首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to study how N, P, Fe, Mn and S concentrations in pore waters change with time at different temperatures, an incubation experiment was carried out with surficial intertidal sediment. To evaluate the importance of benthic microorganisms, an abiotic control was established by poisoning sediment. The live and poisoned sediments were incubated for ten hours at 10, 21, 30 and 40°C. Dissolved Inorganic Nitrogen (DIN), Dissolved Reactive Phosphorus (DRP), NH4 +, total dissolved manganese (Mndiss), total dissolved iron (Fediss) and soluble inorganic sulphide (HS)t were followed in the pore water samples. Results indicated that high temperature influenced nitrification, allowing accumulation of ammonia and that microorganism activity did not seem important for Mn reduction. Anaerobic nitrification by Mn reduction was advanced as an explanation of the behaviour of DIN during the experiment.  相似文献   

2.
To control the dissolved reactive phosphorus (DRP) concentration in a soil solution, a number of soil amendments were tested. In the current study, Blast Furnace Slag (BFS) and Water Treatment Residues (WTR) were tested on bare soil under two rainfall intensities and two soil roughness levels. The soil was fertilized with P (KH2PO4) at a rate of 400 kg ha?1 while BFS and WTR were applied at a rate of 5 g per 100 g of soil. Two soil roughness levels were exposed to artificial rainfall intensities of 30 and 65 mm h?1. Three rainfall events were performed on each treatment. The runoff water generated over an area of 0.5 m2 with a slope of 8% was collected at different time intervals and analyzed for DRP, Al, Fe, and K concentrations. The results showed that, regardless of rainfall intensity and soil roughness, the concentration of DRP in the runoff water increased with increasing runoff time from the unamended plots. However, in the BFS- and WTR-amended soils, the DRP concentration decreased with runoff time. Dissolved reactive P and DRP loads were the lowest from the WTR-amended plots, followed by the control and the BFS treatment plots. Water treatment residues reduced the mean DRP concentration by 27.3% and the DRP load by 32% compared to unamended plots. The two rainfall intensities significantly affected the DRP concentration and load. Under the low rainfall intensity, the DRP concentration and load were higher compared to the high rainfall intensity. The overall DRP concentration was not affected by changes in soil roughness. However, the DRP loads were higher from the plots with low soil roughness levels, especially during the first and second runs. Both the BFS and WTR were also effective in reducing the DRP concentrations in the drain water collected during the runoff events. The concentrations of Al, Fe, and K in the runoff water were not affected by the soil amendments. However, the electrical conductivity and pH readings were higher from the BFS-amended plots.  相似文献   

3.
Studies of phosphorus (P) dynamics in surface sediments of lakes and coastal seas typically emphasize the role of coupled iron (Fe), sulfur (S) and P cycling for sediment P burial and release. Here, we show that anaerobic oxidation of methane (AOM) also may impact sediment P cycling in such systems. Using porewater and sediment profiles for sites in an oligotrophic coastal basin (Bothnian Sea), we provide evidence for the formation of Fe-bound P (possibly vivianite; Fe3(PO4)2 .8H2O) below the zone of AOM with sulfate. Here, dissolved Fe2+ released from oxides is no longer scavenged by sulfide and high concentrations of both dissolved Fe2+ (>1 mM) and PO4 in the porewater allow supersaturation with respect to vivianite to be reached. Besides formation of Fe(II)-P, preservation of Fe-oxide bound P likely also contributes to permanent burial of P in Bothnian Sea sediments. Preliminary budget calculations suggest that the burial of Fe-bound P allows these sediments to act as a major sink for P from the adjacent eutrophic Baltic Proper.  相似文献   

4.
Rhizophora apiculata leaf litter decomposition and the influence of this process on phosphorus (P) dynamics were studied in mangrove and sand flat sediments at the Bangrong mangrove forest, Phuket, Thailand. The remaining P in the mangrove leaf litter increased with time of decomposition to 174% and 220% of the initial amount in the litter in sand flat and mangrove sediment, respectively, although about 50% of the dry weight had been lost. The incorporation of P into the litter was probably associated with humic acids and metal bridging, especially caused by iron (Fe), which also accumulated in considerable amounts in the litter (5-10 times initial concentration). The addition of leaves to the sediment caused increased concentrations of dissolved reactive phosphate (DRP) in the porewater, especially in sand flat sediment. The DRP probably originated from Fe-bound P in the sediment, because decomposition of buried leaf litter caused increased respiration and reduced the redox potential (Eh) in the sediments. Binding of P to refractory organic material and oxidized Fe at the sediment-water interface explains the low release of DRP from the sediment. This mechanism also explains the generally low DRP concentration in the mangrove porewater, the low nutrient content of the R. apiculata leaves, but also the higher total sediment P concentration of the mangrove sediment as compared to sediments outside the mangrove. Both the low release rates for DRP from the sediment and the accumulation of P associated with leaf litter decomposition tend to preserve P in the sediments.  相似文献   

