首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
We have isolated a gene, pmk1+, a third mitogen-activated protein kinase (MAPK) gene homolog from the fission yeast Schizosaccharomyces pombe. The predicted amino acid sequence shows the most homology (63 to 65% identity) to those of budding yeast Saccharomyces Mpk1 and Candida Mkc1. The Pmk1 protein contains phosphorylated tyrosines, and the level of tyrosine phosphorylation was increased in the dsp1 mutant which lacks an attenuating phosphatase for Pmk1. The level of tyrosine phosphorylation appears constant during hypotonic or heat shock treatment. The cells with pmk1 deleted (delta pmk1) are viable but show various defective phenotypes, including cell wall weakness, abnormal cell shape, a cytokinesis defect, and altered sensitivities to cations, such as hypersensitivity to potassium and resistance to sodium. Consistent with a high degree of conservation of amino acid sequence, multicopy plasmids containing the MPK1 gene rescued the defective phenotypes of the delta pmk1 mutant. The frog MAPK gene also suppressed the pmk1 disruptant. The results of genetic analysis indicated that Pmk1 lies on a novel MAPK pathway which does not overlap functionally with the other two MAPK pathways, the Spk1-dependent mating signal pathway and Sty1/Spc1/Phh1-dependent stress-sensing pathway. In Saccharomyces cerevisiae, Mpk1 is involved in cell wall integrity and functions downstream of the protein kinase C homolog. In contrast, in S. pombe, Pmk1 may not act in a linear manner with respect to fission yeast protein kinase C homologs. Interestingly, however, these two pathways are not independent; instead, they regulate cell integrity in a coordinate manner.  相似文献   

4.
Fission yeast its3-1 mutant is an allele of the essential gene its3+ that encodes a phosphatidylinositol-4-phosphate 5-kinase (PIP5K) that produces phosphatidylinositol 4,5-bisphosphate. We found that the its3-1 mutant is sensitive to micafungin, a (1,3)-beta-D-glucan synthase inhibitor, suggesting a cell wall integrity defect. Consistently, its3-1 mutation caused synthetic lethality with a (1,3)-beta-D-glucan synthase mutant, bgs1-i2, and its3-1 mutant cells showed aberrant localization of green fluorescent protein-Bgs1. Similar aberrant localization of green fluorescent protein-tagged Rgf1, a putative phosphatidylinositol 4,5-bisphosphate-binding guanine nucleotide exchange factor for Rho protein, in its3-1 mutants was observed, suggesting a defective Rgf1/Rho pathway. To unravel the molecular mechanism(s), putative downstream components of PIP5K signaling were analyzed. Unexpectedly, overexpression of phospholipase C (Plc1), but not that of protein kinase C (PKC; Pck1 and Pck2), suppressed the phenotypes of the its3-1 mutant. These findings indicate that PKCs are not involved in the suppression, and further analysis revealed that PKCs are not downstream of Plc1 in fission yeast. Also, the enzymatic activity of Plc1 is essential for the suppression of the phenotypes and for the viability of the its3-1 mutant. These findings suggest that Its3 PIP5K regulates cell integrity through a Plc1-mediated PKC-independent pathway, in addition to the Rho/PKC pathway.  相似文献   

5.
6.
7.
A protein kinase specific for casein and acidic ribosomal proteins was isolated and partly characterized.It was found that the enzyme utilizes GTP and ATP as phosphoryl donors. Its affinity for ATP was considerably higher than for GTP with the km values of 7.6 × 10-6M and 5.5 × 10-5M, respectively.Two-dimensional acrylamide gel electrophoresis revealed the phosphorylation of the same ribosomal proteins with either of the [-32P] nucleotides used. It was also shown that one acidic protein (S1 or S2) of 40 S and two acidic proteins (L2 and L3) of 60 S ribosomal subunits were predominantly phosphorylated in vitro. The phosphorylated proteins: L2 and L3 seem to correspond to the proteins of L7 and L12 of E. coli ribosomes. The isolated kinase phosphorylated several basic ribosomal proteins though to a lower extent than the acidic ones.  相似文献   

8.
In fission yeast, knockout of the calcineurin gene resulted in hypersensitivity to Cl(-), and the overexpression of pmp1(+) encoding a dual-specificity phosphatase for Pmk1 mitogen-activated protein kinase (MAPK) or the knockout of the components of the Pmk1 pathway complemented the Cl(-) hypersensitivity of calcineurin deletion. Here, we showed that the overexpression of ptc1(+) and ptc3(+), both encoding type 2C protein phosphatase (PP2C), previously known to inactivate the Wis1-Spc1-Atf1 stress-activated MAPK signaling pathway, suppressed the Cl(-) hypersensitivity of calcineurin deletion. We also demonstrated that the mRNA levels of these two PP2Cs and pyp2(+), another negative regulator of Spc1, are dependent on Pmk1. Notably, the deletion of Atf1, but not that of Spc1, displayed hypersensitivity to the cell wall-damaging agents and also suppressed the Cl(-) hypersensitivity of calcineurin deletion, both of which are characteristic phenotypes shared by the mutation of the components of the Pmk1 MAPK pathway. Moreover, micafungin treatment induced Pmk1 hyperactivation that resulted in Atf1 hyperphosphorylation. Together, our results suggest that PP2C is involved in a negative feedback loop of the Pmk1 signaling, and results also demonstrate that Atf1 is a key component of the cell integrity signaling downstream of Pmk1 MAPK.  相似文献   

