共查询到20条相似文献,搜索用时 15 毫秒
1.
van der Stelt M Veldhuis WB Maccarrone M Bär PR Nicolay K Veldink GA Di Marzo V Vliegenthart JF 《Molecular neurobiology》2002,26(2-3):317-346
The endocannabinoid system is a valuable target for drug discovery, because it is involved in the regulation of many cellular
and physiological functions. The endocannabinoid system constitutes the endogenous lipids anandamide, 2-arachidonoylglycerol
and noladin ether, and the cannabinoid CB1 and CB2 receptors as well as the proteins for their inactivation. It is thought that (endo)cannabinoid-based drugs may potentially
be useful to reduce the effects of neurodegeneration. This paper reviews recent developments in the endocannabinoid system
and its involvement in neuroprotection.
Exogenous (endo)cannabinoids have been shown to exert neuroprotection in a variety of in vitro and in vivo models of neuronal
injury via different mechanisms, such as prevention of excitotoxicity by CB1-mediated inhibition of glutamatergic transmission, reduction of calcium influx, and subsequent inhibition of deleterious
cascades, TNF-α formation, and anti-oxidant activity. It has been suggested that the release of endogenous endocannabinoids
during neuronal injury might be a protective response. However, several observations indicate that the role of the endocannabinoid
system as a general endogenous protection system is questionable. The data are critically reviewed and possible explanations
are given. 相似文献
2.
Phospholipase D-mediated hydrolysis of N-acylethanolamine phospholipids (NAPEs) releases anandamide and other N-acylethanolamines, resulting in different actions at cellular targets in the CNS. Recently, we have demonstrated that these N-acyl lipids accumulate in cultured neocortical neurons subjected to sodium azide-induced cell injury. We here extend the information on the NAPE response, reporting on the composition of N-acylspecies of NAPE, employing a new methodological approach of HPLC-coupled electrospray ionization mass spectrometry. Exposure to sodium azide (5 mM) increased the total amount of NAPE threefold over control levels; however, no alteration of the relative composition of NAPE species was detected. The anandamide precursor (20 : 4-NAPE) constituted only 0.1% of all NAPEs detected in the neurons. Total NAPE species in control cells amounted to 956-1,060 pmol/10(7) cells. Moreover, we detected the presence of an unknown NAPE species with molecular weight identical to 20 : 4-NAPE. This may suggest the presence of a putative stereoisomer of the anandamide precursor with at least one trans-configured double bond in the N-arachidonoyl moiety. These results show that with the present method, neuronal NAPE species can be identified and quantified with respect to N-acyl composition, including a trans-isomer of the anandamide precursor. The anandamide precursor is up-regulated to the same extent as other NAPEs upon neuronal injury. 相似文献
3.
Rello S Stockert JC Moreno V Gámez A Pacheco M Juarranz A Cañete M Villanueva A 《Apoptosis : an international journal on programmed cell death》2005,10(1):201-208
We present a comparative study of apoptotic and necrotic morphology (light and scanning electron microscopy), induced by well known experimental conditions (photodynamic treatments, etoposide, hydrogen peroxide, freezing-thawing and serum deprivation) on cell cultures. Our results indicate that morphological criteria (apoptotic cell rounding and shrinkage, and appearance of membrane bubbles in early necrosis) allow to distinguish these cell death mechanisms, and also show that, independently of the damaging agents, the necrotic process occurs in a characteristic sequence (coalescence of membrane bubbles in a single big one that detaches from cells remaining on the substrate). 相似文献
4.
The combination of synchrotron IR microspectroscopy and fluorescence microscopy has led to the identification of specific IR signatures of apoptosis and necrosis at a single cell level. Apoptosis was induced by treatment of Fas+ tumor cell lines with anti-Fas monoclonal antibodies. Detection of the early and late stages of apoptosis was performed using conjugated annexin V-fluorescein isothiocyanate (AV-FITC) and propidium iodide. Very early cellular changes were detected by IR before externalization of phosphatidylserine and AV-FITC labeling, and they were probably linked to DNA unwinding. The IR signals at 1044, 1177, and 1222 cm(-1), as well as an intensity variation in the CHx stretching region, are the main signature changes of early and late apoptosis, in line with the hypothesis of DNA fragmentation. The increased intensity of the CHx stretching bands of the lipids was observed only at an early stage of apoptosis. Changes in the relative intensity of CH3 and CH2 stretching accompany this increased intensity, suggesting changes in the relative amount and/or type of lipids concomitant with an increased lipid content. Finally, necrotic cells were characterized by marked changes in their chemical composition because several new vibrational features were observed. 相似文献
5.