5.
Phosphorus (P) availability in estuaries may increase with increasing salinity because sulfate from sea salt supports production of sulfide in sediments, which combines with iron (Fe) making it less available to sequester P. Increased P availability with increased salinity may promote the generally observed switch from P limitation of primary production in freshwater ecosystems to nitrogen (N) limitation in coastal marine waters. To investigate this hypothesis, we analyzed pore water from sediment cores collected along the salinity gradients of four Chesapeake Bay estuaries (the Patuxent, Potomac, Choptank, and Bush Rivers) with watersheds differing in land cover and physiography. At salinities of 1–4 in each estuary, abrupt decreases in pore water Fe2+ concentrations coincided with increases in sulfate depletion and PO4 3? concentrations. Peaks in water column PO4 3? concentrations also occur at about the same position along the salinity gradient of each estuary. Increases in pore water PO4 3? concentration with increasing salinity led to distinct shifts in molar NH4 +:PO4 3? ratios from >16 (the Redfield ratio characteristic of phytoplankton N:P) in the freshwater cores to <16 in the cores with salinities >1 to 4, suggesting that release of PO4 3? from Fe where sediments are first deposited in sulfate-rich waters could promote the commonly observed switch from P limitation in freshwater to N limitation in mesohaline waters. Finding this pattern at similar salinities in four estuaries with such different watersheds suggests that it may be a fundamental characteristic of estuaries generally.  相似文献   

6.
1. Globally, freshwater wetlands, including fen waters, are suffering from biodiversity loss due to eutrophication, water shortage and toxic substances, and to mitigate these pressures numerous restoration projects have been launched. Water quality data are generally used to evaluate the chances of reestablishment of aquatic vegetation in fen waters and shallow peat lakes. Here we investigated whether sediment characteristics, which are less prone to fluctuate in time, would result in more reliable predictions. 2. To test if sediment characteristics can indeed be used not only for an easy and early diagnosis of nutrient availability and water quality changes in fen waters, but also for the prognosis of biodiversity response, we recorded the aquatic vegetation and collected surface water, sediment pore water and sediment samples in 145 fen waters in the Netherlands, Ireland and Poland. 3. Endangered macrophyte species were more closely related to surface water chemistry than common species in terms of occurrence and abundance. Sites featuring endangered species appeared to have significantly lower turbidity and pH, and lower concentrations of SO4, PO4, total phosphorus (TP) and NH4 than other sites. 4. PO4 and TP concentrations in the water layer increased markedly at PO4 concentrations above 5–10 μmol L?1 in the sediment pore water. High surface water PO4 and TP concentrations appeared to be SO4‐induced and only occurred below certain threshold values for pore water Fe:PO4 (3.5 mol mol?1) and total sediment Fe:P (10 mol mol?1). 5. Interestingly, the occurrence of endangered species also correlated strongly with sediment and sediment pore water ratios; the number of endangered species increased markedly at pore water Fe:PO4 ratios above 1 mol mol?1, whereas their actual abundance had the greatest increase at ratios above 10 mol mol?1. Additionally, endangered species seemed to be more sensitive to accumulation of potentially toxic substances such as sulphide and ammonium than non‐endangered species. 6. As an indicator of both biogeochemical processes and biodiversity, pore water Fe:PO4 ratios could be a valuable diagnostic and prognostic tool for the restoration of water quality and biodiversity in fen waters, e.g. for selecting the most promising sites for restoration and for optimization of restoration measures.  相似文献   