9.
10.
Molecular chaperones, such as Hsp40, regulate cellular processes by aiding in the folding, localization, and activation of multi-protein machines. To identify new targets of chaperone action, we performed a multi-copy suppressor screen for genes that improved the slow-growth defect of yeast lacking the YDJ1 chromosomal locus and expressing a defective Hsp40 chimera. Among the genes identified were MID2, which regulates cell-wall integrity, and PKC1, which encodes protein kinase C and is linked to cell-wall biogenesis. We found that ydj1delta yeast exhibit phenotypes consistent with cell-wall defects and that these phenotypes were improved by Mid2p or Pkc1p overexpression or by overexpression of activated downstream components in the PKC pathway. Yeast containing a thermosensitive allele in the gene encoding Hsp90 also exhibited cell-wall defects, and Mid2p or Pkc1p overexpression improved the growth of these cells at elevated temperatures. To determine the physiological basis for suppression of the ydj1delta growth defect, wild-type and ydj1delta yeast were examined by electron microscopy and we found that Mid2p overexpression thickened the mutant's cell wall. Together, these data provide the first direct link between cytoplasmic chaperone function and cell-wall integrity and suggest that chaperones orchestrate the complex biogenesis of this structure.  相似文献   

11.
杨娇  李东  潘皎  朱旭东 《微生物学报》2011,51(6):740-746
摘要:【目的】Snf1/AMPK在真核生物中是重要的且高度保守的一类蛋白激酶。在新型隐球酵母中,SNF1 基因在调节致病因子的生物合成和细胞毒力方面具有重要作用。本文进一步报道了该基因在维持细胞壁完整方面的新功能,这一功能在其他微生物中未见报道。【方法】利用荧光增白剂染料(Calcofluor white dye)染色,荧光显微观察细胞分离、胞壁完整性;利用恒定流速和压力水流冲击菌落,测定细胞黏附琼脂糖表面能力;在含有十二烷基硫酸钠(Sodium dodecyl sulfate,SDS),刚果红(Congo red)染料和增白剂(Fluorescent Brightener 28)的培养基上观察突变株的生长情况,以验证细胞壁完整性。【结果】SNF1 基因突变菌株对细胞壁抑制剂SDS等敏感,表明细胞壁完整性的损坏;在葡萄糖固体培养基上表现为细胞与琼脂间的黏附力丧失;在热击压力下,该菌株不能正常生长,而这种生长缺陷能够被渗透平衡抑制。【结论】新型隐球酵母SNF1 基因对于维持细胞壁完整性是非常重要的,并且影响细胞与琼脂间黏附作用以及细胞对抗热的能力。  相似文献   

12.
13.
Engineered biological systems that precisely execute defined tasks have major potential for medicine and biotechnology. For instance, gene- or cell-based therapies targeting pathogenic cells may replace time- and resource-intensive drug development. Engineering signal transduction systems is a promising, yet presently underexplored approach. Here, we exploit a fungicide-responsive heterologous histidine kinase for pathway engineering and synthetic cell fate regulation in the budding yeast Saccharomyces cerevisiae. Rewiring the osmoregulatory Hog1 MAPK signalling system generates yeast cells programmed to execute three different tasks. First, a synthetic negative feedback loop implemented by employing the fungicide-responsive kinase and a fungicide-resistant derivative reshapes the Hog1 activation profile, demonstrating how signalling dynamics can be engineered. Second, combinatorial integration of different genetic parts including the histidine kinases, a pathway activator and chemically regulated promoters enables control of yeast growth and/or gene expression in a two-input Boolean logic manner. Finally, we implemented a genetic ‘suicide attack’ system, in which engineered cells eliminate target cells and themselves in a specific and controllable manner. Taken together, fungicide-responsive kinases can be applied in different constellations to engineer signalling behaviour. Sensitizing engineered cells to existing chemicals may be generally useful for future medical and biotechnological applications.  相似文献   

14.
The TOR (target of rapamycin) pathway controls cell growth in response to nutrient availability in eukaryotic cells. Inactivation of TOR function by rapamycin or nutrient exhaustion is accompanied by triggering various cellular mechanisms aimed at overcoming the nutrient stress. Here we report that in Saccharomyces cerevisiae the protein kinase C (PKC)-mediated mitogen-activated protein kinase pathway is regulated by TOR function because upon specific Tor1 and Tor2 inhibition by rapamycin, Mpk1 is activated rapidly in a process mediated by Sit4 and Tap42. Osmotic stabilization of the plasma membrane prevents both Mpk1 activation by rapamycin and the growth defect that occurs upon the simultaneous absence of Tor1 and Mpk1 function, suggesting that, at least partially, TOR inhibition is sensed by the PKC pathway at the cell envelope. This process involves activation of cell surface sensors, Rom2, and downstream elements of the mitogen-activated protein kinase cascade. Rapamycin also induces depolarization of the actin cytoskeleton through the TOR proteins, Sit4 and Tap42, in an osmotically suppressible manner. Finally, we show that entry into stationary phase, a physiological situation of nutrient depletion, also leads to the activation of the PKC pathway, and we provide further evidence demonstrating that Mpk1 is essential for viability once cells enter G(0).  相似文献   

