首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Process Biochemistry》2014,49(5):850-857
Various types of protein-rich biomass were examined as selective and environment-friendly adsorbents for precious metal ions. In the presence of base metal ions, Au3+, Pd2+ and Pt4+ ions were selectively adsorbed to samples of protein-rich biomass. Among the biomass samples tested, egg-shell membrane exhibited the highest adsorption ability and had high selectivity for Au, Pd and Pt ions. The maximum adsorption amount of Au, Pd and Pt ions to egg-shell membrane was approximately 250, 110 and 50 mg/g, respectively, in the presence of 0.1 M HCl. Microscopic observations and metal-ion desorption studies suggested that the precious metal ions were adsorbed and a portion of them was reduced to form metal nanoparticles on the egg-shell membrane, leading to high adsorption ratios. Investigations using glycoproteins indicated the importance of sugar chains in the adsorption of Au ions to the egg-shell membrane. Successful recovery of Au, Pd and Pt ions from industrial waste solutions was also demonstrated using egg-shell membrane. Biomass sheets (1 mm thick) made from egg-shell membrane also exhibited adsorption abilities for precious metal ions.  相似文献   

2.
In this work, uranyl ion‐imprinted resin based on 2‐(((4‐hydroxyphenyl)amino)methyl)phenol was synthesized by condensation polymerization of its uranyl complex in presence of resorcinol and formaldehyde cross‐linkers. Numerous instrumental techniques including elemental analysis, Fourier transform infrared spectroscopy, ultraviolet, 1H along with 13C nuclear magnetic resonance spectroscopy have been employed for complete characterization of the synthesized ligand and its uranyl complex. Additionally, the obtained ion‐imprinted and non‐imprinted resins were investigated using scanning electron microscope and Fourier transform infrared spectroscopy. The effects of various essential parameters such as pH, temperature and contact time on removal of uranyl ions have been examined, and the results indicated that the obtained resin exhibited the optimum activity at pH 5. Furthermore, the adsorption process was spontaneous at all studied temperatures and followed the second‐order kinetics model. Also, Langmuir adsorption isotherm exhibited the best fit with the experimental results with maximum adsorption capacity 139.3 mg/g. Moreover, the selectivity studies revealed that the ion‐imprinted resin exhibited an obvious affinity toward the uranyl ions in presence of other metal ions compared with the non‐imprinted resin. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Uracil (URA) was selected as a template for preparing molecularly imprinted membranes of poly(acrylonitrile-co-methylacrylic acid) [P(AN-co-MAA)] using the phase inversion technique. This study used Fourier transform infra-red (FT-IR) and (1)H nuclear magnetic resonance (NMR) spectroscopic studies to characterize the polymer-template interaction and scanning electron microscopy (SEM) and atomic force microscopy (AFM) for morphology of the URA imprinted membrane. Resultant membranes had typical ultrafiltration structure with porous morphology and showed a permeation flux of 3.5 x 10 9-5)m(3)/(m(2)s) for 32 microM URA aqueous solution. Permselective binding to the target molecule was observed in permeation experiments with 7.9 micromol/g binding capacity of URA. Binding selectivity was discussed for URA and its analogs, dimethyluracil (DMURA) and caffeine (CAF), with 0.6 and 0.8 micromol/g binding capacity, respectively.  相似文献   

4.
Non-specific adsorption and specific interaction between a chimeric green fluorescent protein (GFP) carrying metal-binding region and the immobilized zinc ions on artificial solid-supported lipid membranes was investigated using the quartz crystal microbalance technique and the atomic force microscopy (AFM). Supported lipid bilayer, composed of octanethiol and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1,2-dioleoyl-sn-glycero-3-[N-(5-amino-1-carboxypentyl iminodiacetic acid)succinyl] (NTA-DOGS)-Zn2+, was formed on the gold electrode of quartz resonator (5 MHz). Binding of the chimeric GFP to zinc ions resulted in a rapid decrease of resonance frequency. Reversibility of the process was demonstrated via the removal of metal ions by EDTA. Nanoscale structural orientation of the chimeric GFP on the membrane was imaged by AFM. Association constant of the specific binding to metal ions was 2- to 3-fold higher than that of the non-specific adsorption, which was caused by the fluidization effect of the metal-chelating lipid molecules as well as the steric hindrance effect. This infers a possibility for a further development of biofunctionalized membrane. However, maximization is needed in order to attain closer advancement to a membrane-based sensor device.  相似文献   