7.
Sadiq  Muhammad 《Hydrobiologia》1989,(1):225-232
Six sediment samples were collected from the northern Arabian Gulf. Nickel was added to each sediment- seawater suspension and the concentration of total dissolved Ni in the suspensions was monitored for 75 days. The analytical data were used to obtain a linear regression equation relating Ni2+ activity in the sediment suspensions to pH. Using this equation and thermodynamic information, the distribution of Ni species in the suspensions was calculated. The major inorganic species, extrapolated to 35 salinity and pH 8.1, were: Ni2+ (60.1%), NiCl+ (16.9%), NiCl inf2 sup0 (5.0%), NiOH+ (0.4%), and NiSO inf4 sup0 (17.5%). An increase in the seawater salinity increased the concentration of total dissolved Ni and Ni chloro-complexes. A decrease in pH of seawater increased total dissolved Ni and decreased NiOH+ complex, but the proportion of other species remained unchanged. There was no significant (P < 0.05) effect of Cu, Cd, Pb, Fe, Mn, and Al additions on Ni sorption in the marine sediment suspensions.  相似文献   

8.
The properties of plaques were different on the root surface of Potamogeton crispus planted in sediments from two different shallow lakes. Lake Tangxunhu sediment, with low pH, contained low organic matter, whereas Lake Yuehu sediment, with high pH, had high calcium deposits mixed with high organic matter. The contents of mineral elements in sediment of Lake Tangxunhu was lower than that of Lake Yuehu, except for iron (Fe) content, but the contents of mineral elements extracted by sodium dithionite–sodium citrate–sodium bicarbonate (DCB) from root plaques were higher in Lake Tangxunhu than those in Lake Yuehu, except for Fe. These element distributions on P. crispus root plaques were characterized by scanning electron microscope combined with energy-dispersive X-ray spectrometer and were consistent with the contents of mineral elements in sediment. The root plaque of P. crispus planted in Lake Tangxunhu sediment mainly contained silicon (Si) and Fe, and the content of Si was greater than Fe, which may be contributed to the formation of poly-silicic-ferric in the natural conditions. However, the root plaque of P. crispus planted in the sediment with higher calcium content of Lake Yuehu was rich in Fe, Si, phosphorus (P), and calcium (Ca). Due to oxygen secretion by plant roots, the root plaque has more Fe3(PO4)2 and a certain amount of Ca3(PO4)2. The ratio of magnesium (Mn) to Fe extracted by DCB from root plaque in Lake Tangxunhu sediment was 0.031 and 0.010 in Lake Yuehu sediment. In Lake Tangxunhu sediment, lower content of organic matter results in weak reducibility. Enhanced oxidation ability by oxygen secretion of P. crispus root could oxidize low-valent Fe and Mn into iron–manganese oxide, which leads to formation of iron–manganese plaque on the root surface. However, this case is different in Lake Yuehu sediment, where Fe and Mn can be reduced in high organic sediment and low-valent Mn can precipitate in the sediment in which pH is >8. Thus, low-valent Fe in Lake Yuehu sediment moves to the root surface of P. crispus, where it oxidizes into Fe oxide, i.e., Fe plaque.  相似文献   

9.
Ultraviolet radiation (UVR) may alter phosphorous (P) cycling by plankton through changes in the acquisition and/or regeneration of dissolved P. However, to date an effect of UVR on the uptake of P has not been observed at ambient phosphate (PO4 3−) concentrations. This has lead to the conclusion that the uptake of P by plankton may be insensitive to UVR. Past research has been limited to a few individual systems, prolonged incubations in bags, or lab cultures. We suspect that experimentation with natural plankton assemblages across broader environmental and/or chemical gradients is required to appreciably understand how UVR may alter P kinetics. Therefore, our study aimed to determine the effect of UVR on the turnover time of the dissolved PO4 3− pool, the regeneration of dissolved P, the turnover rate of particulate P, and on PO4 3− concentrations in natural plankton assemblages across broad environmental and chemical gradients. Second we aimed to assess how UVR may alter phosphatase activity and, determine if a change in phosphatase activity under UVR irradiance is correlated with a change in P uptake as proposed in the literature. Studies were conducted on 18 thermally stratified or polymictic lakes located in Ontario and Saskatchewan, Canada. Lake water samples were exposed to one of three experimental treatments: control, photosynthetically active radiation (PAR), or photosynthetically active radiation plus ultraviolet radiation (PAR + UVR). Our study is the first to demonstrate that UVR exposure has the potential to alter P cycling at ambient (picomolar) PO4 3− concentrations. We have demonstrated that the turnover time of the PO4 3− pool increases under UVR irradiance (i.e., P uptake decreases), while the regeneration rate of dissolved P and turnover rate of planktonic P are generally not affected; with the net effect being an increase in steady state PO4 3− concentration (ssPO4 3−). Alkaline phosphatase activity (APA) in the dissolved and particulate fractions was significantly reduced in PAR + UVR treatments, but unrelated to changes in P uptake. In summary, we have demonstrated that the cycling of P may be disrupted by UVR, with a decrease in the uptake of P and the accumulation of PO4 3− in the dissolved pool. This, in turn may exacerbate planktonic P limitation, alter the nutrient stoichiometry of plankton and/or indirectly alter rates of primary production in limnetic systems.  相似文献   

