首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The analyses of the products formed from heparitin sulfates by the action of two heparitinases and a heparinase from Flavobacterium heparinum is reported. Heparitin sulfates A and B are degraded by heparitinase I yielding two disaccharides, one of them composed of N-acetylglucosamine and an unsaturated uronic, joined by α(1 → 4) linkage, and the other, with the same composition but with an O-sulfate at the hexosamine moiety. A third disaccharide is also formed from heparitin sulfate B, by the action of the same enzyme, composed of glucosamine N-sulfate and an unsaturated uronic acid joined probably by α(1 → 4) linkage. Besides these three disaccharides, heparitin sulfate B yields, by the action of heparitinase I, an oligosaccharide (with an average molecular weight of 6000) which is completely degraded by the heparitinase II yielding a disaccharide composed of glucosamine 2,6-disulfate and unsaturated uronic acid. All the disaccharides are further degraded by α-glycuronidase from Flavobacterium heparinum yielding the respective monosaccharides. Based on these and other analyses the possible structures of the heparitin sulfates are proposed.  相似文献   

2.
Some structural features of heparitin sulfate excreted by patients with Hunter syndrome are described. It is shown, with the aid of heparitinases and heparinase from Flavobacterium heparinum, that the Hunter heparitin sulfate is a very complex structure composed of nine different disaccharide units containing regions akin to normal heparitin sulfate and regions akin the heparin. Two-thirds of the iduronic acid residues of Hunter heparitin sulfate are devoid of sulfate, contrasting with heparin in which most of the iduronic acid residues are sulfated. The isolation and characterization of the non-reducing ends of heparin and of the heparitin sulfates is also described. Based on these results the specificity of the heparinase and heparitinases as well as the biosynthesis of iduronic acid-containing heparin-like compounds is discussed.  相似文献   

3.
Structural differences of dermatan sulfates from different origins   总被引:4,自引:0,他引:4  
The dermatan sulfates from hog, rat, rabbit, and beef liver, hog, rat, beef, and dog spleen, and hog skin were isolated and submitted to structural analysis. All of them migrated as single bands, close to the standard position for dermatan sulfate in agarose-gel electrophoresis. In polyacrylamide gel, however, each dermatan sulfate showed a characteristic electrophoretic migration-pattern: one, two, or three polydisperse bands, corresponding to different molecular weights, were obtained for the dermatan sulfates according to their origins. Chemical analysis showed that all of the dermatan sulfates here described are hybrid polymers composed of D-glucuronic and L-iduronic acid-containing disaccharide units. The relative position of these units in the polymer chains and the presence of 6-sulfated disaccharides were determined with the aid of chondroitinases B and AC from Flavobacterium heparinum. These studies show that each dermatan sulfate has a unique structure as regards the molecular weight, the presence of 6-sulfated disaccharide units, and also the relative amount and position of glucuronic and iduronic acid residues in the chains. These findings suggests a tissue- and species-specificity for the dermatan sulfates.  相似文献   

4.
Heparitin sulfate fractions with a large range in sulfate content were subjected to degradation by Flavobacterium heparinase and by nitrous acid. The products obtained were fractionated by chromatography, characterized, and used to arrive at tentative structures for these complex polysaccharides. The heparitin sulfate chains examined appear to be composed of: 1. uninterrupted blocks of N-acetylglucosamine containing disaccharides; 2. larger blocks with a molecular weight range of 5000 to 6000 which include the N-acetyl block but do not contain heparinase sensitive linkages; 3. segments containing mainly areas where N-acetyl, N-sulfate and some disulfated units alternate in the chain. The size and arrangement of these polymer segments seem to vary with the sulfate content of a particular heparitin sulfate. For instance, the polysaccharides with the highest degree of sulfation do not appear to contain N-acetyl blocks of significant size.  相似文献   