Ientile R Macaione V Teletta M Pedale S Torre V Macaione S 《Journal of neurochemistry》2001,79(1):71-78
Excitotoxic studies using isolated chick embryo retina indicated that such an in vitro model provides a valid tool to characterize the effect of different agonists for subtypes of glutamate ionotropic receptors. In retinas maintained for 24 h in a Krebs medium, after a brief exposure (30 min) to glutamate agonists, we compared the effects produced by NMDA and non-NMDA-agonists, such as kainic acid (KA) or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). Delayed retinal damage was assessed by measuring lactate dehydrogenase (LDH) present in the medium after exposure to the previously named agonists. Although at high concentrations, both KA and AMPA produced more relevant release than NMDA, 7-8% of total retinal LDH was released after exposure to a 50 microM concentration of non-NMDA agonists. These values were similar to those obtained after 100 microM NMDA. In this regard, retinal tissue appeared to be less sensitive to excitotoxicity based on the activation of NMDA receptor subtype. All three agents produced histopathological lesions typical for excitotoxic damage. A delayed form of excitotoxicity observed in retina segments was predominated by necrotic features. However, the activation of apoptotic machinery early during the incubation period subsequent to brief exposure to NMDA (100 microM) was also present. The activation of caspase enzymes was studied by a fluorometric protease activity assay as well as by western blot analysis. Caspase-3-like activity reached the highest value within 3 h of incubation after exposure to excitotoxin, then the level of enzyme activity declined to lower values. As confirmed by a time-related appearance of TUNEL-positive nuclei, apoptotic features appeared to be specific for retina response to NMDA. In contrast, the exposure to a 50 microM concentration of KA or AMPA induced necrotic cell damage which was evident through the incubation, leading to a delayed mechanism of excitotoxicity. These observations provide evidence that in the retinal model, with regard to agonist concentrations and subtype of glutamate receptors, the cascade of events leading to excitotoxicity may result in either apoptotic or necrotic neuronal cell damage. 相似文献
6.
Cell death can occur by two basically different processes. The original term, necrosis, is now reserved for the generally destructive series of events which include the release of lysosomal enzymes and loss of cell membrane integrity. In contrast, mild treatment with cell damaging agents, or withdrawal of growth factors, may result in a characteristic form of degradation of cellular DNA which is associated with cell death that has morphology known as apoptosis. In this study human leukemia cells were exposed to agents or conditions previously reported to cause necrosis or apoptosis, monitored by detection of DNA “ladders,” and the integrity of cellular DNA was determined on Southern blots. Nuclear DNA was distinguished from mitochondrial DNA by use of probes specific for nuclear genes or for mitochondrial DNA. When HL60, K562, MOLT4, or U937 cells were exposed to conditions which resulted in necrosis, mitochondrial DNA was damaged at approximately the same rate as nuclear DNA, but in apoptosis mtDNA was not degraded. Thus, the ratio of the relative (to untreated cells) abundance of mitochondrial DNA measured by a probe for 16S mitochondrial ribosomal RNA on Southern blots, to the relative abundance of DNA of any nuclear gene, was 1 or less in necrosis, but rose to values greater than 2 in apoptosis. It is concluded that the comparison of the degree of fragmentation of mitochondrial and nuclear DNA provides a quantitative way of distinguishing necrosis from apoptosis. 相似文献
7.
Scheller C Knöferle J Ullrich A Prottengeier J Racek T Sopper S Jassoy C Rethwilm A Koutsilieri E 《Journal of cellular biochemistry》2006,97(6):1350-1361
CD95 (Fas/Apo-1) triggers apoptotic cell death via a caspase-dependent pathway. Inhibition of caspase activation blocks proapoptotic signaling and thus, prevents execution of apoptosis. Besides induction of apoptotic cell death, CD95 has been reported to trigger necrotic cell death in susceptible cells. In this study, we investigated the interplay between apoptotic and necrotic cell death signaling in T cells. Using the agonistic CD95 antibody, 7C11, we found that caspase inhibition mediated by the pancaspase inhibitor, zVAD-fmk, prevented CD95-triggered cell death in Jurkat T cells but not in A3.01 T cells, although typical hallmarks of apoptosis, such as DNA fragmentation or caspase activation were blocked. Moreover, the caspase-independent cell death in A3.01 cells exhibited typical signs of necrosis as detected by a rapid loss of cell membrane integrity and could be prevented by treatment with the radical scavenger butylated hydroxyanisole (BHA). Similar to CD95-induced cell death, apoptosis triggered by the DNA topoisomerase inhibitors, camptothecin or etoposide was shifted to necrosis when capsase activation was inhibited. In contrast to this, ZVAD was fully protective when apoptosis was triggered by the serpase inhibitor, Nalpha-tosyl-phenyl-chloromethyl ketone (TPCK). TPCK was not protective when administered to anti-CD95/ZVAD-treated A3.01 cells, indicating that TPCK does not possess anti-necrotic activity but fails to activate the necrotic death pathway. Our findings show (a) that caspase inhibition does not always protect apoptotic T cells from dying but merely activates a caspase-independent mode of cell death that results in necrosis and (b) that the caspase-inhibitor-induced shift from apoptotic to necrotic cell death is dependent on the cell type and the proapoptotic stimulus. 相似文献
8.