10.
The contribution of bacteria to phosphorus (P) and nitrogen (N ) release from, or retention in, sediment was studied in a flow-through system. Live and formaldehyde-killed sediment communities were incubated in 25-liter bottles with a continuous flow of P- or P + N-enriched water. Sediment bacteria in the killed communities were inhibited by adding formaldehyde (final concentration 0.04% v/v) to the sediment before the start of the experiment. Bacterial activity in the live sediments measured with [3H]thymidine and [14C]leucine incorporation techniques did not change essentially during the experiment period (7–8 days). Chemical mechanisms were found to be of principal importance in PO4-P retention in the sediment. In the live samples, the net retention of PO4-P was lower than in the killed samples, which was likely due to the reduced O2 conditions in the sediment as a consequence of bacterial mineralization. In total P exchange, however, bacteria increased the retention rate by recycling dissolved organic P in the sediment. In the live communities the retention of N was very efficient, and all the introduced NH4 -N and NO3-N was immobilized by sediment bacteria. Nitrogen enrichment, however, did not alter the P exchange rates. The gradual emergence of bacterial activity (and grazing) in the killed communities, subsequent to the dilution of formaldehyde concentration, enhanced the release of PO4-P and NH4-N from sediment.  相似文献   

11.
Effects of historic tidal restrictions on salt marsh sediment chemistry   总被引:1,自引:0,他引:1  
The effects of tidalrestrictions by diking on salt marshbiogeochemistry were interpreted by comparingthe hydrology, porewater chemistry and solidphase composition of both seasonally floodedand drained diked marshes with adjacentnatural salt marshes on Cape Cod,Massachusetts. Flooding periods weregreatest in natural and least in drainedmarshes.Differences between the chemistry of thenatural and diked marshes depended upon thedepth of the water table and the supply ofsulfate for anaerobic metabolism. Drainedmarsh sediments were highly acidic (pH <4)with porewaters rich in dissolved Fe; thenatural and diked flooded marshes had pH 6–7.5and Fe orders of magnitude lower. Porewater nutrients, sulfides and alkalinitywere much lower in both flooded and draineddiked marshes than in the natural marsh.Sediments of the drained marsh had subsided90 cm relative to the natural site due toorganic matter decomposition and compaction. However, despite the loss of organic matter,much of the P and N was retained, withNH4 likely protected from nitrificationby low pH and PO4 adsorbed on Fe and Aloxides. Iron, and to a lesser degree sulfur,had also been well retained by the sediment. Despite eight decades of diking, substantialamounts of reduced S, representing potentialacidity, persisted near the top of the watertable.In contrast, the surface of the seasonallyflooded marsh was only 15 cm below thenatural marsh. Accretion since dikingamounted to 25 cm and involved proportionallyless mineral matter.The restoration of seawater flow to bothseasonally flooded and drained diked marsheswill likely extend flooding depth andduration, lower redox, increase cationexchange, and thereby increase NH4,Fe(II), and PO4 mobilization. Increasedporewater nutrients could benefitrecolonizing halophytes but may also degradesurface water quality.  相似文献   