5.
The total degradation of heparin by the joint action of a purified heparinase and a heparitinase from Flavobacterium heparinum is reported. The heparinase acts directly upon heparin, yielding 52% of a trisulfated disaccharide (O-(alpha-L-ido-4-enepyranosyluronic acid 2-sulfate)-(1leads to 4)-2sulfoamino-2-deoxy-D-glucose 6-sulfate) and 40% of a tetrasaccharide besides small amounts of hexa- and disaccharides. The tetrasaccharide is in turn completely degraded by the heparitinase, forming trisulfated disaccharide and disulfated disaccharide (O-(alpha-D-glyco-4-enepyranosyluronic acid)-(1leads to 4)-2-sulfoamino-2-deoxy-D-glucose 6-sulfate) in equal amounts. These and other results indicate that the tri- and disulfated disaccharides are linked alternately, in a proportion of 3:1, respectively. The primary structure of heparin and the mode of action of the heparinase and the heparitinase are proposed based on the analysis of the different products formed by the action of the enzymes.  相似文献   

6.
Chondroitinase C from Flavobacterium heparinum.   总被引:3,自引:0,他引:3  
A chondroitinase that acts upon chondroitin sulfate C and hyaluronic acid was isolated from Flavobacterium heparinum. This enzyme was seperated from constitutional chondroitinase AC and an induced chondroitinase B also present in extracts of F. heparinum previously grown in the presence of chondroitin sulfates A, B or C. The enzyme acts upon chondroitin sulfate C producing tetrasaccharide plus an unsaturated 6-sulfated disaccharide (delta Di-6S), and upon hyaluronic acid producing unsaturated nonsulfated disaccharide (delta Di-OS). Chondroitin sulfate A is also degraded producing oligosaccharides and delta Di-6S but not delta Di-4S. The chondroitinase C is also distinguished from the chondroitinases B and AC by several properties, such as effect of ions, temperature for optimal activity, and susceptibility to increasing salt concentrations. The substrate specificity of the chondroitinase C is different from that of any other chondroitinase or hyaluronidase described so far.  相似文献   

7.
Several commerical batches of heparitin sulfate extracted from beef lung tissue were fractionated into at least four distinct mucopolysaccharides by a combination of polyacrylamide and agarose gel electrophoresis. The four heparitin sulfates (A, B, C and D) were distinguished from each other and from heparin by several physical and chemical properties such as electrophoretic migration, molecular weight, presence of N-acetyl, N- and )-sulfate residues, optical rotation and enzymatic degradation. Of particular significance was the isolation of a heparitin sulfate (heparitin sulfate C) with a homogeneous molecular weight.  相似文献   

8.
Heparitin sulfate fractions with a large range in sulfate content were subjected to degradation by Flavobacterium heparinase and by nitrous acid. The products obtained were fractionated by chromatography, characterized, and used to arrive at tentative structures for these complex polysaccharides. The heparitin sulfate chains examined appear to be composed of: 1. uninterrupted blocks of N-acetylglucosamine containing disaccharides; 2. larger blocks with a molecular weight range of 5000 to 6000 which include the N-acetyl block but do not contain heparinase sensitive linkages; 3. segments containing mainly areas where N-acetyl, N-sulfate and some disulfated units alternate in the chain.The size and arrangement of these polymer segments seem to vary with the sulfate content of a particular heparitin sulfate. For instance, the polysaccharides with the highest degree of sulfation do not appear to contain N-acetyl blocks of significant size.  相似文献   

9.
An automated periodate-thiobarbituric acid assay of Δ-4,5 unsaturated uronic acids which avoids extraction of chromogen has been developed and applied to the analysis of hyaluronic acid and chondroitin sulfates in standard glycosaminoglycan mixtures and in biological samples following digestion with eliminase enzymes. Assay of hyaluronic acid was linear between 0.1 and 2.5 μg of uronic acid, when digested with hyaluronidase from S. hyalurolyticus and use directly in the automated procedure. The measurement of unsaturated disaccharide standards (25–100 μm) derived from chondroitin sulfates was also linear although the color yields were different. The proportions of chondroitin sulfate isomers were estimated by assay of the unsaturated chondroitin disaccharides which has been separated by thin-layer chromatography.  相似文献   