Dendritic degeneration and loss of synaptic proteins are early events correlated with functional decline in neurodegenerative disease. The temporal and mechanistic relationship between synapse loss and cell death, however, remains unclear. We used confocal microscopy and image processing to count post-synaptic sites on rat hippocampal neurons by expressing post-synaptic density protein 95 fused to green fluorescent protein. Fluorescent puncta co-localized with neurotransmitter release sites, NMDA-induced Ca2+ increases and NMDA receptor immunoreactivity. During excitotoxic neurodegeneration, synaptic sites were lost and synaptic transmission impaired. These changes were mediated by NMDA receptors and required Ca2+ -dependent activation of the proteasome pathway. Tracking synapses from the same cell following brief neurotoxic insult revealed transient loss followed by recovery. The time-course, concentration-dependence and mechanism for loss of post-synaptic sites were distinct from those leading to cell death. Cells expressing p14ARF, which inhibits ubiquitination of post-synaptic density protein 95 and prevents loss of synaptic sites, displayed an increased sensitivity to glutamate-induced cell death. Thus, excitotoxic synapse loss may be a disease-modifying process rather than an obligatory step leading to cell death. These results demonstrate the importance of assessing synaptic function independent of neuronal survival during neurodegeneration and indicate that this approach will be useful for identifying toxins that degrade synaptic connections and for screening for agents that protect synaptic function. 相似文献
9.
Apoptosis-inducing factor is involved in the regulation of caspase-independent neuronal cell death 总被引:33,自引:0,他引:33
Cregan SP Fortin A MacLaurin JG Callaghan SM Cecconi F Yu SW Dawson TM Dawson VL Park DS Kroemer G Slack RS 《The Journal of cell biology》2002,158(3):507-517
Caspase-independent death mechanisms have been shown to execute apoptosis in many types of neuronal injury. P53 has been identified as a key regulator of neuronal cell death after acute injury such as DNA damage, ischemia, and excitotoxicity. Here, we demonstrate that p53 can induce neuronal cell death via a caspase-mediated process activated by apoptotic activating factor-1 (Apaf1) and via a delayed onset caspase-independent mechanism. In contrast to wild-type cells, Apaf1-deficient neurons exhibit delayed DNA fragmentation and only peripheral chromatin condensation. More importantly, we demonstrate that apoptosis-inducing factor (AIF) is an important factor involved in the regulation of this caspase-independent neuronal cell death. Immunofluorescence studies demonstrate that AIF is released from the mitochondria by a mechanism distinct from that of cytochrome-c in neurons undergoing p53-mediated cell death. The Bcl-2 family regulates this release of AIF and subsequent caspase-independent cell death. In addition, we show that enforced expression of AIF can induce neuronal cell death in a Bax- and caspase-independent manner. Microinjection of neutralizing antibodies against AIF significantly decreased injury-induced neuronal cell death in Apaf1-deficient neurons, indicating its importance in caspase-independent apoptosis. Taken together, our results suggest that AIF may be an important therapeutic target for the treatment of neuronal injury. 相似文献
10.