12.
Li D  Chen D  Zhu X 《Bioresource technology》2011,102(13):7001-7003
Porous silica with a high specific surface area (SSA) was prepared from pyrolyzed rice husk (PRH) by adding H3PO4 to sodium silicate solution (SSS) until the pH values of 5.7, 5.0, 4.1 and 3.2 were achieved. The preparation process involved producing SSS from PRH, forming silica-polyethylene glycol (PEG) composites using SSS, H3PO4 and PEG, and calcinating the composites. The required preparation time was below 10 h, and the SSA of the sample prepared at pH 3.2 reached 1018 m2/g. Decreasing pH significantly increased the amount of PEG incorporated into the silica-PEG composites, and hence more pores were generated in the lower pH sample when the PEG was destroyed by calcination at 500 °C. The process developed in this study could lead to more efficient conversion of rice husk into high value-added porous materials that might be used for the adsorption of gas and heavy metal ions.  相似文献   

13.
Twinch  A. J.  Breen  C. M. 《Hydrobiologia》1982,91(1):395-404
Changes at the mud surface in Midmar Dam, following impoundment, were studied by examining vertical profiles of selected parameters in sediment cores. Distinct stratification in organic carbon, pH and exchangeable Al3+ was evident. Phosphate adsorption characteristics in the stratified sediments was quantified using Langmuir adsorption isotherms. The adsorption maxima and bonding energy constants in the surface sediments (0–3 cm) were markedly lower than those below 3 cm, indicating that the surface layers are less efficient at binding phosphate than the deeper layers. Radiotracer experiments indicate that the layers comprising the top 3 cm of sediment predominate in PO4-P exchange with the overlying water.  相似文献   

14.
Release of phosphate from, and adsorption ontosediments is calculated as a chemical equilibriumbetween dissolved o-phosphate and two solidphosphates, i.e. iron- and calcium-bound phosphate.Organic phosphates play a minor role, if any at all.Using chemical equilibrium equations, the distributionof the two solid inorganic phosphates is calculatedfrom the accumulated phosphate quantity as function oftime and depth in sediment layers of shallow lakes orwetlands. It is shown that this distribution dependson water depth, pH, Ca2+ concentration in thewater, Fe(OOH) concentration in the sediments andmaximal binding capacity of the sediments. Bycomparing values of dissolved phosphate at differentpH values, it is shown that acidification, whichusually takes place in hypolimnia, will cause releaseof phosphate, which is not necessarily dependent onthe redox potential. The release does depend on pH,Ca2+ concentration in the water, CaCO3concentration in the sediments and the saturationstage of the two P-pools in the surface layers ofthese sediments. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
The accumulation of inorganic phosphate in lake sediments and a possible following release is due to the adsorption of phosphate onto Fe(OOH) and, especially in hard waters, to the precipitation of apatite. Attempts are made to quantify both processes.For the quantification of the P adsorbed, Pads, onto Fe(OOH) the Freundlich adsorption isotherm, Pads=A(o-P)B, gave good results. The constants A and B could be quantified. Constant A appeared to depend on the pH and the Ca2+ and Mg2+ concentrations in the water. Constant B appeared to approach 0.333. The full equation becomes then: % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGak0dh9WrFfpC0xh9vqqj-hEeeu0xXdbba9frFj0-OqFf% ea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs0dXdbPYxe9vr0-vr% 0-vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaWgaa% WcbaGaamyyaiaadsgacaWGZbaabeaakiabg2da9iaaikdacaaIZaGa% aGOnaiaaicdacaaIWaGaaiOlaiaacIcacaaIXaGaaGimamaaCaaale% qabaGaaGimaiaac6cacaaI0aacbiGaa8hCaiaa-HeaaaGccaGGPaGa% aiikaiaaikdacaGGUaGaaG4naiaaiEdacqGHsislcaaIXaGaaiOlai% aaiEdacaaI3aGaai4oaiaadwgadaahaaWcbeqaaiabgkHiTiaa-nea% caWFHbaaaOGaaiykamaakeaabaGaam4BaiabgkHiTiaadcfaaSqaai% aaiodaaaaaaa!57AF!\[P_{ads} = 23600.(10^{0.4pH} )(2.77 - 1.77;e^{ - Ca} )\sqrt[3]{{o - P}}\]. with the Ca concentration in mmol l–1 and the o-P and Pads concentrations in mg l–1.For the quantification of the solubility of calcium-bound phosphate the solubility product of apatite being 10–50, as found in the two hard water rivers Rhine and Rhone, was used. With this solubility product the solubility of o-P can be calculated as function of the Ca2+ concentration and the pH. The two equations, for adsorption and precipitation, are put together in a so-called solubility diagramme, which describes the o-P concentration as function of the Fe(OOH) concentration in the sediments, and the pH and the Ca2+ concentration in the overlying water.The release of phosphate from the Fe(OOH)P complex under anoxic conditions after adding H2S in inorganic suspensions was shown to be limited. Only when a large excess of H2S was added there was some release, but if less than 75% of the Fe(OOH) was converted into FeS, there was no release. The possibility of organic phosphate as the source of phosphate release under anoxic conditions is discussed. For a full understanding of this possibility, fractionation of sediment bound phosphate must be carried out in such a way, that these organic phosphates are not hydrolysed.This article is dedicated to the memory of Dr Kees de Groot, who died on 21 September 1994. He was a young enthusiastic, promising scientist who will be missed by all who have known him.  相似文献   