5.
The biosorption of lead, copper and zinc ions on Rhizopus arrhizus has been studied for three single-component and two binary systems. The equilibrium data have been analysed using the Freundlich adsorption model. The characteristic parameters for the Freundlich adsorption model have been determined and the competition coefficients for the competitive biosorption of Pb(II)-Cu(II) at pH 4.0 and 5.0, and Pb(II)-Zn(II) at pH 5.0 have been calculated. For the individual single-component isotherms, lead has the highest biosorption capacity followed by copper, then zinc. The capacity of lead in the two binary systems is always significantly greater than those of the other metal ions, in agreement with the single-component data. Only a partial selectivity for copper ions has been obtained at pH 4.0. Received: 21 June 1999 / Accepted: 2 November 1999  相似文献   

6.
Epifluorescence microscopy as well as atomic force microscopy was successfully applied to explore the orientation and lateral organization of a group of chimeric green fluorescent proteins (GFPs) on lipid membrane. Incorporation of the chimeric GFP carrying Cd-binding region (His6CdBP4GFP) to the fluid phase of DPPC monolayer resulted in a strong fluorescence intensity at the air-water interface. Meanwhile, non-specific adsorption of the GFP having hexahistidine (His6GFP) led to the perturbation of the protein structure in which very low fluorescence was observed. Specific binding of both of the chimeric GFPs to immobilized zinc ions underneath the metal-chelating lipid membrane was revealed. This specific binding could be reversibly controlled by addition of metal ions or metal chelator. Binding of the chimeric GFPs to the metal-chelating lipid membrane was proven to be the end-on orientation while the side-on adsorption was contrarily noted in the absence of metal ions. Increase of lateral mobility owing to the fluidization effect on the chelating lipid membrane subsequently facilitated crystal formation. All these findings have opened up a potential approach for a specific orientation of immobilization of protein at the membrane interface. This could have accounted for a better opportunity of sensor development.  相似文献   

7.
The objective of this study was to convert corncobs to metal ion adsorbents for wastewater treatment. Ground corncobs were modified with either 0.6 M citric acid (CA) or 1.0 M phosphoric acid (PA) to help improve their natural adsorption capacity. The effect of a combination of wash and modification treatment was tested for corncob adsorption efficiency with five different metal ions (cadmium, copper, lead, nickel, zinc) individually or in a mixed solution containing each metal at a 20 mM concentration. Results were compared to those of commercial resins Amberlite IRC-718, Amberlite 200, Duolite GT-73 and carboxymethylcellulose (CMC). Modified corncobs showed the same adsorption efficiency as Duolite GT-73 for cadmium, copper, nickel and zinc ions and had greater adsorption than CMC for nickel and zinc ions. For mixed metals, the modified corncobs exhibited the same adsorption efficiency as Duolite GT-73 for cadmium and copper ions and the same or higher adsorption than Amberlite IRC-718 for lead ions. Adsorption capacities of modified samples were compared to those of Amberlite IRC-718, Amberlite 200 and Duolite GT-73. Commercial resins generally had higher adsorption capacities than modified corncobs. However, the adsorption capacity of modified corncobs for copper and lead ions was equivalent to Duolite GT-73, but was lower than for Amberlite IRC-718 or Amberlite 200. Depending on the specific metal ion and the presence or absence of other metal ions, chemically modified corncobs were at least equivalent in adsorption properties to all of the commercial cation exchange resins examined in this study.  相似文献   