Poly(ADP-ribose) polymerase inhibitors attenuate necrotic but not apoptotic neuronal death in experimental models of cerebral ischemia 总被引:9,自引:0,他引:9
Moroni F Meli E Peruginelli F Chiarugi A Cozzi A Picca R Romagnoli P Pellicciari R Pellegrini-Giampietro DE 《Cell death and differentiation》2001,8(9):921-932
An excessive activation of poly(ADP-ribose) polymerase (PARP) has been proposed to play a key role in post-ischemic neuronal death. We examined the neuroprotective effects of the PARP inhibitors benzamide, 6(5H)-phenanthridinone, and 3,4-dihydro-5-[4-1(1-piperidinyl)buthoxy]-1(2H)-isoquinolinone in three rodent models of cerebral ischemia. Increasing concentrations of the three PARP inhibitors attenuated neuronal injury induced by 60 min oxygen-glucose deprivation (OGD) in mixed cortical cell cultures, but were unable to reduce CA1 pyramidal cell loss in organotypic hippocampal slices exposed to 30 min OGD or in gerbils following 5 min bilateral carotid occlusion. We then examined the necrotic and apoptotic features of OGD-induced neurodegeneration in cortical cells and hippocampal slices using biochemical and morphological approaches. Cortical cells exposed to OGD released lactate dehydrogenase into the medium and displayed ultrastructural features of necrotic cell death, whereas no caspase-3 activation nor morphological characteristics of apoptosis were observed at any time point after OGD. In contrast, a marked increase in caspase-3 activity was observed in organotypic hippocampal slices after OGD, together with fluorescence and electron microscope evidence of apoptotic neuronal death in the CA1 subregion. Moreover, the caspase inhibitor Z-VAD-FMK reduced OGD-induced CA1 pyramidal cell loss. These findings suggest that PARP overactivation may be an important mechanism leading to post-ischemic neurodegeneration of the necrotic but not of the apoptotic type. 相似文献
11.
Morishita J Okamoto Y Tsuboi K Ueno M Sakamoto H Maekawa N Ueda N 《Journal of neurochemistry》2005,94(3):753-762
The endocannabinoid anandamide (N-arachidonoylethanolamine) and other bioactive long-chain N-acylethanolamines are thought to be formed from their corresponding N-acylphosphatidylethanolamines by a specific phospholipase D (NAPE-PLD) in the brain as well as other tissues. However, regional distribution of NAPE-PLD in the brain has not been examined. In the present study, we investigated the expression levels of NAPE-PLD in nine different regions of rat brain by enzyme assay, western blotting and real-time PCR. The NAPE-PLD activity was detected in all the tested brain regions with the highest activity in thalamus. Similar distribution patterns of NAPE-PLD were observed at protein and mRNA levels. We also found a remarkable increase in the expression levels of protein and mRNA of the brain NAPE-PLD with development, which was in good agreement with the increase in the activity. The age-dependent increase was also seen with several brain regions and other NAPE-PLD-enriched organs (heart and testis). p-Chloromercuribenzoic acid and cetyltrimethylammonium chloride, which inhibited recombinant NAPE-PLD dose-dependently, strongly inhibited the enzyme of all the brain regions. These results demonstrated wide distribution of NAPE-PLD in various brain regions and its age-dependent expression, suggesting the central role of this enzyme in the formation of anandamide and other N-acylethanolamines in the brain. 相似文献
12.
13.
Pepicelli O Fedele E Bonanno G Raiteri M Ajmone-Cat MA Greco A Levi G Minghetti L 《Journal of neurochemistry》2002,81(5):1028-1034
Cyclooxygenases (COX) are a family of enzymes involved in the biosynthesis of prostaglandin (PG) and thromboxanes. The inducible enzyme cyclooxygenase-2 (COX-2) is the major isoform found in normal brain, where it is constitutively expressed in neurons and is further up-regulated during several pathological events, including seizures and ischaemia. Emerging evidence suggests that COX-2 is implicated in excitotoxic neurodegenerative phenomena. It remains unclear whether PGs or other products associated to COX activity take part in these processes. Indeed, it has been suggested that reactive oxygen species, produced by COX, could mediate neuronal damage. In order to obtain direct evidence of free radical production during COX activity, we undertook an in vivo microdialysis study to monitor the levels of PGE(2) and 8-epi-PGF(2alpha) following infusion of N-methyl-D-aspartate (NMDA). A 20-min application of 1 mm NMDA caused an immediate, MK-801-sensitive increase of both PGE(2) and 8-epi-PGF(2alpha) basal levels. These effects were largely prevented by the specific cytosolic phospholipase A(2) (cPLA(2) ) inhibitor arachidonyl trifluoromethyl ketone (ATK), by non- selective COX inhibitors indomethacin and flurbiprofen or by the COX-2 selective inhibitor NS-398, suggesting that the NMDA-evoked prostaglandin synthesis and free radical-mediated lipid peroxidation are largely dependent on COX-2 activity. As several lines of evidence suggest that prostaglandins may be potentially neuroprotective, our findings support the hypothesis that free radicals, rather than prostaglandins, mediate the toxicity associated to COX-2 activity. 相似文献
14.