16.
Cermelj  Branko  Faganeli  Jadran 《Hydrobiologia》2003,494(1-3):193-199
Anoxic degradation of sedimentary biogenic debris using closed sediment incubation experiments was studied in eutrophic subalpine Lake Bled (NW Slovenia) which, for most of the year, has an anoxic hypolimnion. Production rates of dissolved inorganic carbon (DIC), NH4 +, PO4 3- and dissolved Si, and reduction rates of SO4 2- were measured and anoxic mineralization rates were modelled using G-model. The depth profiles indicated major mineralization of biogenic debris and SO4 2- reduction near the sediment surface. A comparison between depth integrated anoxic mineralization rates and diffusive benthic fluxes of DIC, NH4 + and PO4 3- showed that the anoxic incubation experiments provide a good estimate of N degradation of biogenic debris. The contributions of SO4 2- reduction and acetate fermentation in NH4 + production are about 30 and 70%, respectively. The DIC production accounted for only 15% of DIC benthic flux, indicating that methanogenesis and oxidation of methane provides 80% of this flux. Only about 30% of PO4 3- was released because phosphate precipitated in the closed incubation experiments. The depth integrated production of Si accounts for 70–80% of Si benthic fluxes indicating intense dissolution of biogenic Si in the surficial lake sediment.  相似文献   

17.
Summary Indoleacetic acid buffered at pH 7.0 induces a high growth rate in Avena coleoptile segments after a latent period, the duration of which is dependent upon both IAA concentration and temperature. A minimum latent period of 7.3 min is observed at 25° C with 10-3 M IAA in phosphate buffer at pH 7.0.In contrast, 5×10-3 M IAA made up in 0.01 M KH2PO4 alone, promotes elongation almost immediately, regardless of whether the segments have been previously incubated in 0.01 M KH2PO4 at pH 4.7, or phosphate buffer at pH 7.0. This immediate response is unaffected by 10-4 M KCN which abolishes the rapid growth induced by 5×10-3 M IAA buffered at pH 7.0 but does not affect the immediate appearance of low-pH-induced growth. Since we consistently find solutions of 5×10-3 M IAA in 0.01 M KH2PO4 to have a pH of 3.5, our results indicate that the immediate growth response elicited by this solution is attributable to its low pH rather than to the presence of IAA as previously reported in the literature.  相似文献   