10.
  • 1.1. The disaccharide sequences of a heparan sulfate isolated from Anomantidae sp. was determined with the aid of heparitinase I, heparitinase II from Flavobacterium heparinum, mollusc β-glucuronidase and α-N-acetylglucosaminidase besides nitrous acid degradation and chemical analyses.
  • 2.2. Like the mammalian heparan sulfates the mollusc heparan sulfate is composed of different oligosaccharide blocks of N-acetylated disaccharides, N-sulfated disaccharides and N,6-sulfated disaccharides and has in its nonreducing end the monosaccharide glucosamine 2,6-disulfate.
  • 3.3. The oligosaccharides produced by heparitinase I degradation contain at their reducing ends a N-acetylated, 6-sulfated disaccharide.
  • 4.4. These and other results lead to the conclusion that the general structure of the heparan sulfate is maintained through evolution.
  相似文献   

11.
The capsular polysaccharide from E. Coli, strain K5 composed of ...-->4)beta-D-GlcA(1-->4)alpha-D-GlcNAc(1-->4)beta-D-GlcA (1-->..., chemically modified K5 polysaccharides, bearing sulfates at C-2 and C-6 of the hexosamine moiety and at the C-2 of the glucuronic acid residues as well as 2-O desulfated heparin were used as substrates to study the specificity of heparitinases I and II and heparinase from Flavobacterium heparinum. The natural K5 polysaccharide was susceptible only to heparitinase I forming deltaU-GlcNAc. N-deacetylated, N-sulfated K5 became susceptible to both heparitinases I and II producing deltaU-GlcNS. The K5 polysaccharides containing sulfate at the C-2 and C-6 positions of the hexosamine moiety and C-2 position of the glucuronic acid residues were susceptible only to heparitinase II producing deltaU-GlcNS,6S and deltaU,2S-GlcNS,6S respectively. These combined results led to the conclusion that the sulfate at C-6 position of the glucosamine is impeditive for the action of heparitinase I and that heparitinase II requires at least a C-2 or a C-6 sulfate in the glucosamine residues of the substrate for its activity. Iduronic acid-2-O-desulfated heparin was susceptible only to heparitinase II producing deltaU-GlcNS,6S. All the modified K5 polysaccharides as well as the desulfated heparin were not substrates for heparinase. This led to the conclusion that heparitinase II acts upon linkages containing non-sulfated iduronic acid residues and that heparinase requires C-2 sulfated iduronic acid residues for its activity.  相似文献   

12.
The purification of two heparitinases and a heparinase, in high yields from Flavobacterium heparinum was achieved by a combination of molecular sieving and cation-exchange chromatography. Heparinase acts upon N-sulfated glucosaminido-L-iduronic acid linkages of heparin. Substitution of N-sulfate by N-acetyl groups renders the heparin molecule resistant to degradation by the enzyme. Heparitinase I acts on N-acetylated or N-sulfated glucosaminido-glucuronic acid linkages of the heparan sulfate. Sulfate groups at the 6-position of the glucosamine moiety of the heparan sulfate chains seem to be impeditive for heparitinase I action. Heparitinase II acts upon heparan sulfate producing disulfated, N-sulfated and N-acetylated-6-sulfated disaccharides, and small amounts of N-acetylated disaccharide. These and other results suggest that heparitinase II acts preferentially upon N,6-sulfated glucosaminido-glucuronic acid linkages. The total degradation of heparan sulfate is only achieved by the combined action of both heparitinases. The 13C NMR spectra of the disaccharides formed from heparan sulfate and a heparin oligosaccharide formed by the action of the heparitinases are in accordance to the proposed mode of action of the enzymes. Comparative studies of the enzymes with the commercially available heparinase and heparitinase are described.  相似文献   