Ablin J Verbovetski I Trahtemberg U Metzger S Mevorach D 《Apoptosis : an international journal on programmed cell death》2005,10(5):1009-1018
A number of mechanisms have been proposed to explain the etiology of drug-induced lupus (DIL) but the effect of apoptotic and necrotic cell handling has not been previously examined.Objective. To evaluate the effect of quinidine and procainamide at therapeutic range concentrations, on the uptake of apoptotic and necrotic thymocytes by murine peritoneal macrophages and on macrophage survival, as a novel mechanism for DIL.Methods. Thymocytes were stained and induced to undergo apoptosis by serum withdrawal. Apoptosis was evaluated using annexin V and propidum iodide (PI) and PI staining. Necrosis was induced by heating. Peritoneal macrophages were treated with quinidine or procainamide at a range of therapeutic concentrations and incubated with stained apoptotic and necrotic thymocytes. Apoptotic and necrotic cell uptake was evaluated by flow cytometry using double staining of thymocytes and macrophages and by confocal microscopy. Green fluorescent latex beads were used as controls for phagocytosis.Results. Significantly decreased uptake of apoptotic and necrotic cells was seen in the presence of quinidine and procainamide. The documented effect was mainly on the number of apoptotic/necrotic cells per macrophage. Uptake of fluorescent latex beads offered to resident macrophages was not significantly affected by quinidine or procainamide. No pro-apoptotic effect of quinidine or procainamide on macrophages was seen.Conclusion. Quinidine and procainamide at therapeutic range concentrations specifically inhibit clearance of apoptotic and necrotic cells by peritoneal macrophages. Altered handling of apoptotic and necrotic cells may represent a contributing mechanism for DIL. 相似文献
15.
M F Cordeiro L Guo K M Coxon J Duggan S Nizari E M Normando S L Sensi A M Sillito F W Fitzke T E Salt S E Moss 《Cell death & disease》2010,1(1):e3
Nerve cell death is the key event in all neurodegenerative disorders, with apoptosis and necrosis being central to both acute and chronic degenerative processes. However, until now, it has not been possible to study these dynamically and in real time. In this study, we use spectrally distinct, well-recognised fluorescent cell death markers to enable the temporal resolution and quantification of the early and late phases of apoptosis and necrosis of single nerve cells in different disease models. The tracking of single-cell death profiles in the same living eye over hours, days, weeks and months is a significant advancement on currently available techniques. We identified a numerical preponderance of late-phase versus early-phase apoptotic cells in chronic models, reinforcing the commonalities between cellular mechanisms in different disease models. We showed that MK801 effectively inhibited both apoptosis and necrosis, but our findings support the use of our technique to investigate more specific anti-apoptotic and anti-necrotic strategies with well-defined targets, with potentially greater clinical application. The optical properties of the eye provide compelling opportunities for the quantitative monitoring of disease mechanisms and dynamics in experimental neurodegeneration. Our findings also help to directly observe retinal nerve cell death in patients as an adjunct to refining diagnosis, tracking disease status and assessing therapeutic intervention. 相似文献
16.
Rapid and efficient phagocytic removal of dying cells is a key feature of apoptosis. In necrotic caspase-independent modes of death, the role and extent of phagocytosis is not well documented. To address this issue, we studied at the ultrastructural level the phagocytic response to dying cells in an in vitro phagocytosis assay with a mouse macrophage cell line (Mf4/4). As target cells, murine L929sAhFas cells were induced to die by TNFR1-mediated necrosis or by Fas-mediated apoptosis. Apoptotic L929sAhFas cells are taken up by complete engulfment of apoptotic bodies as single entities forming a tight-fitting phagosome, thus resembling the "zipper"-like mechanism of internalization. In contrast, primary and secondary necrotic cells were internalized by a macropinocytotic mechanism with formation of multiple ruffles by the ingesting macrophage. Ingestion of necrotic cellular material was invariably taking place after the integrity of the cell membrane was lost and did not occur as discrete particles, in contrast to apoptotic material that is surrounded by an intact membrane. Although nuclei of necrotic cells have been observed in the vicinity of macrophages, no uptake of necrotic nuclei was observed. The present report provides a basis for future studies aimed at discovering molecular pathways that precede these diverse mechanisms of uptake. 相似文献
17.
18.