18.
The sub-arctic Lake Myvatn is one of the most productive lakes in the Northern Hemisphere, despite an ice-cover of 190 days per year. This is due to relatively high solar radiation, nutrient rich inflow waters, N2 fixation and internal nutrient loading. In order to define direction and magnitude of diffusive fluxes, soil water samplers were used to collect interstitial water from 25–150 cm depth, from within the diatomaceous sediment at the bottom of Lake Myvatn. Water depth at the sampling site was 225 cm. The pH of the interstitial water ranged from 7.16 to 7.30, while the pH of the lake water was 9.80–10.00. The concentrations of most solutes were similar 16 cm above the bottom of the lake at the sampling site and at the lake outlet. The concentrations of NO3, S, F, O2, Al, Cr, Mo, V, U, Sn and Sb were higher in the lake water than in the interstitial water. They will therefore diffuse from the lake water into the interstitial water. The concentrations of orthophosphates, PO4, and total dissolved P were highest at 25 cm depth, but Co and NH4 concentrations were highest at 50 to 100 cm depth. Thus they diffuse both up towards the lake bottom and down deeper into the sediments. The concentrations of Na, K, Ca, Mg, Sr, Mn, Li and alkalinity were greater within the sediments than in the lake water and increased continuously with depth. The Si concentration of the interstitial water was higher than in the lake water, it was highest at 25 cm depth and decreased slightly down into the sediments. The concentration gradient was greatest for bicarbonate, HCO3 , 1.5×10–7 mol cm–3 cm–1, and then in declining order for the solutes with the highest gradient; NH4, Si, Na, Ca, Mg, -S (diffusion into the sediments), K, PO4, Cl, Fe and Mn. The estimated annual diffusive flux of PO4 for Lake Myvatn was 0.1 g P m–2 yr–1, about 10% of the total PO4 input to Lake Myvatn. The H4SiO4° flux was 1.3 g Si m–2 yr–1, <1% of both the input and the annual net Si fixation by diatoms within the lake and the diffusive flux of dissolved inorganic carbon was 1% of the annual net C fixation by diatoms. Annual diffusive flux of NH4 + was 1.9 g N m–2 yr–1 similar to the input of fixed N to the lake and 24% of the net N fixation within Lake Myvatn. Thus it is important for the nitrogen budget of Lake Myvatn and the primary production in the lake since fixed nitrogen is the rate determining nutrient for primary production.  相似文献   

19.
Plastic-film greenhouse (hereafter, greenhouse) vegetable production by temporarily flooding for crop rotation with rice is used as a countermeasure to reduce salt build-up, specifically in flooded rice production systems in Korea. However, flood waters are still observed to contain large amounts of soluble phosphorus (P) enhancing fresh water eutrophication rate. We hypothesized that the addition of liming materials containing high calcium (Ca) content can convert water-soluble P (W-P) into lesser soluble forms reducing P release into off-field water bodies. An incubation study was conducted to select the best liming material, using Ca(OH)2, CaCO3, and CaSO4·2H2O (hereafter, gypsum) mixed with a salt-accumulated soil at a rate 10 g Ca kg−1. Calcium hydroxide was found to be the most effective in reducing W-P concentration in the incubation test. Thus, Ca(OH)2 was applied at rates of 0, 2, 4, and 8 Mg ha−1 before transplanting rice (Oryza sativa) into a paddy field and temporarily successively planted from vegetables grown in greenhouse. Addition of Ca(OH)2 significantly reduced total P (T-P) and dissolved reactive P (DRP) concentrations in the flooded water and T-P, DRP and unreactive P (UP) in the leachate collected at −60 cm soil depth. The reduction of P leaching and runoff loss by amending Ca(OH)2 was mainly affected by the conversion of W-P into calcium bound P (Ca-P) forms. Liming improved soil pH and other nutrient conditions. Conclusively, Ca(OH)2 could be a good material to reduce P release and restore nutrient balance in a vegetable-rice crop rotation under greenhouse condition.  相似文献   

20.
Effects of road salt deicers on sediment biogeochemistry   总被引:1,自引:0,他引:1  
Road salt deicers, especially NaCl and CaCl2, are increasingly applied to paved areas throughout the world. The goal of this study is to investigate the influence of high concentrations of these salts on wetland biogeochemistry. Sediment cores were collected in fall and spring from a freshwater wetland fringing an urban kettle lake (Asylum Lake, Kalamazoo, MI, USA), and incubated for 100 days in deionized water (control) or with treatments of 1 or 5 g/L CaCl2·2H2O or 5 g/L NaCl to simulate addition of road salt deciers. At monthly intervals, cores were sliced into three depths (0–5, 5–10, 10–15 cm) and pore waters extracted for analysis of pH, total alkalinity and dissolved Mn(II), Fe(II), PO 4 ?3 , NH3, H2S, SO4 ?2, Na, K, Mg, and Ca. Changes in solid phase geochemistry were assessed by measuring the percent organic matter and the distribution of Fe and Mn among four operationally defined sediment fractions (exchangeable, carbonate, reducible, oxidizable) in the control and treatment cores. Addition of NaCl, and especially CaCl2, stimulated significant growth of microbial mats at the core sediment–water interface and led to decreased pH and increased concentrations of Mn(II), Fe(II) and exchangeable cations (Ca, Mg, K, Na) in the sediment pore waters. This study demonstrates that the influx of road salt deciers is likely to have a significant impact on biogeochemical cycling in wetland sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号