8.
Adsorption of heavy metals from electroplating wastewater by wood sawdust   总被引:11,自引:0,他引:11  
Poplar wood sawdust was examined for adsorption as a replacement for current, more expensive methods of removing copper, zinc and cadmium from electroplating wastewater. Langmuir, Freundlich, BET and competitive Langmuir (two competing ions) isotherms were fitted to experimental data and the goodness of their fit for adsorption was compared. The shapes of isotherms obtained fitted well with multilayer adsorption. This was established and confirmed through solid correspondence between the BET equation and experimental data, in contrast to an observed monolayer adsorption of metal ions on poplar sawdust in single metal-water solutions. The adsorption of copper ions from a mixture (in wastewater) was better than that from a single metal solution. The adsorptions of zinc ions from wastewater and from model water were approximately equal, while that of cadmium ions was significantly lower from the wastewater than from model water. The aforementioned suggests that the presence of other ions in wastewater hindered adsorption of cadmium ions.  相似文献   

9.
The feasibility of using coffee beans after being dripped and degreased (DCB) as an adsorbent for base metals such as copper(II), zinc(II), lead(II), iron(III) and cadmium(II) were examined. The compositions of the DCB were characterized by Fourier transform infrared spectroscopy, scanning electronic micrograph and fluorescent X-ray. It was found that DCB contain sulfur and calcium from the analysis using fluorescent X-ray. The plant cell wall in DCB has the porous structure from the scanning electron microscopy (SEM) analysis, and the specific surface area was determined to be 1.2 m2/g using the specific surface area analyzer. Batch adsorption experiments on DCB were carried out at various pHs in order to elucidate the selectivity of metal ions. All metals were adsorbed at low pH region (3.0-5.0). Of particular interest was the adsorption characteristics of cadmium(II) on DCB. The adsorption isotherm for cadmium(II) at pH 8 fitted with a Langmuir equation to yield an adsorption equilibrium constant of 55.2 mmol dm(-3) and an adsorption capacity of 5.98 x 10(-2) mmol g(-1). The desorption of cadmium(II) was easily achieved over 90% by a single batchwise treatment with an aqueous solution of hydrochloric acid or nitric acid at more than 0.01 mol dm(-3). These results suggested that DCB behaves as a cation exchanger.  相似文献   

10.
Selectivity coefficients for binding of negative and positive ions to chitosans of different chemical composition have been determined by equilibrium dialysis. Chitosans with different fraction of acetylated units (FA of 0.01 and 0.49) generally behaved similarly in their selectivity towards both negative and positive ions. No selectivity was found in the binding of chloride and nitrate ions, while chitosan showed a strong selectivity towards molybdate polyoxyanions, with selectivity coefficients around 100. Chitosan showed a strong selectivity towards copper (Cu2+) compared to the metal ions zinc (Zn2+), cadmium (Cd2+) and nickel (Ni2+), with selectivity coefficients from 10 to 1000, while little or no selectivity could be detected with the other metal ions. Ionic strength and pH did not influence the selectivity coefficients of the chitosans towards the metal ions.  相似文献   

11.
In this work the performance of a Membrane bioreactor (MBR) was assessed for the removal of 3-15 mg/l of copper, lead, nickel and zinc from wastewater. The average removal efficiencies accomplished by the MBR system were 80% for Cu(II), 98% for Pb(II), 50% for Ni(II) and 77% for Zn(II). The addition of 5 g/l vermiculite into the biological reactor enhanced metal removal to 88% for copper, 85% for zinc and 60% for nickel due to adsorption of metal ions on the mineral, while it reduced biomass inhibition and increased biomass growth. The metal ions remaining in soluble form penetrated into the permeate, while those attached to sludge flocs were effectively retained by the ultrafiltration membranes. The average heterotrophic biomass inhibition was 50%, while it reduced to 29% when lower metal concentrations were fed into the reactor in the presence of vermiculite. The respective autotrophic biomass inhibition was 70% and 36%. The presence of heavy metals and vermiculite in the mixed liquor adversely impacted on membrane fouling.  相似文献   

12.
All living cells need zinc ions to support cell growth. Zrt-, Irt-like proteins (ZIPs) represent a major route for entry of zinc ions into cells, but how ZIPs promote zinc uptake has been unclear. Here we report the molecular characterization of ZIPB from Bordetella bronchiseptica, the first ZIP homolog to be purified and functionally reconstituted into proteoliposomes. Zinc flux through ZIPB was found to be nonsaturable and electrogenic, yielding membrane potentials as predicted by the Nernst equation. Conversely, membrane potentials drove zinc fluxes with a linear voltage-flux relationship. Direct measurements of metal uptake by inductively coupled plasma mass spectroscopy demonstrated that ZIPB is selective for two group 12 transition metal ions, Zn2+ and Cd2+, whereas rejecting transition metal ions in groups 7 through 11. Our results provide the molecular basis for cellular zinc acquisition by a zinc-selective channel that exploits in vivo zinc concentration gradients to move zinc ions into the cytoplasm.  相似文献   