13.
The sulfated mucopolysaccharide composition of normal Swiss 3T3 cell line and its tumorigenic mutant ST1 is reported. It is shown that chondroitin sulfate B and heparitin sulfate are the sulfated mucopolysaccharides of the normal 3T3 line whereas chondroitin sulfate A and heparitin sulfate are the major ones of the ST1 variant. Degradation of the chondroitin sulfates derived from both cell lines with chondroitinases B and ABC have shown that they contain only 4-sulfated disaccharides differing from each other by the type of uronic acid residue. It is also shown that the chondroitin sulfate A from the tumorigenic variant is mostly located at the cell surface whereas the chondroitin sulfate B from the normal line is less accessible to trypsinization. A relative increase of chondroitin sulfate A was also observed in 3T3 that had lost contact inhibition after successive subcultures, and in the 3T6 cell line. These combined results are in agreement with the earlier proposal that glucuronic acid-containing chondroitin sulfate plays a role in the stimulation of cell division in neoplastic and embryonic tissues.  相似文献   

14.
The total degradation of heparin by the joint action of a purified heparinase and a heparitinase from Flavobacterium heparinum is reported. The heparinase acts directly upon heparin, yielding 52% of a trisulfated disaccharide (O-(alpha-L-ido-4-enepyranosyluronic acid 2-sulfate)-(1leads to4)-2-sulfoamino-2-deoxy-D-glucose 6-sulfate) and 40% of a tetrasaccharide besides small amounts of hexa- and disaccharides. The tetrasaccharide is in turn completely degraded by the heparitinase, forming trisulfated disaccharide and disulfated disaccharide (O-(alpha-D-glyco-4-enepyranosyluronic acid)-(1leads to4)-2-sulfoamino-2-deoxy-D0glucose 6-sulfate) in equal amounts. These and other results indicate that the tri- and disulfated disaccharides are linked alternately, in a proportion of 3:1, respectively. The primary structure of heparin and the mode of action of the heparinase and the heparitinase are proposed based on the analysis of the different products formed by the action of the enzymes.  相似文献   

15.
During the investigation of alternative methods for the large scale preparation of chondroitinases AC, B and C from Flavobacterium heparinum, a new chondroitinase activity was observed. This new enzyme, like the other chondroitinases, acts as an eliminase, forming unsaturated sulfated disaccharides from dermatan and chondroitin sulfates. In contrast to the chondroitinases previously described, which are endoglycosidases, this chondroitinase ABC cleaves the glycosidic linkages in an exolytic fashion, beginning at the reducing end of the substrate molecules. The oligosaccharides formed as transient products by the action of either chondroitinases or testicular hyaluronidase upon dermatan and chondroitin sulfates are also rapidly degraded by the chondroitinase ABC, regardless of their size or the presence of delta-4,5 unsaturation in the terminal uronic acid residue. The maximum activity of the chondroitinase ABC occurs at 30 degrees C and at pH 6.0-7.5. Only 15% of the activity was observed at 37 degrees C, indicating that the enzyme is very sensitive to thermal denaturation. It is strongly inhibited by phosphate ions and is also inhibited by the unsaturated disaccharides formed.  相似文献   

16.
The isolation and some structural features of heparan sulfates and chondroitin sulfates from three species of molluscs (Pomacea sp., Tagelus gibbus, and Anomalocardia brasiliana) are reported. It is shown that heparan sulfates with structural similarities to the ones found in mammals are present in the three molluscs analyzed. All the heparan sulfates were degraded by heparitinases I and II to four distinct unsaturated disaccharides with the same properties as the ones present in heparan sulfates of mammalian origin. This suggests that these four disaccharide units are maintained through the evolution. Furthermore, the proportion of these units varied in the heparan sulfates according to the species of origin. The chondroitin sulfates, on the other hand, exhibit different structural features according to the species of origin. For instance, by the action of chondroitinase AC, 4- and nonsulfated disaccharides are produced from Pomacea chondroitin, whereas 4- and 6-sulfated disaccharides are formed from Tagelus and Anomalocardia. The possible role of these compounds in cell recognition and/or adhesiveness is discussed in view of the present findings.  相似文献   

