands of the Aegean Sea and mainland Greece. Of these, all 16 Mastus species reported from Crete are endemic to this island. A robust molecular phylogenetic framework based on mitochondrial and nuclear genes (1623 bp) allowed us to explore the temporal diversification pattern of lineages, using molecular clock approaches. Our results showed an initial radiation in the evolutionary history of the Cretan lineage, followed by a subsequent slowdown of lineage splitting rate. Using a dated major vicariant event of the Aegean area, we estimated the absolute time of the radiation event and proposed a biogeographic scenario accounting for the observed pattern. Additionally, we tried to infer the processes that led to the divergence of the Cretan Mastus species, by applying comparative methods in phylogenetically informated context. Overall, our results favoured a nonecological radiation scenario in the Cretan Mastus species due to an allopatric divergence of secondary sexual characters.  相似文献   

18.
From a phylogenetic perspective, the genus Manihot can be considered as an orphan group of plants, and the scientific knowledge acquired has been mainly related to cassava, one of the most important crops in poor tropical countries. The goal of the majority of evolutionary studies in the genus has been to decipher the domestication process and identify the closest relatives of cassava. Few investigations have focused on wild Manihot species, and the phylogeny of the genus is still unclear. In this study the DNA sequence variation from two chloroplast regions, the nuclear DNA gene G3pdh and two nuclear sequences derived from the 3'-end of two cassava ESTs, were used in order to infer the phylogenetic relationships among a subset of wild Manihot species, including two species from Cnidoscolus as out-groups. Maximum parsimony and Bayesian analyses were conducted for each data set and for a combined matrix due to the low variation of each region when analyzed independently. A penalized likelihood analysis of the chloroplast region trnL-trnF, calibrated with various age estimates for genera in the Euphorbiaceae extracted from the literature was used to determine the ages of origin and diversification of the genus. The two Mesoamerican species sampled form a well-defined clade. The South American species can be grouped into clades of varying size, but the relationships amongst them cannot be established with the data available. The age of the crown node of Manihot was estimated at 6.6 million years ago. Manihot esculenta varieties do not form a monophyletic group that is consistent with the possibility of multiple introgressions of genes from other wild species. The low levels of variation observed in the DNA regions sampled suggest a recent and explosive diversification of the genus, which is confirmed by our age estimates.  相似文献   

19.
The Old World bat family Miniopteridae comprises only the genus Miniopterus, which includes 20 currently recognized species from the Afrotropical realm and 15 species from Eurasia and Australasia. Since 2003, the number of recognized Miniopterus species has grown from 19 to 35, with most newly described species endemic to Madagascar and the Comoros Archipelago. We investigated genetic variation, phylogenetic relationships and clade membership in Miniopterus focusing on Afrotropical taxa. We generated mitochondrial cytochrome-b (cyt-b) and nuclear intron data (five genes) from 352 vouchered individuals collected at 78 georeferenced localities. Including 99 additional mitochondrial sequences from GenBank, we analysed a total of 25 recognized species. Mitochondrial genetic distances among cyt-b-supported clades averaged 9.3%, representing as many as five undescribed species. Multilocus coalescent delimitation strongly supported the genetic isolation of eight of nine tested unnamed clades. A large number of sampled clades in sub-Saharan Africa are distributed wholly or partly in East Africa (nine of 13 clades), suggesting that Miniopterus diversity has been grossly underestimated. Although 25 of 27 cyt-b and 23 of 25 nuclear gene tree lineages from the Afrotropics were strongly supported as monophyletic, a majority of deep nodes were poorly resolved in phylogenetic analyses. Long terminal branches subtending short backbone internodes in the phylogenetic analyses suggest a rapid radiation model of diversification. This hypothesis needs to be tested using more phylogenetically informative data.  相似文献   

20.
Phylogenetic relationships among 15 species of wood mice (genus Apodemus) were reconstructed to explore some long-standing taxonomic problems. The results provided support for the monophyly of the genus Apodemus, but could not reject the hypothesis of paraphyly for this genus. Our data divided the 15 species into four major groups: (1) the Sylvaemus group (A. sylvaticus, A. flavicollis, A. alpicola, and A. uralensis), (2) the Apodemus group (A. peninsulae, A. chevreri, A. agrarius, A. speciosus, A. draco, A. ilex, A. semotus, A. latronum, and A. mystacinus), (3) A. argenteus, and (4) A. gurkha. Our results also suggested that orestes should be a valid subspecies of A. draco rather than an independent species; in contrast, A. ilex from Yunnan may be regarded as a separate species rather than a synonym of orestes or draco. The species level status of A. latronum, tscherga as synonyms of A. uralensis, and A. chevrieri as a valid species and the closest sibling species of A. agrarius were further corroborated by our data. Applying a molecular clock with the divergences of Mus and Rattus set at 12 million years ago (Mya) as a calibration point, it was estimated that five old lineages (A. mystacinus and four major groups above) diverged in the late Miocene (7.82-12.74 Mya). Then the Apodemus group (excluding A. mystacinus) split into two subgroups: agrarius and draco, at about 7.17-9.95 Mya. Four species of the Sylvaemus group were estimated to diverge at about 2.92-5.21 Mya. The Hengduan Mountains Region was hypothesized to have played important roles in Apodemus evolutionary histories since the Pleistocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号