13.
Inabilities to process particulate material and to allow the use of high flow rates are limitations of conventional chromatography. Membranes have been suggested as matrix for affinity separation due to advantages such as allowing high flow rates and low-pressure drops. This work evaluated the feasibility of using an iminodiacetic acid linked poly(ethylenevinyl alcohol) membrane in the immobilized metal ion affinity chromatography (IMAC) purification of a human proinsulin(His)(6) of an industrial insulin production process. The screening of metal ions showed Ni(2+) as metal with higher selectivity and capacity among the Cu(2+), Ni(2+), Zn(2+) and Co(2+). The membrane showed to be equivalent to conventional chelating beads in terms of selectivity and had a lower capacity (3.68 mg/g versus 12.26 mg/g). The dynamic adsorption capacity for human proinsulin(His)(6) was unaffected by the mode of operation (dead-end and cross-flow filtration).  相似文献   

14.
A significant role of zinc-binding motifs on metal mobility in Escherichia coli was explored using a chimeric metal-binding green fluorescent protein (GFP) as an intracellular zinc indicator. Investigation was initiated by co-transformation and co-expression of two chimeric genes encoding the chimeric GFP carrying hexahistidine (His6GFP) and the zinc-binding motif fused to outer membrane protein A (OmpA) in E. coli strain TG1. The presence of these two genes was confirmed by restriction endonucleases analysis. Co-expression of the two recombinant proteins exhibited cellular fluorescence activity and enhanced metal-binding capability of the engineered cells. Incorporation of the zinc-binding motif onto the membrane resulted in 60-fold more binding capability to zinc ions than those of the control cells. The high affinity to metal ions of the bacterial surface influenced influx of metal ions to the cells. This may affect the essential ions for triggering important cell metabolism. A declining of fluorescent intensity of GFP has been detected on the cell expressed of zinc binding motif. Meanwhile, balancing of metal homeostasis due to the presence of cytoplasmic chimeric His6GFP enhanced the fluorescent emission. These findings provide the first evidence of real-time monitoring of intracellular mobility of zinc by autofluorescent proteins.  相似文献   

15.
Many microorganisms are capable of sequestering and concentrating heavy metals from their aqueous environment. While much research has beep carried out on the uptake of single species of metal ions, little attention seems to have been given to the study of multimetal ion systems. A mathematical model has previously been developed to describe the uptake of individual metal species by a microorganism. The model proposes two sequential processes: an initial rapid uptake due to cellular surface adsorption and a subsequent slow uptake due to membrane transport of the metal into the cells. This article extends the treatment by considering the uptake of two metal species together, cadmium and zinc, under different experimental conditions. The results are discussed in terms of possible mechanistic interactions.  相似文献   

16.
Molecularly imprinted polymeric membranes with tetrapeptide residue H-Asp(OcHex)-Asp(OcHex)-Asp(OcHex)-Asp(OcHex)-CH2- (DDDD) or H-Glu(OBzl)-Glu(OBzl)-Glu(OBzl)-Glu(OBzl)-C H2- (EEEE) were prepared during membrane preparation (casting) processing in the presence of print molecules. The Boc-L-Trp imprinted polymeric membranes thus obtained showed adsorption selectivity toward Ac-L-Trp from its racemic mixtures. From adsorption isotherms of Ac-Trp, the chiral recognition site, that had been formed by the presence of print molecules in the membrane preparation process, exclusively recognized Ac-L-Trp that possessed the same configuration of the print molecule. The affinity constants between chiral recognition sites in the membrane and Ac-L-Trp was determined to be 1.00 × 104 mol–1 dm3 and 1.08 × 104 mol–1 dm3 for the DDDD and EEEE membranes, respectively. Enantioselective electrodialysis could be attained by applying an optimum potential difference to give permselectivity, with a value close to its adsorption selectivity.  相似文献   