15.
16.
《Biotechnology advances》2019,37(6):107352
In the past three decades invasive mycoses have globally emerged as a persistent source of healthcare-associated infections. The cell wall surrounding the fungal cell opposes the turgor pressure that otherwise could produce cell lysis. Thus, the cell wall is essential for maintaining fungal cell shape and integrity. Given that this structure is absent in host mammalian cells, it stands as an important target when developing selective compounds for the treatment of fungal infections. Consequently, treatment with echinocandins, a family of antifungal agents that specifically inhibits the biosynthesis of cell wall (1-3)β-D-glucan, has been established as an alternative and effective antifungal therapy. However, the existence of many pathogenic fungi resistant to single or multiple antifungal families, together with the limited arsenal of available antifungal compounds, critically affects the effectiveness of treatments against these life-threatening infections. Thus, new antifungal therapies are required. Here we review the fungal cell wall and its relevance in biotechnology as a target for the development of new antifungal compounds, disclosing the most promising cell wall inhibitors that are currently in experimental or clinical development for the treatment of some invasive mycoses.  相似文献   

17.
The PKC1-associated mitogen-activated protein (MAP) kinase pathway of Saccharomyces cerevisiae regulates cell integrity by controlling the actin cytoskeleton and cell wall synthesis. Activation of PKC1 occurs via the GTPase RHO1 and the kinase pair PKH1 and PKH2. Here we report that YPK1 and YPK2, an essential pair of homologous kinases and proposed downstream effectors of PKH and sphingolipids, are also regulators of the PKC1-controlled MAP kinase cascade. ypk mutants display random distribution of the actin cytoskeleton and severely reduced activation of the MAP kinase MPK1. Upregulation of the RHO1 GTPase switch or the PKC1 effector MAP kinase pathway suppresses the growth and actin defects of ypk cells. ypk lethality is also suppressed by overexpression of an uncharacterized gene termed TUS1. TUS1 is a novel RHO1 exchange factor that contributes to cell wall integrity-mediated modulation of RHO1 activity. Thus, TUS1 and the YPKs add to the growing complexity of RHO1 and PKC1 regulation in the cell integrity signaling pathway. Furthermore, our findings suggest that the YPKs are a missing link between sphingolipid signaling and the cell integrity pathway.  相似文献   

18.
19.
S Bapat  A Verkleij  J A Post 《FEBS letters》2001,499(1-2):21-26
In this study we show that phosphorylation of extracellular signal-regulated kinase (ERK1/2; also known as p44/42MAPK) following peroxynitrite (ONOO(-)) exposure occurs via a MAPK kinase (MEK)-independent but PKC-dependent pathway in rat-1 fibroblasts. ONOO(-)-mediated ERK1/2 phosphorylation was not blocked by MEK inhibitors PD98059 and U0126. Furthermore, no increase in MEK phosphorylation was detected upon ONOO(-) treatment. Staurosporine was used to investigate whether protein kinase C (PKC) is involved. This was confirmed by down-regulation of PKC by phorbol-12,13-dibutyrate, which resulted in significant reduction of ERK1/2 phosphorylation by ONOO(-), implying that activation of ERK by ONOO(-) depends on activation of PKC. Indeed, PKCalpha and epsilon were activated upon ONOO(-) exposure. When cells were treated with ONOO(-) in a calcium-free buffer, no activation of PKCalpha was detected. Concomitantly, a reduction of ERK1/2 phosphorylation was observed suggesting that calcium was required for translocation of PKCalpha and ERK phosphorylation by ONOO(-). Indeed, ONOO(-) exposure resulted in increased cytosolic calcium, which depended on the presence of extracellular calcium. Finally, data using G?6976, an inhibitor of calcium-dependent PKC activation, implied that ONOO(-)-mediated ERK1/2 phosphorylation depends on activation of a calcium-dependent PKC.  相似文献   

20.
The calC2 mutation in Aspergillus nidulans causes hypersensitivity to Calcofluor White, along with other drug sensitivities that indicate a defect in cell wall integrity. We have cloned CalC by complementation, isolating the A. nidulans orthologue of protein kinase C (PkcA). The pkcA allele of the calC2 strain contains a mutation predicted to introduce a charged arginine residue in place of neutral glycine at a conserved site located immediately beside the C1B regulatory domain. Both PkcA and calC2 map to the same region of chromosome VIII. A PkcA::GFP chimera localizes to hyphal apices and growing septa, as well as to the conidiogenous apices of phialides, indicating a role for PkcA in polarized cell wall growth. These observations support the hypothesis that the role of PkcA in A. nidulans, is comparable to that played by Pkc1p in the Saccharomyces cerevisiae cell wall integrity pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号