17.
Some structural features of thirteen heparan sulfates isolated from different mammalian tissues and species are reported. Two N-acetylated disaccharides, one of then O-sulfated and two N-sulfated disaccharides, one of then 6-sulfated are formed from these compounds by the combined action of heparitinases I and II from Flavobacterium heparinum. The relative proportions of the four disaccharide units vary quite significantly among the thirteen heparan sulfates indicating that the structure of these polymers are tissue and species specific. Based on the frequency of appearance of each one of the disaccharides it was calculated that 10(36) types of heparan sulfates might theoretically be found. The possible role of these polyanions in cell-cell recognition is discussed in view of the present findings.  相似文献   

18.
The disaccharide repeating-units of heparan sulfate   总被引:11,自引:0,他引:11  
Five disaccharides have been isolated after degradation of heparan sulfate by heparinase (heparin lyase) and heparitinase (heparan sulfate lyase) and are suggested to represent the repeating units of the polysaccharide. They all contain a 4,5-unsaturated uronic acid residue and are: (a) A trisulfated disaccharide that is apparently identical to a disaccharide repeating-unit of heparin; (b) a disulfated disaccharide that seems unique for heparan sulfate and contains 2-deoxy-2-sulfamidoglucose and uronic acid sulfate residues; (c) a nonsulfated disaccharide containing a 2-acetamido-2-deoxyglucose residue; (d) a monosulfated disaccharide containing a 2-acetamido-2-deoxyglucose sulfate residue; and (e) a monosulfated disaccharide containing a 2-deoxy-2-sulfamidoglucose residue. Yields of these disaccharides from different heparan sulfate fractions are discussed in relation to possible arrangements of these units in the intact polymer.  相似文献   

19.
The structures of chondroitin sulfate A from whale cartilage and chondroitin sulfate C from shark cartilage have been examined with the aid of the chondroitinases AC and C from Flavobacterium heparinum. The analyses of the products formed from the chondroitin sulfates by the action of the chondroitinases have shown that three types of oligosaccharides compose the structure of chondroitin sulfate A, namely, a dodeca-, hexa- and a tetra-saccharide, containing five, two and one 4-sulfated disaccharides per 6-sulfated disaccharide residue, respectively. The polymer contains an average of 3 mol of each oligosaccharide per mol of chondroitin sulfate A. Each mol of chondroitin sulfate C contains an average of 5 mol of 4-sulfated disaccharide units. A tetra-saccharide containing one 4-sulfated disaccharide and one 6-sulfated disaccharide was isolated from this mucopolysaccharide by the action of the chondroitinase C, indicating that the 4-sulfated disaccharides are not linked together in one specific region but spaced in the molecule.  相似文献   

20.
Heparitinase [EC 4.2.2.8, heparitin sulfate lyase] was prepared from an extract of cultured cells of Flavobacterium heparinum. Purification of the enzyme was achieved by repeating the hydroxyapatite column chromatography. The enzyme was used to degrade heparan sulfate occurring on the surfaces of ascites hepatoma cells, AH 66. From the supernatant of the enzyme-treated cells, breakdown products from heparan sulfate could be detected by paper chromatography. The heparitinase was found to be more effective than trypsin in removing heparan sulfate from the cells. Furthermore, on analyzing glycosaminoglycans and glycopeptides from the enzyme-treated cells and control cells, it was concluded that heparan sulfate was exclusively present on the cell surface and accessible to the heparitinase whereas other cell surface complex carbohydrates remained intact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号