17.
Metal tolerance proteins (MTPs) are plant members of the cation diffusion facilitator (CDF) transporter family involved in cellular metal homeostasis. Members of the CDF family are ubiquitously found in all living entities and show principal selectivity for Zn(2+), Mn(2+), and Fe(2+). Little is known regarding metal selectivity determinants of CDFs. We identified a novel cereal member of CDFs in barley, termed HvMTP1, that localizes to the vacuolar membrane. Unlike its close relative AtMTP1, which is highly selective for Zn(2+), HvMTP1 exhibits selectivity for both Zn(2+) and Co(2+) as assessed by its ability to suppress yeast mutant phenotypes for both metals. Expression of HvMTP1/AtMTP1 chimeras in yeast revealed a five-residue sequence within the AtMTP1 N-segment of the His-rich intracytoplasmic loop that confines specificity to Zn(2+). Furthermore, mutants of AtMTP1 generated through random mutagenesis revealed residues embedded within transmembrane domain 3 that additionally specify the high degree of Zn(2+) selectivity. We propose that the His-rich loop, which might play a role as a zinc chaperone, determines the identity of the metal ions that are transported. The residues within transmembrane domain 3 can also influence metal selectivity, possibly through conformational changes induced at the cation transport site located within the membrane or at the cytoplasmic C-terminal domain.  相似文献   

18.
Competitive biosorption of Cd(II), Cr(III) and Ni(II) on unmodified shelled Moringa oleifera seeds (SMOS) present in ternary mixture were compared with the single metal solution. The extent of adsorption capacity of the ternary metal ions tested on unmodified SMOS was low (10-20%) as compared to single metal ions. SMOS removed the target metal ions in the selectivity order of Cd(II) > Cr(III) > Ni(II). Sorption equilibria, calculated from adsorption data, explained favorable performance of biosorption system. Regeneration of exhausted biomass was also attempted for several cycles with a view to restore the sorbent to its original state.  相似文献   

19.
Semi-interpenetrating polymer network (semi-IPN) hydrogel was prepared to recognize hemoglobin, by molecularly imprinted method, in the mild aqueous media of chitosan and acrylamide in the presence of N,N'-methylenebisacrylamide as the cross-linking agent. The hydrogel obtained has been investigated by using thermal analysis, X-ray diffraction, differential scanning calorimetry (DSC), and environmental scanning electron microscope (ESEM). Langmuir analysis showed that an equal class of adsorption was formed in the hydrogel, and the adsorption equilibrium constant and the maximum adsorption capacity were evaluated to be 4.27 g/mL and 36.53 mg/g wet hydrogel, respectively. The imprinted semi-IPN hydrogel has a much higher adsorption capacity for hemoglobin than the nonimprinted hydrogel with the same chemical composition and also has a higher selectivity for the imprinted molecule.  相似文献   

20.
Summary Mycelial wastes of Rhizopus arrhizus, used in fermentation industries to produce lipases, were studied for their ability to absorb various heavy metal ions (Ni, Zn, Cd and Pb). Chelation of all these ions occurs by a chemical, equilibrated and saturatable mechanism, following the Langmuir adsorption model. Data transformation allowed us to calculate maximum uptake and dissociation constants of the sorption reaction. We also investigated the influence of pH on metal accumulation. Sorption capacity variations between different biosorbent types (Rhizopus, Mucor, Penicillium, and Aspergillus), could be related to their acidity. pH neutralisation during the sorption reaction considerably enhanced zinc chelation (up to 56 mg/g). Previous NaOH treatment of mycelial wastes also increased their capacity for metal sorption. We report R. arrhizus metal uptake curves versus pH, using a pH-stat system. Optimal adsorption was achieved at neutral pH for nickel and zinc, pH 5.0 for lead, and inhibition of chelation was observed when the pH decreased. These results illustrate the importance of pH during the adsorption process, indicating a competitive mechanism for chelation between heavy metal ions and protons at cell wall adsorption sites. Correspondence to: J.-C. Roux  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号