We have previously shown that prolonged exposure to neurotrophins induces oxidative neuronal death. In the present study, we further examined the cascades involved in neurotrophin-4/5 (NT-4/5)-induced neuronal death. Exposure of mature cortical cultures for 48 h to NT-4/5 induced neuronal death through TrkB activation. The NT-4/5-induced neuronal death was largely attenuated by addition of MK-801, indicating a critical role for NMDA receptors. Western blots revealed the induction of NR2A by NT-4/5. In addition, levels of phospho-NR2A and 2B increased, suggesting the upregulation of the NMDA receptor function. Whereas glutamate levels in the media changed little, levels of D-serine and L-glycine, co-agonists at NMDA receptors, increased significantly following NT-4/5 treatment. Exposure to NT-4/5 resulted in the activation of Src and extracellular signal-regulated kinase-1/2 (Erk-1/2). Their inhibitors blocked NR2A induction and phosphorylation as well as neuronal death induced by NT-4/5. In addition, Egr-1 was induced in an Src- and Erk-1/2-dependent manner. Anti-sense oligodeoxynucleotides to egr-1 attenuated NR2A induction as well as neuronal death. Although induction of NADPH oxidase and neuronal nitric oxide synthase (nNOS) contributes to NT-4/5-induced neuronal death, inhibition of their activity did not reduce NR2A induction. Conversely, blockade of NMDA receptors did not attenuate induction of NADPH oxidase or nNOS. These results indicate that two events are largely independent of each other. Our results demonstrate that the signaling cascade of TrkB leads to increase in NMDA receptor activity. Whereas this cascade may play an important role in the modulation of NMDA receptors in physiologic conditions, in the context of TrkB overactivation, it may contribute to neuronal death. 相似文献
19.
Pepicelli O Fedele E Berardi M Raiteri M Levi G Greco A Ajmone-Cat MA Minghetti L 《Journal of neurochemistry》2005,93(6):1561-1567
Using intracerebral microdialysis, we reported previously that acute in vivo activation of NMDA glutamate receptors triggers rapid and transient releases of prostaglandin E2 (PGE2) and F2-isoprostane 15-F(2t)-IsoP in the hippocampus of freely moving rats. The formation of the two metabolites--produced through cyclo-oxygenase (COX) enzymatic activity and free radical-mediated peroxidation of arachidonic acid (AA), respectively,--was prevented by the specific NMDA antagonist MK-801, and was largely dependent on COX-2 activity. Here, we demonstrate that besides COX-2, which is the prominent COX isoform in the brain and particularly in the hippocampus, the constitutive isoform, COX-1 also contributes to prostaglandin (PG) synthesis and oxidative damage following in vivo acute activation of hippocampal NMDA glutamate receptors. The relative contribution of the two isoforms is dynamically regulated, as the COX-2 selective inhibitor NS398 immediately prevented PGE2 and 15-F(2t)-IsoP formation during the application of NMDA, whereas the COX-1 selective inhibitor SC560 was effective only 1 h after agonist infusion. Our data suggest that, although COX-2 is the prominent isoform, COX-1 activity may significantly contribute to excitotoxicity, particularly when considering the amount of lipid peroxidation associated with its catalytic cycle. We suggest that both isoforms should be considered as possible therapeutic targets to prevent brain damage caused by excitotoxicity. 相似文献
20.
We have studied glial activation in rat cerebellar neuronal-glial cultures after inducing neuronal death using various stimuli. Cultures were exposed to 100 microm glutamate for 20 min, which induces excitotoxic neuronal death, or to potassium/serum deprivation, which induces apoptosis of granule neurons. We evaluated alterations in several parameters related to glial activation: nuclear factor-kappaB activation, nitric oxide and tumour necrosis factor-alpha production, which are associated with a pro-inflammatory response, glial proliferation and phagocytic activity. Although the two experimental models of neuronal damage resulted in the death of most neuronal cells within 24 h, differences were observed in the response of the various glial parameters evaluated. While nitric oxide production was not detected in any case, tumour necrosis factor-alpha production, nuclear factor-kappaB activation and glial proliferation were only induced in the presence of excitotoxic neuronal death. However, phagocytosis was induced in both cases, although earlier in the case of apoptotic neuronal death. These results show that glial cells respond to excitotoxic neuronal death with an inflammatory response associated with proliferation and phagocytosis. In contrast, whilst glial cells do not produce pro-inflammatory molecules in the presence of apoptotic neuronal death, phagocytic activity is rapidly induced. 相似文献